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INTEGRAL OPERATORS THAT DEFINE THE SOLUTION OF
HIGHER-ORDER EQUATIONS

IRYNA ALEXANDROVICH!, MYKOLA SYDOROV?, AND SVITLANA SALNIKOVA?

ABSTRACT. Integral operators that transform arbitrary analytic functions into reg-
ular solutions of equations in partial derivatives of the elliptic type of the second
and higher orders are constructed. The application of the constructed operators
is illustrated by the solutions of the Cauchy problem, the special Cauchy problem,
and the Riquier problem for the axisymmetric Helmholtz fourth order equation.
The transitions to equations of parabolic and hyperbolic types of higher orders are
proposed. An integral representation of the solution of these equations is obtained.

1. INTRODUCTION

Elliptic-type differential equations of mathematical physics play one of the central
roles in mathematical modeling of various processes in physics and technology. Estab-
lished processes of physical nature are described by equations of the elliptic type of
the fourth and higher orders. Differential equations in partial derivatives containing
differential operators of the form

0? 0% 2 o k 0
Lu,k,s:@‘i‘aiyz a —F;'afy—'—s
and their iterations are widely used in modeling liquid and gas diffusion processes,
as well as biological and environmental phenomena. These equations are found in
problems of statics of the theory of elasticity, in problems of the theory of combustion,
theory of filtration, in spectrography problems.
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The methods of solving such equations are the creation of integral and differen-
tial operators that determine the solutions of equations and systems of elliptic and
hyperbolic types [1-4,10].

In the theory of general complex representations of solutions of elliptic equations,
is important the discovery made by I. N. Vekua about the possibility of an equivalent
reduction of any boundary value problem for the equation

AU+ (ATH) =0
k=1

to the corresponding boundary value problem for the system of analytical functions [9].

The subject of research in this paper is the construction of integral operators that
translate arbitrary analytic functions into regular solutions of differential equations (in
partial derivatives) of higher orders (n > 2), that is, a method of finding solutions of
the corresponding iterated differential equations in analytical form has been developed.

The essence of the method is to obtain an integral representation, which is the
solution of the Cauchy problem.

As is known [6, 7], there exists and only one solution to the Cauchy problem for an
equation of elliptic type with analytical coefficients.

The Riemann integral operator is constructed on the basis of the biaxially symmetric
Helmholtz equation [2].

As an example of the application of the constructed operators, the Riquier problem
has been solved.

2. MAIN RESULTS

Let G be an arbitrary stellar region relative to z = 0, 2* € G* = {x—1iy | z+iy € G},
7 - real variable (or complex), 7 € T.
Let us consider a differential equation of the form

2 2
(Lyuk.s) Lus® = @os + By + 0, + B SE=0, k>0,

where ® = ®(x,y, 1), S is the linear operator depends only on 7, 7 € T.
The integral representation of the solutions of the equation (L, g), as established
in the work [2], has the form

) T
(2.1) O(x,y, T S(Ek ) /w(:v—I—z’ycost,7‘)(x+iycost)“ sin*~1¢
272) 0

I\J\»—l

k —y?sin?t S
1—p, = ——y*sin’t | dt
®22:<,u, 'u’2’4x(x—i—iy cost)’ g ’

where w(z,7) is a function, analytic in G and continuous in G function, B is the

beta function, >, is a degenerate hypergeometric Gorn function of two variables [5]

50 @m n I'(a+m
Yo, By, 2,y) = Xp o %9«” y" el <1, (@)m = (r@))'
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At p = 0 the equation (L, k) and formula (2.1) will have the following form

k
(Lk,s) Lk,SCI) :q)zx + CI)yy + &q)y + Sb = 0,

f kS
(2.2) O(z,y,7) =C} /w(m + iy cost, T)o Ly [2; _Z?f sin? t] sin* 't dt,
0

where C}, = Fk();(l, oF1 [%, z] is a partial case of the generalized hypergeometric
2

2
function, which is related to the Bessel function by equation

oF [kzl _T <k> (z'\/z)_§+1 Ti_, (2iV7).

