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SOME CLASSES OF SIMULTANEOUS COSPECTRAL GRAPHS
FOR ADJACENCY, LAPLACIAN AND NORMALIZED

LAPLACIAN MATRICES

A. DAS1 AND P. PANIGRAHI2

Abstract. In this paper we construct several classes of non-regular graphs which
are co-spectral with respect to all the three matrices, namely, adjacency, Laplacian
and normalized Laplacian, and hence we answer a question asked by S. Butler.
We make these constructions starting with two pairs (G1, H1) and (G2, H2) of A-
cospectral regular graphs, taking their R-graph R(Gi), R(Hi), i = 1, 2, and finally
making some kind of partial joins between R(G1) and R(G2); and R(H1) and R(H2).
Moreover, we determine the number of spanning trees and the Kirchhoff index of
the newly constructed graphs.

1. Introduction

In recent years, construction of cospectral graphs for different matrices is one of the
interesting research problem in the area of spectral graph theory. Here we construct
some graphs which give an answer to the question “Is there an example of two non-
regular graphs which are cospectral with respect to the adjacency, combinatorial
Laplacian and normalized Laplacian at the same time?” asked by Butler [2]. To
present the results of the paper we need some definitions and terminology as follow.
All graphs considered in the paper are simple and undirected. For any graph G, we take
V (G) and E(G) as the vertex set and edge set of G, respectively. The adjacency matrix
of graph G, denoted by A(G), is a square matrix whose rows and columns are indexed
by vertices of graph G, and the (u, v)th entry is 1 if and only if vertex u is adjacent to
vertex v and 0 otherwise. If D(G) is the diagonal matrix of vertex degrees in G, then
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the Laplacian matrix L(G) is defined as L(G) = D(G) − A(G) and the normalized
Laplacian matrix L(G) of G is defined as L(G) = I − D(G)−1/2A(G)D(G)−1/2 with
the convention that D(G)−1(u, u) = 0 if degree of u is zero. For a given square matrix
M of size n, we denote the characteristic polynomial det(xIn − M) by fM(x). The
eigenvalues of A(G), L(G) and L(G) are denoted by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G),
0 = µ1(G) ≤ µ2(G) ≤ · · · ≤ µn(G), and 0 = δ1(G) ≤ δ2(G) ≤ · · · ≤ δn(G) ≤ 2,
respectively, where n is the number of vertices of G. The multiset of eigenvalues
of A(G) (respectively, L(G), L(G)) is called the adjacency (respectively, Laplacian,
normalized Laplacian) spectrum of G, and denoted by A-spectrum (respectively, L-
spectrum, L-spectrum). Two graphs are said to be A-cospectral (respectively, L-
cospectral, L-cospectral) if they have the same A-spectrum (respectively, L-spectrum,
L-spectrum).

The R-graph R(G) [6] of a graph G is the graph obtained from G by introducing a
new vertex ue for each e ∈ E(G) and making ue adjacent to both the end vertices of
e. The set of such new vertices is denoted by I(G), i.e., I(G) = V (R(G))\V (G). The
partial joins of R-graphs which are considered in the paper are given in the definition
below.
Definition 1.1. Let G1 and G2 be two vertex-disjoint graphs with number of vertices
n1 and n2, and edges m1 and m2, respectively. Then the following hold.

(i) The R-vertex-vertex join of G1 and G2, denoted by R(G1)∨̈R(G2), is the graph
obtained from R(G1) and R(G2) by joining each vertex of V (G1) with every
vertex of V (G2). The graph R(G1)∨̈R(G2) has n1 + n2 + m1 + m2 vertices and
3m1 + n1n2 + 3m2 edges.

(ii) The R-edge-edge join of G1 and G2, denoted by R(G1)∨R(G2), is the graph
obtained from R(G1) and R(G2) by joining each vertex of I(G1) with every
vertex of I(G2). The graph R(G1)∨R(G2) has n1 + n2 + m1 + m2 vertices and
m1(3 + m2) + 3m2 edges.

(iii) The R-edge-vertex join of G1 and G2, denoted by R(G1)∨̇R(G2), is the graph
obtained from R(G1) and R(G2) by joining each vertex of I(G1) with every
vertex of V (G2). The graph R(G1)∨̇R(G2) has n1 + n2 + m1 + m2 vertices and
m1(3 + n2) + 3m2 edges. (We note that R-vertex-edge join of G1 and G2 is
isomorphic to the R-edge-vertex join of G2 and G1.)

Example 1.1. Let us consider two graphs G1 = P3 and G2 = P4 (see Figures 1, 2
and 3). The set of dark vertices of G1 and G2 are I(G1) and I(G2), respectively.

In the following lemma we find the degrees of vertices in the above constructed
graphs.
Lemma 1.1. (i) The degree of any vertex v in R(G1)∨̈R(G2) is given by

dR(G1)∨̈R(G2)(v) =


n2 + 2dG1(v), if v ∈ V (G1),
2, if v ∈ I(G1)

⋃
I(G2),

n1 + 2dG2(v), if v ∈ V (G2).
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Figure 1. R-vertex-vertex join of P3 and P4
 

Figure 2. R-edge-edge join of P3 and P4
 

Figure 3. R-edge-vertex join of P3 and P4

(ii) The degree of any vertex v in R(G1)∨R(G2) is given by

d
R(G1)∨R(G2)(v) =


2dG1(v), if v ∈ V (G1),
2 + m2, if v ∈ I(G1),
2dG2(v), if v ∈ V (G2),
2 + m1, if v ∈ I(G2).

