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A POINTFREE ANALOGUES OF LATTICE-VALUED
BITOPOLOGICAL SPACES

M. AZAB ABD-ALLAH!, K. EL-SAADY?, A. GHAREEB?, AND A. TEMRAZ?

ABSTRACT. The concept of coupled semi-quantales is introduced. An adjunction
between the category of coupled semi-quantales and the category of lattice-valued
biquasi-topological spaces is established. The topological and the lattice-theoretic
concepts of regularity and compactness are extended to both lattice-valued biquasi-
topological spaces and coupled semi-quantales, respectively. Some relations among
these axioms are established.

1. INTRODUCTION

In 1986 Mulvey [9], proposed the concept quantale as a non-commutative extension
of frame (or pointfree topology) with aim to develop the concept of non-commutative
topology [6] and provide a constructive foundations for both quantum mechanics and
non-commutative logic [17]. Nowadays, the concepts of quantales and semi-quantales
(as a generalization of quantales [14]) can boast many areas of applications, e.g., the
area of non-commutative topology [5,10,11]. Further details about quantales can be
found in [15].

In 2015 Hohle [7], established a non-commutative extension of the well known
Papert-Papert-Isbell adjunction [8,12] between the category of locales and the category
of topological spaces to one between the category of quantales and the category of
many valued topological spaces.

In [4], El-Saady extended the Hohle’s adjunction to a more general one between the
category of semi-quantales and the category of lattice-valued quasi-topological spaces.
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In this paper we aim to introduce the concept of coupled semi-quantales as the
pointfree analogues of lattice-valued bitopological spaces and extend the dual ad-
junction between the category of semi-quantales and the category of lattice-valued
quasi-topological spaces to one between the category of coupled semi-quantales and
the category of lattice valued biquasi-topological spaces. Also, the topological and the
lattice-theoretic concepts of regularity and compactness are extended to lattice-valued
biquasi-topological spaces and coupled semi-quantales, respectively. Some relations
among these axioms are established.

2. PRELIMINARIES

By a complete join-semilattice (or \/-semilattice) we mean a partially ordered set
(L, <) having arbitrary sups.

Definition 2.1. [14] A semi-quantale (L, <, ®) is a complete join-semilattice (L, <)
equipped with a binary operation ® : L X L. — L, with no additional assumptions,
called a tensor product.

Definition 2.2. [14] Let L and M be semi-quantales. A function h: L — M is said
to be:

® )

By SQuant(resp. SSQuant), we mean the category of all semi-quantales and
semi-quantale morphisms (resp. strong semi-quantale morphism).

Definition 2.3. A semi-quantale (L, <,®) is said to be:

(1) a quantale [15] if whose multiplication ® is associative and distributes across
\/ from both sides. Quant denotes the full subcategory of SQuant of all
quantales.

(2) a unital semi-quantale [14] if whose multiplication ® has an identity element
e € L called the unit. USQuant denotes the category all unital semi-quantales
together with all semi-quantales morphisms preserving the unit e.

(3) a commutative semi-quantate [14] if whose multiplication ® satisfies that ¢; ®
G2 = @2 ® q1 for every q1,q2 € L. CSQuant denotes the full subcategory of
SQuant of all commutative semi-quantales.

(4) a distributive semi-quantate [16] if whose multiplication ® distributes across
finite V from both sides. DSQuant is the category of distributive semi-
quantales.

Definition 2.4. [4] Let L € |[SQuant|, M C L, and a,b € M. An element a is said
to be well-inside of b (w.r.t. M), denoted a <b, if
exists c€ M witha®c=LandcVb=T.

An L € |SQuant| is said to be reqular [4], if for each a € L there exists D C I,
where [, ={b € L:b = a} such that a =V D.
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Definition 2.5. [3] Let L = (L,<,®) be a semi-quantale. A subset K C L is
a subsemi-quantale of L if and only if the inclusion K < L is a semi-quantale
morphism, i.e., K is closed under ® and arbitrary sups. A subsemi-quantale K of L
is said to be strong if and only if T belongs to K. If L is a unital semi-quantale with
the identity e, then a subsemi-quantale K of L is called a unital subsemi-quantale of
L if and only if e belongs to K.