\_/
~—|

2 2
And also
a) with S = O‘I k =1, the equation (Lyjg) becomes the axisymmetric Helmholtz
equation
1 o?
(2.3) D, + Py + ;I)y + Zc1> =0,

and formula (2.2) is the general integral representation of its solutions

cos (%\/(z —0)(z — U))
\/ (z—0)(z—0)
where the integration from z to z is carried out along any rectified contour placed in

G and satisfies the condition ®(z,0) = w(z),

b) with S = — (a + ba%) , a,b = const., k =1, equation (L s) becomes a parabolic
type equation

do,

(2.4) Dr,y) = - IEG

1
S,y + Oy + -0, — 0P, —ad =0,
Y
with a solution

(2.5)  D(x,y,7)

2
1 d 3 sin?t 2 .
2#@%%{ _§T /<I>3 ,2,2_7_,a (g) sin®t | w(x 4 iy cost, £)dt

Here K is a circle in Ty C T' with the center in & = 7.
2
c) With § = — (b%) , b€ R, b = const., k = 1, equation (Ljg) becomes a
hyperbolic type equation

1
Dpp + Py + —P, — V*P,, =0,
y
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with a solution

(2.6) O(z,y,7) = 217”7{

s 7 . 1 1 by*sin®t
_TO/W(.T+ZyCOSt7§>1F1 (2,2,(5_7_)2 dt.

Consider a differential equation

0? ? k 0 "
n " = — - . S d=0
( k,S) k,S (axg + ayg + y 8y + ) )

where & = ®(z,y,7) and S - linear operator of 7 € T.
Lemma 2.1. If ,.(z,z,7), 7 =0,n— 1 are 2(r + 1) times continuously differentiable
solutions of the equation (Lgg), then function defined by equality

(2.7) (x,y,T Z O, (z,y, T

satisfies the equation (Ly g).

Proof. Let us prove it by the method of mathematical induction.
1) Let us show the validity of the statement for n = 2, that is

By direct verification, we make sure that the function

(I)(l’,y,T) = q>0($ay77-) + x@l(x>y77)7

where ®,.(z,y,7), r =0, 1, satisfies equation (L g), is a solution of the equation (Li,s)
0
Li,Sq) = Lk,S(Lk,S(I)> = Lkﬂg (Lk75q30 + Lk,S (.T(I)l)) = 2% (Lk,S(I)l) =0.

2) Let Lemma 2.1 hold for some natural number n — 1, that is

®(x,y, T Z<I> T, Y, T

where Ly s (9,(x,y,7)) =0, 7 = 0,n — 2, satisfies equation (L} §').

3) Based on the assumption, we will prove the validity of Lemma 2.1 for the following
natural number n. We make sure that the function is defined by equality (2.2) and is
a solution of the equation (L), satisfies equation (L} ¢). We have

n—2

Ly s(®) = Lys (LZ,_SIQ)> = Lis <LZ:91 (Z 2" + ‘I’n—lxn_l)) = Lys (xn_lq’n—1> ;
r=0

because L’,;‘:gl (Zf;g (IDTx”) = 0 by assumption. So, let us prove that

(2.8) Ly (2" '@y ) = 0.

Equality (2.8) is proved again by the method of mathematical induction.
With n =1, Ly s(®¢) = 0 is true under the condition of Lemma 2.1.
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Let ®, 1 = ¢. Then, L} 4 (") = LZ:QI (Lgs (" 1)) .
Let us consider

0
=" 'Lysp+ (n—1)(n—2)2"3p+2(n— 1)x”_2£

oz
We assume the validity of (2.8) at r < n, that is
Li s (xr’lgp) =0, r<n.

From here we have L} ¢ (+"'¢) = 0, 7 < n. Actually,
Ly s (:vr_lgp) =Lig (LZ’S (m“%p)) =0.
We prove the validity of (2.8) for n.

Ly s (w lgo) :Lk,sl (2(71 — 1z 2% +(n—1)(n—-2)x 390)

So, Lemma 2.1 is proved. O
Therefore, the following theorem holds.
Theorem 2.1. For all functions wr(z,7), r=0,n— 1, analytic in G and continuous
in G,
. koS 5 o |k
(2.9) Z / (x + sycost, 7)o o3~y sin t]sin®" " tdt

is a solution of the equation

for arbitrary T € Ty, To C T, and z,z from neighborhood of z =0, z = 0.

Let us apply integral operators to solving problems of mathematical physics.