(iii) The degree of any vertex v in R(G1)∨̇R(G2) is given by

d
R(G1)∨̇R(G2)(v) =


2dG1(v), if v ∈ V (G1),
2 + n2, if v ∈ I(G1),
2dG2(v) + m1 if v ∈ V (G2),
2, if v ∈ I(G2).

For two matrices A and B, of same size m×n, the Hadamard product A•B of A and
B is a matrix of the same size m×n with entries given by (A•B)ij = (A)ij ·(B)ij (that
is entrywise multiplication). Hadamard product is commutative, that is A•B = B •A.

Notation. Throughout the paper, for any positive integers k, n1 and n2, Ik denotes
the identity matrix of size k, Jn1×n2 denotes n1 × n2 matrix whose all entries are 1,
1n stands for the column vector of size n with all entries equal to 1, Kn×n denotes an
n × n matrix whose all entries are the same. In other words, Kn×n = αJn×n, for a
real number α. For any positive integers s and t, Os×t denotes the zero matrix of size
s × t.

To prove our results we need some basics as given below.
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Lemma 1.2 (Schur complement [7]). Suppose that the order of all four matrices M ,
N , P and Q satisfy the rules of operations on matrices. Then we have∣∣∣∣∣M N

P Q

∣∣∣∣∣ =|Q| · |M − NQ−1P | (if Q is a non-singular square matrix)

=|M | · |Q − PM−1N | (if M is a non-singular square matrix).

Lemma 1.3 ([7]). For a square matrix A of size n and a scalar α, det(A + αJn×n) =
det(A) + α1T

n adj(A)1n, where adj(A) is the adjugate matrix of A.

Lemma 1.4. For any real numbers c, d > 0, we have

(cIn − dJn×n)−1 = 1
c
In + d

c(c − nd)Jn×n.

Proof. We have

(cIn − dJn×n)−1 = adj(cIn − dJn×n)
det(cIn − dJn×n) = cn−2(c − nd)In + cn−2dJn×n

cn−1(c − nd)

=1
c
In + d

c(c − nd)Jn×n. □

For a graph G on n vertices and m edges, the vertex-edge incidence matrix R(G)
of G is a matrix of size n × m, with entry rij = 1 if the ith vertex is incident
to the jth edge, and 0 otherwise. In particular, if G is an r-regular graph then
R(G)R(G)T = A(G) + rIn = 2rIn − L(G) = r(2In − L(G)).

Notation. The M -coronal of an n×n matrix M , denoted by ΓM(x), is defined [5,10]
as the sum of the entries of the matrix (xIn−M)−1, that is, ΓM(x) = 1T

n (xIn−M)−11n.

Lemma 1.5 ([5]). If M is an n × n matrix with each row sum equal to a constant t,
then ΓM(x) = n

x−t
.

Butler [2] constructed non-regular bipartite graphs which are cospectral with respect
to both the adjacency and normalized Laplacian matrices, and then asked for existence
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. In this paper we construct
several classes of such graphs taking help of the operations R-vertex-vertex join, R-
edge-edge join, and R-edge-vertex join. We also find the number of spanning trees
and Kirchhoff index for all the partial join of R-graphs constructed here.

2. Adjacency, Laplacian and Normalized Laplacian Spectra of the
Graphs

In this section we consider regular graphs Gi on ni vertices, mi edges, and with
degree of regularity ri, i = 1, 2. To obtain the required matrices we label the vertices
of the graphs in the following way. Let V (G1) = {v1, . . . , vn1}, I(G1) = {e1, . . . , em1},
V (G2) = {u1, . . . , un2}, I(G2) = {f1, . . . , fm2}. Then, V (G1) ∪ I(G1) ∪ V (G2) ∪ I(G2)
is a partition for all V (R(G1)∨̈R(G2)), V (R(G1)∨R(G2)) and V (R(G1)∨̇R(G2)).
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Lemma 2.1. For i = 1, 2, let Gi be a graph with ni vertices and mi edges. Then, we
have the following:

(i)

A(R(G1)∨̈R(G2)) =


A(G1) R(G1) Jn1×n2 On1×m2

R(G1)T Om1 Om1×n2 Om1×m2

Jn2×n1 On2×m1 A(G2) R(G2)
Om2×n1 Om2×m1 R(G2)T Om2

 ;

(ii)

A(R(G1)∨R(G2)) =


A(G1) R(G1) On1×n2 On1×m2

R(G1)T Om1 Om1×n2 Jm1×m2

On2×n1 On2×m1 A(G2) R(G2)
Om2×n1 Jm2×m1 R(G2)T Om2

 ;

(iii)

A(R(G1)∨̇R(G2)) =


A(G1) R(G1) On1×n2 On1×m2

R(G1)T Om1 Jm1×n2 Om1×m2

On2×n1 Jn2×m1 A(G2) R(G2)
Om2×n1 Om2×m1 R(G2)T Om2

 .