Let L = (L, <,®) be a semi-quantale. For any non-empty set X, let LX be the set of

all L-valued maps X Jy L. We can extend the algebraic and lattice-theoretic structure
from L to L¥ pointwisely, i.e., for all z € X, f,g € L* and {f; : j € J} C L*, we
have

f<ge flz) <gla),
(f ©@9)(z) = f(x) @ g(x),

(\/ fj) (z) =V (fi(z)).

jed jeJ

Then LX is again a semi-quantale with respect to the multiplication ®. If L is a
unital semi-quantale with unit e, then LX becomes a unital semi-quantale with the
unit e (a mapping from X to L, defined by e(z) = e for all x € X), where e is the
unit of ® in L.

For an ordinary mapping f : X — Y, the forward and backward powerset operators
[13,14]:

o LY — LY and ff : LY — L,

defined by

fr(A)y) = V{A(x) 12 € X, f(z) =y} and f7(B) = Bo f,
respectively.

Theorem 2.1. [14] Let L € |SQuant|, X,Y be a nonempty ordinary sets and
f: X =Y be an ordinary mapping, then we have:

(1) fo preserves arbitrary \/;

(2) fi preserves arbitrary \/, ®, and all constant maps;
(3) fi preserves the unit if L € [USQuant|.

For a fixed L € |[SQuant| and a set X, an L-quasi-topology on X [14] is a subsemi-
quantale 7 of LX = (LX, <, ®) , i.e., satisfying the following conditions.

(Ty) For all A,B € LX,if A,B €7 then A® B €.

(Tz) For all {A;:je J} C LY if {A;:j€J} C7thenV;A; €.
An L-quasi-topology 7 is said to be strong [3] if and only if it is strong as a subsemi-
quantale of L¥ i.e., 7 satisfies the additional axiom:

(Tg) I eET.
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If L € [USQuant| with unit e, a unital subsemi-quantale 7 of L¥ is called an L-
topology on X [14], i.e., T satisfies (T7), (T3) and the following:

<T4) eEeT.

If 7 C LY is an L-quasi-topology (resp. L-topology), then the pair (X, 7) is said to
be an L-quasi-topological (resp. L-topological) space. A mapping f : (X, 7) — (Y, 0)
is said to be L-continuous (resp. L-open) [13]if (f77), : 7 <= o (vesp. (f7)r : 7 — 0).
An L-continuous bijection f : (X,7) — (Y, 0) is an L-homeomorphism [13] if f~! is
L-continuous.

It is clear that L-quasi-topological (resp. strong L-quasi-topological, L-topological)
spaces and L-continuous maps form a category denoted by L-QTop (resp. L-SQTop,
L-Top).

One can easily prove that each of L-QTop, L-SQTop and L-Top is a topological
category over the category Set.

Definition 2.6. [4] An (X, 7) € |L-QTop| is called

(1) L-QTj if for every z,y € X with x # y there exists p € 7 with u(x) # p(y);
(2) L-gsober if and only if n, : (X,7) — (LPT(7),®; (7)) is bijective.

3. COUPLED SEMI-QUANTALES AND LATTICE-VALUED
BIQUASI-TOPOLOGICAL SPACES

Before we go on, this section, we begin our study by the following.

Lemma 3.1. If{A, : j € J} is any collection of subsemi-quantales of a semi-quantale
Q, then N; A; is also a subsemi-quantale of Q, provided N; A; # ¢.

Proof. Let M =N;A; and a,b € M. Then a,b € A; = a® b € A; for each subsemi-
quantale A; = a®b € M = M is closed under ®. Also, one can easily prove that
M is closed under sups. UJ

For a fixed @) € |SQuant]|, it follows, as a consequence of the above lemma, that the
family of all subsemi-quantales of (), ordered by inclusion, forms a complete lattice,
with the meet Q1 A Q2 = Q1 N Q2 (the set-intersection), and the join Q1 V Q5 is the
least subsemi-quantale of () containing ()1 and () (which is not their set-theoretical
union). The supremum (joins) of a set {4; : j € J} of subsemi-quantales of @), is the
intersection of subsemi-quantales of () which contains the union U;A;. More generally
there is for each subset K C () of a semi-quantale () a smallest subsemi-quantale of ()
(sometimes denoted by [K]) which contains K and is the subsemi-quantale generated
by K.

Definition 3.1. (The category of coupled semi-quantales)

(1) A coupled semi-quantale is a triple @@ = (Qp, @1, Q2) in which Qg is a semi-
quantale, )1 and @) are subsemi-quantales of )y such that Q)1 U ()2 gener-

ates Qp.
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(2) Amap h: @@ — P between coupled semi-quantales is a semi-quantale morphism
Qo — By for which the restrictions h|g, : @; — P; are semi-quantale morphisms
ie, h(Q;) C P, fori=1,2.