1. Let’s take S = 2n—2 k=1.

Cauchy problem In the region 0 < z,y < +oo find a regular solution of the
axisymmetric Helmholtz equation of the 4th order

2 2 1 9 a2\
2.10 —t — + - b =0
(2.10) <8$2+8y2+y 3t 7 ) ,
which satisfies the conditions
oo
oxm

(2.11)

z=0
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where f,,(y) is a function given sufficiently many times continuously differentiable.
We look for a solution to the problem in the form (2.7), with n = 2

(P(:L‘ay) = (I)0<m7y) + xq)l(l'ay)'

Since, according to Lemma 2.1, &y and @, satisfy (2.3), then satisfying the boundary
conditions (2.11) for finding ®y(z,y), ®1(x,y) we obtain the following boundary value
problems:

82(I>0 82<I>O 1 8@0 Oé2

2.12 —— 4+ —®¢ =
(2.12) o2 Tap Ty ey T
00, B 09, B
O lv=0 — oY), Ty y=0
62(1)1 82(131 1 (9<I>1 Oéz
2.1 - — 4+ —%, =
(2.13) 5 T op Ty oy T
0P B 0, B
O le=0 — V(y), 8731 y=0

where (see [5])

g (No (g%) yiF(y1)dyr — Jo( >/N0< ?/1) ylF(yl)dyl) ;

No(z) are Cyhndrlcal functions of the 1st and 2nd kind),

2

o) = 5 () + 50+ 2150 + 4fo<>)

Let us find a regular solution of problem (2.12) in the region = > 0, y > 0.
We look for a solution in the form (2.4), where wy(2) = ug(x,y) + ive(x,y) is an
analytical function in the given region, vg(x,0) = 0. Using the inversion formula [§],

P = 5 (38100 + L7100 + 1)) + G

we obtain ( )
8u0 0 ’ ch % 52
O =5 / o(€) Wg 33
or, using that 9% (z,y) = ( y), we obtain
! (e
0(0,7) / o€ C ( \/ng )gdg

Considering that vo(0, —y) = —vo(0,y), and when approaching infinity

[00(0,9)| < ‘]‘f (M,e > 0),
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we find wp(z) in form
+o0o
1
UO(O? t) dt

WO(Z):UO(:L‘ay)_’_iUO(xvy):_; t+iz

—00

Therefore, the solution of the problem (2.12) will be:
2 )__2 cos( V2 —52)
o\r,Y) = 7_‘_2 \/752
¢
ch (§vEZ =72
® / +x2 /go(T) Tdr.

t2—7'2

dg

Similarly, we obtain the solution of problem (2.13). Finally, the solution of the
Cauchy problem (2.10), (2.11) will be

9 Y 9\/T£2
qD('II:?y):_; COS(\/yyfgg )d§

¢ ch (2vt2 — 72
®/ +x2/(g0(7)+xw(7)) (\/ﬁt—iﬁ )TdT.

Cauchy special problem. Let G be a domain symmetric with respect to segment
d of the real axis and let w,,(z) (m is even) are arbitrary analytic functions in this
domain. Find in the domain G a regular solution of the axisymmetric Helmholtz
equation of the 4th order (2.10) that satisfies the conditions

(‘3@’ 0?® (2) D3P
Oyly=0 77 Oy? ly=0 2 Gy ly=0

We will call the problem (2.10), (2.14) a special Cauchy problem, which is used to
establish the general integral representation of all regular solutions of the equation
(2.10).

In accordance with Lemma 2.1, we look for a solution to the problem (2.10), (2.14)
in the form

NI

(2.14) O(x,0) = wo(x),

(I)(:L‘a y) = (I)()(JZ, y) + :17<I>1(x, y)7
where @ (z,y), P1(x,y) satisfy (2.3). Checking the conditions (2.14), to find ®¢(z,y),
Oy (x,y) we will get the following Cauchy problems:

82q)0 82<D0 1 8@0 Oé

- — 4+ —d7 =0,
o0x? 0y? + y Oy * 40
0Py
q)o’y:o = a(x), 8731 y=0 _
62(1)1 82<I>1 1 0<I>1 OZ2