Theorem 2.1. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then, the adjacency spectrum of R(G1)∨̈R(G2) consists of:
(i) two roots of the equation x2 −λi(G1)x− r1 −λi(G1), for every eigenvalue λi(G1),

i = 2, 3, . . . , n1, of A(G1);
(ii) two roots of the equation x2 −λj(G2)x−r2 −λj(G2), for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2),
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation x4 − (r1 + r2)x3 − (2r1 +n1n2 +2r2 − r1r2)x2 +4r1r2x+

4r1r2 = 0.

Proof. The adjacency characteristic polynomial of R(G1)∨̈R(G2) is

fA(R(G1)∨̈R(G2))(x) = det


xIn1 − A(G1) −R(G1) −Jn1×n2 On1×m2

−R(G1)T xIm1 Om1×n2 Om1×m2

−Jn2×n1 On2×m1 xIn2 − A(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)T xIm2


= xm2 det(S),

where

S =

xIn1 − A(G1) −R(G1) −Jn1×n2

−R(G1)T xIm1 Om1×n2

−Jn2×n1 On2×m1 xIn2 − A(G2)


−

On1×m2

Om1×m2

−R(G2)

 1
x

(
Om2×n1 Om2×m1 −R(G2)T

)
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=

xIn1 − A(G1) −R(G1) −Jn1×n2

−R(G1)T xIm1 Om1×n2

−Jn2×n1 On2×m1 xIn2 − A(G2) − 1
x
R(G2)R(G2)T

 .

Hence,

det(S) = det(xIn2 − A(G2) − 1
x

R(G2)R(G2)T ) det(W )

=
n2∏

j=1

{
x − λj(G2) − r2

x
− λj(G2)

x

}
det(W ),

where

W =
(

xIn1 − A(G1) −R(G1)
−R(G1)T xIm1

)

−
(

−Jn1×n2

Om1×n2

)(
xIn2 − A(G2) − 1

x
R(G2)R(G2)T

)−1 (
−Jn2×n1 On2×m1

)
=
(

xIn1 − A(G1) − ΓA(G2)+ 1
x

R(G2)R(G2)T (x)Jn1×n1 −R(G1)
−R(G1)T xIm1

)
.

Then,

det(W ) =xm1 det
(

xIn1 − A(G1) − ΓA(G2)+ 1
x

R(G2)R(G2)T (x)Jn1×n1 − 1
x

R(G1)R(G1)T
)

=xm1

 det
(

xIn1 − A(G1) − 1
x

R(G1)R(G1)T

)

− ΓA(G2)+ 1
x

R(G2)R(G2)T (x)1T
n1adj

(
xIn1 − A(G1) − 1

x
R(G1)R(G1)T

)
1n1


=xm1 det

(
xIn1 − A(G1) − 1

x
R(G1)R(G1)T

)

×

1 − ΓA(G2)+ 1
x

R(G2)R(G2)T (x)1T
n1

(
xIn1 − A(G1) − 1

x
R(G1)R(G1)T

)−1

1n1


=xm1

n1∏
i=1

{
x − λi(G1) − r1

x
− λi(G1)

x

}

×
[
1 − ΓA(G2)+ 1

x
R(G2)R(G2)T (x)ΓA(G1)+ 1

x
R(G1)R(G1)T (x)

]
=xm1

n1∏
i=1

{
x − λi(G1) − r1

x
− λi(G1)

x

}[
1 − n2

x − r2 − 2r2
x

· n1

x − r1 − 2r1
x

]
.

Therefore,

fA(R(G1)∨̈R(G2))(x) =xm1xm2
n1∏
i=1

{
x − λi(G1) − r1

x
− λi(G1)

x

}
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×
n2∏

j=1

{
x − λj(G2) − r2

x
− λj(G2)

x

}

×
[
1 − n2

x − r2 − 2r2
x

· n1

x − r1 − 2r1
x

]

=xm1−n1xm2−n2
n1∏
i=2

{
x2 − λi(G1)x − r1 − λi(G1)

}

×
n2∏

j=2

{
x2 − λj(G2)x − r2 − λj(G2)

} [
x4 − (r1 + r2)x3

− (2r1 + n1n2 + 2r2 − r1r2)x2 + 4r1r2x + 4r1r2
]
,

and the result follows immediately. □

Theorem 2.2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then, the adjacency spectrum of R(G1)∨R(G2) consists of:
(i) two roots of the equation x2 −λi(G1)x− r1 −λi(G1), for every eigenvalue λi(G1),

i = 2, 3, . . . , n1, of A(G1);
(ii) two roots of the equation x2 −λj(G2)x−r2 −λj(G2), for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2);
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation x4 − (r1 +r2)x3 − (2r1 +m1m2 +2r2 −r1r2)x2 +(4r1r2 +

m1m2r1 + m1m2r2)x + 4r1r2 − m1m2r1r2 = 0.