(3) The resulting category will be denoted by CSQuant.

We refer to Qg as the total part of @), and @1, Q) as its first and second parts,
respectively.

Definition 3.2. A coupled semi-quantale Q) = (Q, @1, Q)2) is said to be:

(1) wnital if and only if Qg is unital and e belongs to both @; and Q5.
UnCSQuant is the full subcategory of CSQuant of all unital coupled semi-
quantales.

(2) coupled quantal [1] if Qg is a quantale and both Q); and @, are subquantales.
CQuant is the full subcategory of CSQuant of all coupled quantales.

(3) strong coupled quantal if both @1 and Q)2 are strong subquantales of Q.

(4) symmetric if and only if Qo = Q1 = Q».

(5) right-sided (resp. left-sided) if and only if a ® T < a (resp. T ® a < a) for all
a € QO‘

(6) idempotent if and only if the total part @)y is idempotent, i.e., a ® a = a for
all a € Q.

(7) commutative if the operation ® is commutative, i.e., ¢; ® go = g2 ® q; for every
¢1 € Q; and @3 € Q. ComCSQuant is the full subcategory of CSQuant of
all commutative coupled semi-quantales.

Ezample 3.1. For a fixed L € |SQuant| and a non-empty set X. For i = 1,2, let
7, C LX be a subsemi-quantale of LX, i.e., L-quasi-topologies on X. The triple
(11 V12,71, T2) is a coupled semi-quantale where 71 \V 75 is the coarsest L-quasi-topology
finer than both 7 and 7.

Example 3.2. Let Q = {L,a,b, T} be the four Boolean lattice and let ® : Q@ X @ — @
defined by

=2 H®
-

H SR

a
1
a
1

T | L a

It is clear that @ is a coupled quantales with Qo = {L,a,b, T} as the total part,
Q1 ={L,a, T} as the first part and @ = {L,b, T} as the second part.

Ezample 3.3. Any biframe A = (Ag, A1, A2) [2] is a commutative coupled quantale
provided that ® = A and any element of a € Ay can be expressed as a = \/{a; ® as :
a; € Al,ag c Az}

Definition 3.3. (The category of L-biquasi-topological spaces)
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(1) An L-biquasi-topological space is a triple (X, 11, 72) consisting of a non-empty
set X and two L-quasi-topologies 71 and 7 on X.
(2) A morphism f: X — Y between L-biquasi-topological spaces (X, 7y, 72) and
(Y, 01,02) is a function between their underlying sets for which
f:(X,m)— (Y,o1) and f: (X, 72) = (Y, 09)
are L-continuous.

(3) The category of L-biquasi-topological spaces and their morphisms will be
denoted by L-BiQTop.

Between the category L-QTop and L-BiQTop there is a faithful functor
Es: L-BiQTop — L-QTop ,

which we describe as follows. If X = (X, 7, m) € |L-BiQTop|, then Eg¢(X) =
(X, 7V 12), where 7y V 75 is the coarsest L-quasi topology finer than both 7 and 7,

Es(f) =1
The left adjoint of S is the functor

E;: L-QTop — L-BiQTop,
by the following correspondences:
Ed(X7 7_) = (X7 7_77_)7 Ed(f) = f
One notes that since Es embeds L-QTop in L-BiQTop, then we will regard
the constructions in L-BiQTop as extensions of the constructions in the category
L-QTop.
For L € |[SQuant| and (X, 7, 72) € |L-BiQTop|. The functor
Oy, : L-BiQTop — CSQuant®”
is defined as follows
OpL(X,11,7) = (11 V T2, 71, T2).