8x2+8y2+y'8y 4
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o0,
Oy ly=0

where

According to the integral representation (2.4), the desired solution of the special
Cauchy problem will be

o

D(a,y) = - W/ o) (WW_ _)f) (_Z;)JDCZ

! / (wz(a) + (o) + SwO<a>> sin (5v/( =)z =) ) do-

Riquier problem. In the region 0 < z,y < +o0o find a four-times irreverently
differentiable solution of the axisymmetric Helmholtz equation (2.10)

8724_872_'_1 Q_FOE 2(1)_0
ox2 oy y Oy 4 -

which satisfies the conditions

92 52 1 0 a?
2.15) ®(0,y) = o2 o2y oy 4
(2.15) @(0,y) = a(y), (amz Tor Ty oy )

0P

= b(y)7 ?y‘y:() = 07

=0

where a(y), b(y) are given sufficiently smooth functions. In accordance with Lemma
2.1, we look for a solution to the problem (2.10), (2.15) in the form ®(z,y) = ®¢(z,y)+
x®(z,y).

Since @, and P; satisfy the equation (2.3), satisfying the condition (2.15), the
problem (2.10), (2.15) reduces to problems relative to ®; and ®; with the conditions:

0P,
(2.16) ©o(0,y) = aly), Ty’yzo =0,
3@1 . 1 aq)l -
(2.17) rra P L el P

We are looking for a solution to the problem (2.3), (2.16) in the form

1

™
0
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where ug(z,y) = Rewy(2). Satisfying the condition (2.16), by the inversion formula

[8] we obtain
0(0,y) 8 / ( ) (y —72)_% Tdr.

Let ug(0, —y) = uo(0,%) and when approaching infinity |uo(0,y)| < 2L, M, — 0.

— | ‘87
Then, the analytic function wy(z) is determined by equality
+oo
1 0,t
L[ w00,
T T+

and the solution of the problem (2.3), (2.16) will look like

(2.18)  Py(z,y) = <2>2 x/y o (% V- TQ) dr

T y2 — T2

®/°° (t2 + 72 + 22) ‘5\/ 52)
t2

t
— 2422+ 4x272 ot / N

wo(z) = uo(z,y) + ivg(x,y) = —

Y

§ds.

We are looking for a solution to the problem (2.3), (2.17) in the form

)
2 _1
0

uy(z,y) = Rewy (z + 1y).
By similar reasoning, we obtain the solution to the problem (2.3), (2.17)

2 COs \/ﬁ
)=
®+/°°( t(t? — 7%+ a2?)dt /tb@ch(gm)

2 — 712 4 x2)2 + 42272 /

dr

2
0

(2.19) by (z,y) =— -

Finally, the solution of Riquier problem is

O(z,y) = Po(x,y) + 201 (2, y),
where @ (z,y) is given by (2.18), and @, (z,y) by (2.19).

2. When S = — (a + b%), relying on Lemma 2.1 and using the representation (2.5),
we come to the following theorem.

Theorem 2.2. For all functions wr(z,7), r=0,n— 1, holomorphic in G and contin-
uous in G

1 n 1 T
O (z, 2,7 2m j{f /wrx—l—zycost €)
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1 Y\ 2 b(%)QSmQt
®®3 1,2,a<2> Sith’g—iT dt

is a solution of a parabolic equation of the n-th order

8724_8724_1.2_173_@ n(I)f
ox2 oy y Oy Ot 7

for arbitrary T € Ty, and z, z from neighborhood of the z =0, z = 0.

2
3. When S = — (ba%) . Relying on Lemma 2.1 and using representation (2.6), we
will have the following theorem.

Theorem 2.3. For all functions wp(z,7), r = 0,n —1, that are analytic in G and
continuous in G

) 1l pode g , 1 1 by?sin?t
O (2,2,7) = %Z%x IZ{HO/M(%‘H?JCOS@@IFI (252;(5_7>2 dt

is a solution of an equation of hyperbolic type of the n-th order

2 0 1 08 L2\

for arbitrary T € Ty, and z,z from neighborhood of the z =0, z = 0.

3. CONCLUSIONS

Riemann operator method allows studying iterative generalized axisymmetric equa-
tions from a single position. The involvement of the apparatus of special functions
contributes to the successful solution of boundary value problems for iterative equa-
tions.

New integral representations of solutions of some iterative equations of elliptic,
parabolic and hyperbolic types are obtained.
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