Proof. The adjacency characteristic polynomial of R(G1)∨R(G2) is

f
A(R(G1)∨R(G2))(x) = det


xIn1 − A(G1) −R(G1) On1×n2 On1×m2

−R(G1)T xIm1 Om1×n2 −Jm1×m2

On2×n1 On2×m1 xIn2 − A(G2) −R(G2)
Om2×n1 −Jm2×m1 −R(G2)T xIm2


= xm2 det(S),

where

S =

xIn1 − A(G1) −R(G1) On1×n2

−R(G1)T xIm1 Om1×n2

On2×n1 On2×m1 xIn2 − A(G2)


−

 On1×m1

−Jm1×m2

−R(G2)

 1
x

(
Om2×n1 −Jm2×m1 −R(G2)T

)

=

xIn1 − A(G1) −R(G1) On1×n2

−R(G1)T xIm1 − m2
x

Jm1×m1 − 1
x
Jm1×m2R(G2)T

On2×n1 − 1
x
R(G2)Jm2×m1 xIn2 − A(G2) − 1

x
R(G2)R(G2)T

 .
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Hence,

det(S) = det
(

xIn2 − A(G2) − 1
x

R(G2)R(G2)T

)
det(W )

=
n2∏

j=1

{
x − λj(G2) − r2

x
− λj(G2)

x

}
det(W ),

where

W =
(

xIn1 − A(G1) −R(G1)
−R(G1)T xIm1 − m2

x
Jm1×m1

)
−
(

On1×n2

− 1
x
Jm1×m2R(G2)T

)

×
(

xIn2 − A(G2) − 1
x

R(G2)R(G2)T
)−1 (

On2×n1 − 1
x
R(G2)Jm2×m1

)
=
(

xIn1 − A(G1) −R(G2)
−R(G1)T xIm1 − m2

x
Jm1×m1 − r2

2
x2 ΓA(G2)+ 1

x
R(G2)R(G2)T (x)Jm1×m1

)
.

Then,

det(W )

= det
(

xIm1 − m2

x
Jm1×m1 − r2

2
x2 ΓA(G2)+ 1

x
R(G2)R(G2)T (x)Jm1×m1

)

× det
(

xIn1 − A(G1) − R(G1)

×
(

xIm1 − m2

x
Jm1×m1 − r2

2
x2 ΓA(G2)+ 1

x
R(G2)R(G2)T (x)Jm1×m1

)−1

R(G1)T
)

=xm1

{
1 −

(
m2

x
+ r2

2
x2 ΓA(G2)+ 1

x
R(G2)R(G2)T (x)

)
m1

x

}
det

xIn1 − A(G1)

− R(G1)

1
x

Im1 +
(m2

x
+ r2

2
x2 ΓA(G2)+ 1

x
R(G2)R(G2)T (x))

x(x − m1(m2
x

+ r2
2

x2 ΓA(G2)+ 1
x

R(G2)R(G2)T (x)))
Jm1×m1

R(G1)T


=xm1

{
1 −

(
m2

x
+ r2

2
x2 ΓA(G2)+ 1

x
R(G2)R(G2)T (x)

)
m1

x

}

× det
xIn1 − A(G1) − 1

x
R(G1)R(G1)T

−
(m2

x
+ r2

2
x2 ΓA(G2)+ 1

x
R(G2)R(G2)T (x))

x(x − m1(m2
x

+ r2
2

x2 ΓA(G2)+ 1
x

R(G2)R(G2)T (x)))
R(G1)Jm1×m1R(G1)T


=xm1

{
1 −

(
m2

x
+ r2

2
x2 ΓA(G2)+ 1

x
R(G2)R(G2)T (x)

)
m1

x

}
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× det
xIn1 − A(G1) − 1

x
R(G1)R(G1)T

− r2
1

(m2
x

+ r2
2

x2 ΓA(G2)+ 1
x

R(G2)R(G2)T (x))

x(x − m1(m2
x

+ r2
2

x2 ΓA(G2)+ 1
x

R(G2)R(G2)T (x)))
Jn1×n1


=xm1

{
1 −

(
m2

x
+ r2

2
x2 ΓA(G2)+ 1

x
R(G2)R(G2)T (x)

)
m1

x

}

× det
(

xIn1 − A(G1) − 1
x

(r1In1 + A(G1))
)

×

1 −
r2

1(m2
x

+ r2
1

x2 ΓA(G2)+ 1
x

R(G2)R(G2)T (x))ΓA(G1)+ 1
x

R(G1)R(G1)T (x)

x(x − m1(m2
x

+ r2
2

x2 ΓA(G2)+ 1
x

R(G2)R(G2)T (x)))


=xm1

1 −

m2

x
+ r2

2n2

x2
(
x − r2 − 2r2

x

)
 m1

x


n1∏
i=1

{
x − λi(G1) − 1

x
(r1 + λi(G1))

}

×

1 −
r2

1

(
m2
x

+ r2
2n2

x2(x−r2− 2r2
x

)

)
n1

x
{

x − m1

(
m2
x

+ r2
2n2

x2(x−r2− 2r2
x

)

)}(
x − r1 − 2r1

x

)
 .