For the L-biquasi-topological space (X, 71, 72), the triple (73 V 79,71, 72) is a coupled
semi-quantale where 7, V 75 is the coarsest L-quasi-topology finer than both 7 and
Ty , and

OL(f: (X,m,712) = (Y. 01,600)) = [(fL)
Now, we will introduce some ideas needed to define a functor in the opposite direction.
For a coupled semi-quantale Q = (Qq, @1, Q2), let

LPT(Qo) ={p: Qo — L :p € |SQuant|}.
Also, we define a coupled semi-quantale map
Dp 1 (Qo, Q1, Qo) — (LLPT(QO)’LLPT(QO)7 LLPT(QO))

gi]Op LT — (91', 1= 1,2

such that
(1) @1 : Qo — LMT(@0) is a semi-quantale map, where ®;(a)(p) = p(a);
(2) ©7(Qu) € LT,
(3) @7(Q2) © LHFT@),
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As given in [4] the function ®, preserves ® and arbitrary \/, where these are inhertied
by the codomain of & from L. Also, for i = 1,2, we have ®77(Q;) is closed under
these operations and hence is an L-quasi topology on LPT(()y). Thus we have

LPT : [-BiQTop + CSQuant”,

defined by

(Qo, @1, Q2) — (LPT(Qo), 27 (Q1), 1 (Q2)),
where LPT(f : A — B) = [f], that is, LPT(f)(p) = po f, f? : B — A,
is a concrete map in CSQuant. It is clear that {®.(a;) : a; € Q;, 1 = 1,2} is an
L-quasi-topology on LPT(Qy) and, therefore, we have (LPT(Qo), P (Q1), P71 (Q2)) €
|L-BiQTop|.
Proposition 3.1. For a fired L €|SQuant| and @, P € |CSQuant|, the mapping

1s L-bicontinuous.

Proof. We need to check the L-continuity of both the functions

(1) LPT(f) : (LPT(Qo), 87 (Q1)) — (LPT(Ry), &7 (P,)) and
(2) LPT(f) : (LPT(Qo), 7 (Q2)) — (LPT(Py), &7 (Py)).

The first function is L-continuous since for all g, € Py, p € LPT(Qy), we have
LPT(f)"(®1(q2)(p)) = Prlg2)(LPT(f)(p))

= @r(g2)(po )

= OL(f"(q2))(p)-
Similarly, we can check the L-continuity of the second function and this completes
the proof. O

Then we have the spectrum or point functor
LPT : CSQuant” — [-BiQTop.
To study the adjunction between the functors
LPT : CSQuant” — [-BiQTop
and
Oy : I-BiQTop — CSQuant®.

we give the following definitions.
For fixed L € |[SQuant/|, (X, 7, 7) € |L-BiQTop| and @ € |CSQuant| define the
maps:
(1) n, : (X,7,7) = (LPT(11 V 12), P, (11), P (12)), by setting, for all z € X
and 1 € OL(X), n, () (1) = p(@);
(2) 537 :Q — OL(LPT(Q)), by setting 525’0 = (I)L"Pf(Qo)'

It is clear that by definition 589 always surjective.
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Lemma 3.2. Let L €|SQuant|, (X,7,7) € |L-BiQTop| and @ €|/CSQuant|.
Then
(1) the map n, : (X, 71,7) = (LPT (11 V 12), ®7 (11), P (12)), is L-bicontinuous,
and pairwise L-open w.r.t. its range in (LPT(1 V 12), 7 (11), P (12)) and
(2) the map ey : Q@ — OL(LPT(Q)) is a coupled semi-quantale morphism.

Proof. (1) To prove that the mapping 7, is L-bicontinuous and pairwise L-open, it
suffices to prove that both the mappings n, : (X, ) — (LPT (1 V12), P (1))
and 1, : (X, 7) = (LPT (1 V 1), P (12)) are L-continuous and L-open with
respect to their respective ranges.

(i) L-continuity: for i € {1,2}, for all u € ®;7(r;), and for all z € X, there
exists p € 7 such that @,(p) = 1, (1) (1)(x) = (1) (®0(0)) () =
p(x), that is, (n,)5 (1) € 7;. Hence n, is L-bicontinuous.

(ii) Openness: in fact, for v € 7, i € {1 2} and p € LPT(1 V 1y):

(< )z = V{v@ =p}

zeX

=V {nc(@)(v) : 0y (2) = p}

zeX
=p(v) = ¢/ (v)(p)-
Now, &, (v) € &7 (T, ), the L-quasi-topology on LPT(7 V 73), and it fol-

lows that (n,)z (v ) O (v), that is, ()7 (W)lmoreo = PLl)|meop -
Thus (1, )7’ (v) is open w.r.t. the subspace topology of (nX) (X) induced from
LPT(m V 13), that is, n, is a pairwise L-open map.