Therefore,

f
A(R(G1)∨R(G2))(x) =xm1xm2

{
1 −

(
m2

x
+ r2

2n2

x2(x − r2 − 2r2
x

)

)
m1

x

}

×
n1∏
i=1

{
x − λi(G1) − r1

x
− λi(G1)

x

}

×
n2∏

j=1

{
x − λj(G2) − r2

x
− λj(G2)

x

}

×

1 −
r2

1

(
m2
x

+ r2
2n2

x2(x−r2− 2r2
x

)

)
n1

x
{

x − m1

(
m2
x

+ r2
2n2

x2(x−r2− 2r2
x

)

)}(
x − r1 − 2r1

x

)


=xm1−n1xm2−n2
n1∏
i=2

{x2 − λi(G1)x − r1 − λi(G1)}

×
n2∏

j=2
{x2 − λj(G2)x − r2 − λj(G2)}

× [x4 − (r1 + r2)x3 − (2r1 + m1m2 + 2r2 − r1r2)x2

+ (4r1r2 + m1m2r1 + m1m2r2)x + 4r1r2 − m1m2r1r2],
and hence the result follows. □
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Theorem 2.3. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then, the adjacency spectrum of R(G1)∨̇R(G2) consists of:
(i) two roots of the equation x2 −λi(G1)x− r1 −λi(G1), for every eigenvalue λi(G1),

i = 2, 3, . . . , n1, of A(G1);
(ii) two roots of the equation x2 −λj(G2)x−r2 −λj(G2), for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2);
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation x4 − (r1 + r2)x3 − (2r1 +m1n2 +2r2 − r1r2)x2 +(4r1r2 +

r1m1n2)x + 4r1r2 = 0.

Proof. The adjacency characteristic polynomial of R(G1)∨̇R(G2) is

f
A(R(G1)∨̇R(G2))(x) = det


xIn1 − A(G1) −R(G1) On1×n2 On1×m2

−R(G1)T xIm1 −Jm1×n2 Om1×m2

On2×n1 −Jn2×m1 xIn2 − A(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)T xIm2


= xm2 det(S),

where

S =

xIn1 − A(G1) −R(G1) On1×n2

−R(G1)T xIm1 −Jm1×n2

On2×n1 −Jn2×m1 xIn2 − A(G2)


−

On1×m2

Om1×m2

−R(G2)

 1
x

(
Om2×n1 Om2×m1 −R(G2)T

)

=

xIn1 − A(G1) −R(G1) On1×n2

−R(G1)T xIm1 −Jm1×n2

On2×n1 −Jn2×m1 xIn2 − A(G2) − 1
x
R(G2)R(G2)T

 .

Hence,

det(S) = det(xIn2 − A(G2) − 1
x

R(G2)R(G2)T ) det(W )

=
n2∏

j=1

{
x − λj(G2) − r2

x
− λj(G2)

x

}
det(W ),

where

W =
(

xIn1 − A(G1) −R(G1)
−R(G1)T xIm1

)

−
(

On1×n2

−Jm1×n2

)
(xIn2 − A(G2) − 1

x
R(G2)R(G2)T )−1

(
On2×n1 −Jn2×m1

)
=
(

xIn1 − A(G1) −R(G1)
−R(G1)T xIm1 − ΓA(G2)+ 1

x
R(G2)R(G2)T Jm1×m1

)
.
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Then,

det(W ) = det
(

xIm1 − ΓA(G2)+ 1
x

R(G2)R(G2)T Jm1×m1

)
det

(
xIn1 − A(G1)

− R(G1)(xIm1 − ΓA(G2)+ 1
x

R(G2)R(G2)T Jm1×m1)−1R(G1)T
)

=xm1

(
1 − ΓA(G2)+ 1

x
R(G2)R(G2)T (x)m1

x

)
det

xIn1 − A(G1)

− R(G1)

1
x

Im1 +
ΓA(G2)+ 1

x
R(G2)R(G2)T (x)

x(x − m1ΓA(G2)+ 1
x

R(G2)R(G2)T (x))Jm1×m1

R(G1)T


=xm1

(
1 − ΓA(G2)+ 1

x
R(G2)R(G2)T (x)m1

x

)
det

(
xIn1 − A(G1) − 1

x
R(G1)R(G1)T

−
ΓA(G2)+ 1

x
R(G2)R(G2)T (x)

x(x − m1ΓA(G2)+ 1
x

R(G2)R(G2)T (x))R(G1)Jm1×m1R(G1)T
)

=xm1

(
1 − ΓA(G2)+ 1

x
R(G2)R(G2)T (x)m1

x

)
det

(
xIn1 − A(G1)

− 1
x

R(G1)R(G1)T − r2
1

ΓA(G2)+ 1
x

R(G2)R(G2)T (x)
x(x − m1ΓA(G2)+ 1

x
R(G2)R(G2)T (x))Jn1×n1

)

=xm1

(
1 − ΓA(G2)+ 1

x
R(G2)R(G2)T (x)m1

x

)
det

(
xIn1 − A(G1) − 1

x
(r1In1 + A(G1))

)

×

1 −
r2

1ΓA(G1)+ 1
x

R(G1)R(G1)T (x)ΓA(G2)+ 1
x

R(G2)R(G2)T (x)
x
(
x − m1ΓA(G2)+ 1

x
R(G2)R(G2)T (x)

)


=xm1

(
1 − m1n2

x(x − r2 − 2r2
x

)

)
n1∏
i=1

{
x − λi(G1) − 1

x
(r1 + λi(G1))

}

×

1 − r2
1n1n2

x(x − r1 − 2r1
x

)
(

x − m1n2
x−r2− 2r2

x

)
(x − r2 − 2r2

x
)

 .

Therefore,

f
A(R(G1)∨̇R(G2))(x) =xm1xm2

1 − m1n2

x
(
x − r2 − 2r2

x

)


×
n1∏
i=1

{
x − λi(G1) − r1

x
− λi(G1)

x

}

×
n2∏

j=1

{
x − λj(G2) − r2

x
− λj(G2)

x

}
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×

1 − r2
1n1n2

x
(

x − r1 − 2r1
x

)(
x − m1n2

x−r2− 2r2
x

)(
x − r2 − 2r2

x

)


=xm1−n1xm2−n2
n1∏
i=2

{x2 − λi(G1)x − r1 − λi(G1)}

×
n2∏

j=2
{x2 − λj(G2)x − r2 − λj(G2)}

[
x4 − (r1 + r2)x3

− (2r1 + m1n2 + 2r2 − r1r2)x2 + (4r1r2 + r1m1n2)x + 4r1r2
]
,

and the result follows. □

In the similar way we can obtain Laplacian and normalized Laplacian spectra of
the partial join of R-graphs, which are given below.
Lemma 2.2. We have the following Laplacian matrices:

(i)

L(R(G1)∨̈R(G2))=


(r1 + n2)In1 + L(G1) −R(G1) −Jn1×n2 On1×m2

−R(G1)T 2Im1 Om1×n2 Om1×m2
−Jn2×n1 On2×m1 (r2 + n1)In2 + L(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)T 2Im2

;

(ii)

L(R(G1)∨R(G2)) =


r1In1 + L(G1) −R(G1) On1×n2 On1×m2

−R(G1)T (2 + m2)Im1 Om1×n2 −Jm1×m2
On2×n1 On2×m1 r2In2 + L(G2) −R(G2)
Om2×n1 −Jm2×m1 −R(G2)T (2 + m1)Im2

 ;

(iii)

L(R(G1)∨̇R(G2)) =


r1In1 + L(G1) −R(G1) On1×n2 On1×m2

−R(G1)T (2 + n2)Im1 −Jm1×n2 Om1×m2
On2×n1 −Jn2×m1 (r2 + m1)In2 + L(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)T 2Im2

 .

Theorem 2.4. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then, the Laplacian spectrum of R(G1)∨̈R(G2) consists of:
(i) roots of the equation x2 − (2 + r1 + n2 + µi(G1))x + 2n2 + 3µi(G1) = 0, for every

eigenvalue µi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation x2 − (2 + r2 + n1 + µj(G2))x + 2n1 + 3µj(G2) = 0, for every

eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 2 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation x4 − (4 + r1 + r2 + n1 + n2)x3 + (4 + 4n1 + 4n2 + 2r1 +

2r2 + r1r2 + r1n1 + r2n2)x2 − 2(2n1 + 2n2 + r1n1 + r2n2)x = 0.
Theorem 2.5. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then, the Laplacian spectrum of R(G1)∨R(G2) consists of:
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(i) roots of the equation x2−(2+r1+m2+µi(G1))x+r1m2+3µi(G1)+m2µi(G1) = 0,
for every eigenvalue µi(G1), i = 2, 3, . . . , n1, of L(G1);

(ii) roots of the equation x2−(2+r2+m1+µj(G2))x+r2m1+3µj(G2)+m1µj(G2) = 0,
for every eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);

(iii) the eigenvalue 2 + m2 with multiplicity m1 − n1;
(iv) the eigenvalue 2 + m1 with multiplicity m2 − n2;
(v) four roots of the equation x4−(4+r1+r2+m1+m2)x3+(4+2r1+2r2+r1r2+r1m1+

r2m2 + 2m1 + 2m2 + r1m2 + r2m1)x2 − (2r1m2 + 2r2m1 + r1r2m1 + r1r2m2)x = 0.

Theorem 2.6. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then, the Laplacian spectrum of R(G1)∨̇R(G2) consists of:
(i) roots of the equation x2 − (2+r1 +n2 +µi(G1))x+r1n2 +3µi(G1)+n2µi(G1) = 0,

for every eigenvalue µi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation x2 − (2 + r2 + m1 + µj(G2))x + 2m1 + 3µj(G2) = 0, for

every eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 2 + n2 with multiplicity m1 − n1;
(iv) the eigenvalue 2 with multiplicity m2 − n2;
(v) four roots of the equation x4 − (4 + r1 + r2 + m1 + n2)x3 + (4 + 2r1 + 2r2 + 4m1 +

2n2 + r1r2 + r1m1 + r1n2 + r2n2)x2 − (4m1 + 2r1m1 + 2r1n2 + r1r2n2)x = 0.