(2) As given in [4], we note that the mapping ¢, : Qo — OL(LPT(Qy)) is a semi-
quantale homomorphism and so the mappings £3|q, : Qo — OrL(LPT(Qv)),
for i = 1,2. Thus we have that the mapping ¢j : @ — Or(LPT(Q)) is a
coupled semi-quantale morphism. O

Theorem 3.1. The functor
LPT : L-BiQTop <+ CSQuant®”
is a right adjoint of the functor
Oy, : L-BiQTop — CSQuant®”
with unit n, : X — LPT7(Or(X,m1,72)) and counit eq : Q < OL(LPT(Q)).

Proof. 1t will be enough to show that for every @ € |CSQuant| and an L-BiQTop-

morphism (X, 7, 7) EN LPT(Q), there exists uniquely a CSQuant-morphism EIN
O (X, 1, 7) such that the left diagram of the following diagram in Figure 1 is com-
mutative, where by 7y we mean the coarsest L-quasi-topology 71 V 7.

To prove the existence, let f* = Op(f) o eg. From the definitions of O (f) and
£q, one can easily prove that f*: Q — Q(X, 7, 72) is a CSQuant-morphism. For
commutativity of the above-mentioned left diagram notice that for x € X and a € @),
we have
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X nX ‘LPT(TQ,Tl,Tl) (7’0,7‘1,7’2)
LPT(f*) I
f
LPT(Q) Q
FIGURE 1.
pt(f*) e ny(x)(a) = ny (2)(f*(a))
=1y (2)(OL(f) 0 £q(a))
= (OL(f)(PL(a)))(x)
= (f1 (®1(a))))(2)
= (PL(a) o f))(z)
= f(z)(a).

Uniqueness of the function f* follows from the observation that given another
CSQuant-morphism Q % Q(X, 71, 7) with the same property: for all z € X, and
for all a € )y, we have

f(z)(a) =ny(z)(g(a))
=1, (2)(OL(g) o €L(a))
= (97 ®r(a))(z)
= (PL(a) o g)(x)
= g(a)(z)
Hence for all x € X and for all a € Qq, we have f*(a) = g(a), i.e., f*=g. d

Definition 3.4. An (X, 71, 72) € |L-BiQTop| is said to be pairwise L-QTj (i.e., fulfills
the Ty-axiom) if and only if for every pair (z,y) € X x X with x # y , there exists
i€ 11 V 19 such that p(x) # p(y).

By L-T¢BiQTop, we mean a full subcategory of L-BiQTop consisting of those
L-BiQTop objects, which are pairwise L-QTj.

As a consequence of Definition 2.6, we have the following easily established propo-
sition.
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Proposition 3.2. (X, 1, 7) € |L-ToBiQTop| if and only if S(X, 11, 72) = (X, 71V T2)
18 L-QT().

Proposition 3.3. An (X, 1, 7) € |L-BiQTop| is pairwise L-QTy if and only if the
mapping

Ny (X, 71, 72) = (LPT (1 V 12), @7 (11), P (12))

s pairwise L-embedding.

Proof. First, suppose that (X, 1, 7) € |L-BiQTop| is pairwise L-QTy, then for = #
y € X, there exists p € 71 V 7o such that p(z) # u(y). Therefore, n, (x)(p) = p(x) #

w(y) = ny (y)(1), that is, the mapping 7, is injective. Also, since the mapping 7, is
pairwise L-continuous and L-open (see Lemma 3.2), then 7, is L-embedding. U

Now, we will introduce the concept of sobriety of objects in the category L—BiQTop.
Definition 3.5. An (X, 7y, 72) € |L-BiQTop| is L-sober if and only if the mapping
Ny : X = LPT (On(X, 11, 72))

is bijective.
By L-SobBiQTop, we mean the full subcategory of L-BiQTop of all sober objects.
Lemma 3.3. An (X, 7, 2) € |L-BiQTop| is L-sober if and only if the mapping
Ny (X, 71, 72) = (LPT (1 V 12), P (11), P (12))
s a pairwise homomorphism.

Proof. L-sobriety of an (X, 11, 72) € |L-BiQTop]| is equivalent to the fact of bijectivity
of the mapping

Ny (X, 71, 72) = (LPT (1 V 13), 7 (1), 7 (12)).

Also, the mapping 7, is pairwise L-continuous and L-open (see Lemma 3.2), and
this is equivalent to the fact that 7, is pairwise L-homomorphism. U

By the above and Definition 2.6, one have the following easily established result.

Proposition 3.4. An (X, 1, ) € |L-BiQTop| is L-sober if and only if (X, 71 V T2)
is L-qsober.