Lemma 2.3. We have the following normalized Laplacian matrices:
(i)

L(R(G1)∨̈R(G2)) =


L(G1) • B(G1) −cR(G1) −Kn1×n2 On1×m2

−cR(G1)T Im1 Om1×n2 Om1×m2

−Kn2×n1 On2×m1 L(G2) • B(G2) −dR(G2)
Om2×n1 Om2×m1 −dR(G2)T Im2

 ,

where Kn1×n2 is the matrix of size n1 × n2 with all entries equal to 1√
(2r1+n2)(2r2+n1)

,
B(G1) is the n1 × n1 matrix whose all diagonal entries are 1 and off-diagonal entries
are r1

2r1+n2
, B(G2) is the n2×n2 matrix whose all diagonal entries are 1 and off-diagonal

entries are r2
2r2+n1

, c is the constant whose value is 1√
2(2r1+n2)

, d is the constant whose

value is 1√
2(2r2+n1)

;
(ii)

L(R(G1)∨R(G2)) =


L(G1) • B(G1) −cR(G1) On1×n2 On1×m2

−cR(G1)T Im1 Om1×n2 −Km1×m2

On2×n1 On2×m1 L(G2) • B(G2) −dR(G2)
Om2×n1 −Km2×m1 −dR(G2)T Im2

 ,

where Km1×m2 is the matrix of size m1 × m2 with all entries equal to 1√
(2+m2)(2+m1)

,
B(G1) is the n1 × n1 matrix whose all diagonal entries are 1 and off-diagonal entries
are r1

2r1
, B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal
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entries are r2
2r2

, c is the constant whose value is 1√
2r1(2+m2)

, d is the constant whose

value is 1√
2r2(2+m1)

;
(iii)

L(R(G1)∨̇R(G2)) =


L(G1) • B(G1) −cR(G1) On1×n2 On1×m2

−cR(G1)T Im1 −Km1×n2 Om1×m2

On2×n1 −Kn2×m1 L(G2) • B(G2) −dR(G2)
Om2×n1 Om2×m1 −dR(G2)T Im2

 ,

where Km1×n2 is the matrix of size m1 × n2 with all entries equal to 1√
(2+n2)(2r2+m1)

,
B(G1) is the n1 × n1 matrix whose all diagonal entries are 1 and off-diagonal entries
are r1

2r1
, B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal

entries are r2
2r2+m1

, c is the constant whose value is 1√
2r1(2+n2)

, d is the constant whose

value is 1√
2(2r2+m1)

.

Theorem 2.7. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then, the normalized Laplacian spectrum of R(G1)∨̈R(G2) consists of:
(i) roots of the equation 2(2r1+n2)x2−2(3r1+2n2+r2δi(G1))x+2n2+3r1δi(G1) = 0,

for every eigenvalue δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2r2+n1)x2−2(3r2+2n1+r2δj(G2))x+2n1+3r2δj(G2) = 0,

for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation (4r1r2 + 2r1n1 + 2r2n2 + n1n2)x4 − (12r1r2 + 7r1n1 +

7r2n2+4n1n2)x3+(9r1r2+8r1n1+8r2n2+5n1n2)x2−(3r1n1+3r2n2+2n1n2)x = 0.

Theorem 2.8. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then, the normalized Laplacian spectrum of R(G1)∨R(G2) consists of:
(i) roots of the equation 2(2 + m2)x2 − (6 + 3m2 + 2δi(G1) + m2δi(G1))x + m2 +

3δi(G1) + m2δi(G1) = 0, for every eigenvalue δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2 + m1)x2 − (6 + 3m1 + 2δj(G2) + m1δj(G2))x + m1 +

3δj(G2) + m1δj(G2) = 0, for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation 4(4 + 2m1 + 2m2 + m1m2)x4 − 12(4 + 2m1 + 2m2 +

m1m2)x3 + (36 + 22m1 + 22m2 + 9m1m2)x2 − 2(3m1 + 3m2 + m1m2)x = 0.

Theorem 2.9. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then, the normalized Laplacian spectrum of R(G1)∨̇R(G2) consists of:
(i) roots of the equation 2(2+n2)x2 −(6+3n2 +2δi(G1)+n2δi(G1))x+n2 +3δi(G1)+

n2δi(G1) = 0, for every eigenvalue δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2r2+m1)x2−2(3r2+2m1+r2δj(G2))x+2m1+3r2δj(G2) =

0, for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;
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(iv) four roots of the equation (8r2 +4r2n2 +4m1 +2m1n2)x4 −(24r2 +12r2n2 +14m1 +
7m1n2)x3 + (18r2 + 11r2n2 + 16m1 + 7m1n2)x2 − (3r2n2 + 6m1 + 2m1n2)x = 0.

3. Simultaneous Cospectral Graphs

In this section we present the main result of the paper. We construct several classes
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. For the construction of
these graphs we consider two pairs of A-cospectral regular graphs, which are readily
available in the literature, for example see [11]. Then we take partial join of R-graphs
belong to different pairs.

The following lemma is immediate from the definition of Laplacian and normalized
Laplacian matrices.

Lemma 3.1. (i) If G is an r-regular graph, then L(G) = rIn − A(G) and L(G) =
In − 1

r
A(G).

(ii) If G1 and G2 are A-cospectral regular graphs, then they are also cospectral with
respect to the Laplacian and normalized Laplacian matrices.