Definition 3.6. The coupled semi-quantales QQ = (Qo, @1, @Q2) is spatial if and only
if the total part )y is spatial. Equivalently the map

5%0 : Qo — OL(LPT(Qo))

is a semi-quantale isomorphism [4].

By SpatCSQuant, we mean the full subcategory of the spatial coupled semi-
quantales in CSQuant.

Lemma 3.4. For all Q = (Qo, Q1,Q2) € |CSQuant|, Q = (Qo, Q1,Q2) is spatial if
and only if the mapping
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eg  (Qo, Q1,Q2) = OL(LPT(Qo, Q1, Qo))

is a coupled semi-quantale isomorphism.

Proof. Let Q = (Qo, @1, Q2) be a spatial coupled semi-quantale. Then, by the defini-
tion, the total part () is spatial, and this is equivalent to the fact that the map

Eng : Qo — Or(LPT(Qo))

is a semi-quantale isomorphism, and this implies that the map

eg  (Qo, Q1,Q2) = OL(LPT(Qo, Q1, Qo))

is a coupled semi-quantale isomorphism. [l

Lemma 3.5. For all (X, 7, 72) € |L-BiQTop| and for all Q € |[CSQuant|, then
(i) OL(X,T1,72) = (11 V T2, 71, T2) is spatial;
(11) LPT(Qo,Ql, QQ) = (LPT(Q()), @f(@ﬁ,@f(@g) is L-sober.

Proof. As to (i), clearly, the map
52?\/7-2 : (7'1 V Tg) — OL<LPT(T1 V 7'2)) = @f(Tl V 7'2)

is a semi-quantale isomorphism, which implies that 7 V 75 is a spatial semi-quantale
and, therefore, the coupled semi-quantale O (X, m,7) = (11 V 72, 71, T2) is spatial.
As to (ii), by definition, it suffices to prove that the mapping

Ny : LPT(Q) = LPT(OL(LPT(Q))) = LPT(((Q1) V 7(Q2)), P (Q1), P17 (Q2))

is bijective. Now, we have the following.

(a) n, is one-to-one. For all py,ps € LPT(Qo) with p; # po, there exist some
a € Qy with py(a) # pa2(a), and this implies that

Ny (p1)(®7 (a)) = @7 (a)(p1) = pi(a) # pa(a) = 0y (p2) (P (a)).
Hence n, is one-to-one.

(b) n, isonto. For all ¢ € LPT (9 (Q1VQ2)), let p = qo®" : Qo — P77 (Qo) — L,
then p € LPT(Qy) and a € Qy. We have n, (p)(®; (a)) = 7 (a)(p) = p(a) =
q(®7 (a)). Hence 1, (p) = q, that is, 7, is onto. From (a) and (b), it follows
that n, is bijective, and this completes the proof. 0

Proposition 3.5. The following functors are valid:

(i) Or : L-BiQTop — SpatCSQuant?;
(ii) LPT : L-SobBiQTop <« CSQuant™.

The equivalence between the categories L-SobBiQTop and SpatCSQuant is
proven as follows.

Theorem 3.2. For all L € |[SQuant|, L-SobBiQTop ~ SpatCSQuant”.
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Proof. The categorical equivalence L-SobBiQTop ~ SpatCSQuant® follows di-
rectly from the adjunction O 4 LPT and the fact that both the unit and counit
are isomorphisms in the categories L-SobBiQTop and SpatCSQuant®, respec-
tively. 0

4. REGULARITY AND PAIRWISE COMPACTNESS

Now, we will define the regularity and compactness for a certain L-BiQTop and
CSQuant objects.

Definition 4.1. Let Q = (Qo,Q1,Q2) € |CSQuant| and a,b € @Q;, i = 1,2. An
element a is said to be well inside of b (w.r.t. Q);) and denoted by a =<; b, if and only
if exists ¢ € Q, k # i, such that a® c= L and cVb=T.

Lemma 4.1. For any strong CSQuant-morphism h : QQ — P

Proof. Let a,b € @Q; with a =<; b, then exists ¢ € Qx, k # i, with c® a = 1,
cVb=T. Since h : Q — P is a strong semi-quantale homomorphism, then h(c®a) =
h(c) ® h(a) = L and h(cV b) = h(c) V h(b) = h(T) = T. So exists h(c) € Py, k # 1,
such that h(c) ® h(a) = L and h(c) V h(b) = T which means that h(a) <; h(b). O
Definition 4.2. An Q = (Qo, Q1,Q2) € |CSQuant| is said to be regular if and only
if both @)1 and (), are regular subsemi-quantales. Or equivalently
for all a € @, exists D C{b€ Q; :b=;a} such that a=V D, i=1,2.
By RegCSQuant, we mean the full subcategory of CSQuant of regular objects.

A coupled semi-quantale map h : () — P is said to be surjective if and only if

hlg, : Qi — P; is surjective for ¢ = 1,2.

Lemma 4.2. Ifh : Q — P is a surjective strong coupled semi-quantale homomorphism
and @@ € |RegCSQuant|, then P € |RegCSQuant]|.

Proof. For i = 1,2, let x € P,. Then x = h(a) for some a € Q,;. Regularity
of @ means that exists D C {b € Q; : b =; a}, a = VD, i = 1,2. Therefore
there exists E C {h(b) € P, : b =; a} such that £ = h(D). Since a =; b implies
x = h(a) %; h(b) = y. Hence E C {y € P, : y =; z} and x = \VE. Thus
P € |RegCSQuant]. O

Definition 4.3. Let L € |SQuant|. An (X,7,7) is regular if and only if
OL(X, 7, 7) € |RegCSQuant|.
By L-RegBiQTop, we mean the full subcategory of L-BiQTop of regular objects.

Proposition 4.1. For Q@ = (Qo,Q1,Q2) € |DCSQuant| and (X,7,7) €
|L-BiQTop]|.

(1) An Q = (Qo, Q1,Q2) is regular if and only if
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a=V{beQ;:b=;a} foralla€ Q;.
(2) For L € |DSQuant|. An (X, 7, 1) is reqular if and only if
pu=\V{verr:v=3u} foralpem.
Proof. (1) Let Q = (Qo, @1, Q2) € |DCSQuant|. Distributivity and b <; a imply
a<b Let DC{be Q;:b=;a}such that a =V D. Then,
VD <\V{be@;,:b=;a} <V{beQ;:b<a}=a=VD.
This shows a =V D = \V{b € Q; : b <; a} and from this follows the claims.
(2) Follows from (1). O

As the preceding proposition offers the preserving of the regular axiom under the
functor

LPT : L-BiQTop + CSQuant®”
and with the aid of Definition 4.3, we have the following easily established proposition.

Proposition 4.2. The following functors holds:
Or : L-RegBiQTop — RegCSQuant®,
LPT : L-RegBiQTop + RegCSQuant®.

Definition 4.4. An (X, 7, 7) € |L-BiQTop| is said to be pairwise compact if
Ey(X,m,72) = (X, 71 V 72) is compact.

Theorem 4.1. Let L € [SQuant|, Q) € |CSQuant| and (X, m, 1) € |L-BiQTop|.

Then
(1) (X, 71, 72) is pairwise compact if and only if Op(X,11,72) = (171 V T2, 71, T2) S
compact;
(2) if Q is spatial, then Q is compact if and only if LPT(Qo, Q1,Q2) is pairwise
compact.

Proof. As to (1), if (X, 7, 72) is a compact object of L-BiQTop, that is, for all

S C(nVm), VS =T, exists F(finite)C S, VF = T if and only if (7, V 1) is a

compact semi-quantale if and only if (77 V7o, 71, 72) is a compact coupled semi-quantale.
As to (2), let Q = (Qo, @1, Q2) be spatial, then the mapping

5257 : Q - OL(LPT(Q07 Ql?@Z))

is a coupled semi-quantale isomorphism, that is, @ ~ ®;7(Q).
Compactness of (Qo, Q1,Q2) < Qo is compact
& LPT(Qo) = (LPT(Qo), P, (Qp)) is compact
< (LPT(Qo), P, (Q1) V & (Q2)) is compact.
& LPT(Q) = (LPT(Qo), 21 (1), 21 (Q2))

is pairwise compact and this completes the proof. 0]
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5. CONCLUSION

The concept of coupled semi-quantales is introduced as a pointfree analogues of
lattice-valued bitopological (or biquasi-topological spaces). An adjunction between
the category of coupled semi-quantales and the category of lattice-valued biquasi-
topological spaces is established. Through such adjunction topological and the lattice-
theoretic concepts of regularity and compactness are defined and studied for both
lattice-valued biquasi-topological spaces and coupled semi-quantales, respectively.
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