Observation. From all the theorems given in the previous section we observe
that the adjacency, Laplacian and normalized Lpalacian spectra of all the partial join
graphs R(G1)∨̈R(G2), R(G1)∨R(G2), and R(G1)∨̇R(G2), depend only on the number
of vertices, number of edges, degree of regularities, and the corresponding spectrum
of G1 and G2. Furthermore, we note that, although G1 and G2 are regular graphs,
R(G1)∨̈R(G2), R(G1)∨R(G2), and R(G1)∨̇R(G2) are non-regular graphs.

The following theorem is the main result of the paper.

Theorem 3.1. Let Gi, Hi, i = 1, 2, be regular graphs, where G1 need not be dif-
ferent from H1. If G1 and H1 are A-cospectral, and G2 and H2 are A-cospectral
then R(G1)∨̈R(G2) (respectively, R(G1)∨R(G2), R(G1)∨̇R(G2)) and R(H1)∨̈R(H2)
(respectively, R(H1)∨R(H2), R(H1)∨̇R(H2)) are simultaneously A-cospectral,
L-cospectral and L-cospectral.

Proof. Follows from Lemma 3.1 and the above observation. □

4. Spanning Trees and Kirchhoff Indices

Applying the results on Laplacian spectra, we find the number of spanning trees
and Kirchhoff index of all the partial join graphs constructed in the paper.

Let t(G) denote the number of spanning trees of G. It is well known [6] that if G
is a connected graph on n vertices with Laplacian spectrum 0 = µ1(G) ≤ µ2(G) ≤
· · · ≤ µn(G), then t(G) = µ2(G)···µn(G)

n
.

The Kirchhoff index of a graph G, denoted by Kf(G), is defined as the sum of
resistances between all pairs of vertices [1, 9] in G. For a connected graph G on n
vertices, the Kirchhoff index [8] can be expressed as Kf(G) = n

∑n
i=2

1
µi(G) .
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Theorem 4.1. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then,
(i)

t(R(G1)∨̈R(G2))

=
2m1+m2−n1−n2 · 2(2n1 + 2n2 + r1n1 + r2n2) ·

n1∏
i=2

(2n2 + 3µi(G1)) ·
n2∏

j=2
(2n1 + 3µj(G2))

n1 + n2 + m1 + m2
;

(ii)
t(R(G1)∨R(G2))

=(2 + m2)m1−n1 · (2 + m1)m2−n2

×

(2r1m2 + 2r2m1 + r1r2m1 + r1r2m2) ·
n1∏

i=2
(r1m2 + 3µi(G1) + m2µi(G1)) ·

n2∏
j=2

(r2m1 + 3µj(G2) + m1µj(G2))

n1 + n2 + m1 + m2
;

(iii)

t(R(G1)∨̇R(G2))
=(2 + n2)m1−n1 · 2m2−n2 · (4m1 + 2r1m1 + 2r1n2 + r1r2n2)

×

n1∏
i=2

(r1n2 + 3µi(G1) + n2µi(G1)) ·
n2∏

j=2
(2m1 + 3µj(G2))

n1 + n2 + m1 + m2
.

Theorem 4.2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then,
(i)

Kf(R(G1)∨̈R(G2))

=(n1 + n2 + m1 + m2)
m1 + m2 − n1 − n2

2

+ 4 + 4n1 + 4n2 + 2r1 + 2r2 + r1r2 + r1n1 + r2n2

2(2n1 + 2n2 + r1n1 + r2n2)
+

n1∑
i=2

2 + r1 + n2 + µi(G1)
2n2 + 3µi(G1)

+
n2∑

j=2

2 + r2 + n1 + µj(G2)
2n1 + 3µj(G2)

;

(ii)

Kf(R(G1)∨R(G2))

=(n1 + n2 + m1 + m2)
m1 − n1

2 + m2
+ m2 − n2

2 + m1
+

n1∑
i=2

2 + r1 + m2 + µi(G1)
r1m2 + 3µi(G1) + m2µi(G1)

+ 4 + 2r1 + 2r2 + r1r2 + r1m1 + r2m2 + 2m1 + 2m2 + r1m2 + r2m1

2r1m2 + 2r2m1 + r1r2m1 + r1r2m2
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+
n2∑

j=2

2 + r2 + m1 + µj(G2)
r2m1 + 3µj(G2) + m1µj(G2)

;

(iii)
Kf(R(G1)∨̇R(G2))

=(n1 + n2 + m1 + m2)
m1 − n1

2 + n2
+ m2 − n2

2

+ 4 + 2r1 + 2r2 + 4m1 + 2n2 + r1r2 + r1m1 + r1n2 + r2n2

4m1 + 2r1m1 + 2r1n2 + r1r2n2

+
n1∑
i=2

2 + r1 + n2 + µi(G1)
r1n2 + 3µi(G1) + n2µi(G1)

+
n2∑

j=2

2 + r2 + m1 + µj(G2)
2m1 + 3µj(G2)

.

5. Concluding Remarks

The main result of the paper is based on regular A-cospectral graphs and certain
operations on a pair of these graphs so that the operated (or resultant) graphs are
non-regular and their adjacency, Laplacian and normalized Laplacian spectra depend
on only the order, size, degree of regularity and spectra of the original graphs. Thus
following the technique of this paper one may construct some more graphs like here.
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