
Kragujevac Journal of Mathematics
Volume 51(3) (2027), Pages 417–427.

INTEGRAL OPERATORS THAT DEFINE THE SOLUTION OF
HIGHER-ORDER EQUATIONS

IRYNA ALEXANDROVICH1, MYKOLA SYDOROV2, AND SVITLANA SALNIKOVA2

Abstract. Integral operators that transform arbitrary analytic functions into reg-
ular solutions of equations in partial derivatives of the elliptic type of the second
and higher orders are constructed. The application of the constructed operators
is illustrated by the solutions of the Cauchy problem, the special Cauchy problem,
and the Riquier problem for the axisymmetric Helmholtz fourth order equation.
The transitions to equations of parabolic and hyperbolic types of higher orders are
proposed. An integral representation of the solution of these equations is obtained.

1. Introduction

Elliptic-type differential equations of mathematical physics play one of the central
roles in mathematical modeling of various processes in physics and technology. Estab-
lished processes of physical nature are described by equations of the elliptic type of
the fourth and higher orders. Differential equations in partial derivatives containing
differential operators of the form

Lµ,k,s = ∂2

∂x2 + ∂2

∂y2 + 2µ
x

· ∂

∂x
+ k

y
· ∂
∂y

+ S

and their iterations are widely used in modeling liquid and gas diffusion processes,
as well as biological and environmental phenomena. These equations are found in
problems of statics of the theory of elasticity, in problems of the theory of combustion,
theory of filtration, in spectrography problems.

Key words and phrases. integral operator, analytical functions, stationary iterative equations,
non-stationary iterative equations.
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The methods of solving such equations are the creation of integral and differen-
tial operators that determine the solutions of equations and systems of elliptic and
hyperbolic types [1–4,10].

In the theory of general complex representations of solutions of elliptic equations,
is important the discovery made by I. N. Vekua about the possibility of an equivalent
reduction of any boundary value problem for the equation

∆nU +
n∑

k=1

(
∆n−kU

)
= 0

to the corresponding boundary value problem for the system of analytical functions [9].
The subject of research in this paper is the construction of integral operators that

translate arbitrary analytic functions into regular solutions of differential equations (in
partial derivatives) of higher orders (n ≥ 2), that is, a method of finding solutions of
the corresponding iterated differential equations in analytical form has been developed.

The essence of the method is to obtain an integral representation, which is the
solution of the Cauchy problem.

As is known [6,7], there exists and only one solution to the Cauchy problem for an
equation of elliptic type with analytical coefficients.

The Riemann integral operator is constructed on the basis of the biaxially symmetric
Helmholtz equation [2].

As an example of the application of the constructed operators, the Riquier problem
has been solved.

2. Main Results

Let G be an arbitrary stellar region relative to z = 0, z∗ ∈ G∗ = {x−iy | x+iy ∈ G},
τ - real variable (or complex), τ ∈ T.

Let us consider a differential equation of the form

(Lµ,k,S) Lµ,k,SΦ = Φxx + Φyy + 2µ
x

Φx + k

y
Φy + SΦ = 0, µ, k > 0,

where Φ = Φ(x, y, τ), S is the linear operator depends only on τ , τ ∈ T.
The integral representation of the solutions of the equation (Lµ,k,S), as established

in the work [2], has the form

Φ(x, y, τ) = x−µ

B
(

k
2 ,

1
2

) π∫
0

ω(x+ iy cos t, τ)(x+ iy cos t)µ sink−1 t(2.1)

⊗
∑

2

(
µ, 1 − µ,

k

2 ,
−y2 sin2 t

4x(x+ iy cos t) ,−
S

4 y
2 sin2 t

)
dt,

where ω(z, τ) is a function, analytic in G and continuous in Ḡ function, B is the
beta function, ∑2 is a degenerate hypergeometric Gorn function of two variables [5]∑

2(α, β, γ, x, y) = ∑+∞
m,n=0

(α)m(β)m

(γ)m+nm!n!x
myn, |x| < 1, (α)m = Γ(α+m)

Γ(α) .
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At µ = 0 the equation (Lµ,k,S) and formula (2.1) will have the following form

Lk,SΦ =Φxx + Φyy + k

y
Φy + SΦ = 0,(Lk,S)

Φ(x, y, τ) =Ck

π∫
0

ω(x+ iy cos t, τ)0F1

[
k

2 ; −S

4 y
2 sin2 t

]
sink−1 t dt,(2.2)

where Ck = Γ( k+1
2 )

Γ( k
2 )Γ( 1

2) , 0F1
[

k
2 ; z

]
is a partial case of the generalized hypergeometric

function, which is related to the Bessel function by equation

0F1

[
k

2 ; z
]

= Γ
(
k

2

)(
i
√
z
)− k

2 +1
J k

2 −1

(
2i

√
z
)
.

And also
a) with S = α2

4 , k = 1, the equation (Lk,S) becomes the axisymmetric Helmholtz
equation

Φxx + Φyy + 1
y

Φy + α2

4 Φ = 0,(2.3)

and formula (2.2) is the general integral representation of its solutions

Φ(x, y) = − i

π

z∫
z̄

ω(σ)
cos

(
α
2

√
(z − σ)(z̄ − σ)

)
√

(z − σ)(z̄ − σ)
dσ,(2.4)

where the integration from z̄ to z is carried out along any rectified contour placed in
G and satisfies the condition Φ(x, 0) = ω(x),

b) with S = −
(
a+ b ∂

∂τ

)
, a, b = const., k = 1, equation (Lk,S) becomes a parabolic

type equation

Φxx + Φyy + 1
y

Φy − bΦτ − aΦ = 0,

with a solution

Φ(x, y, τ)(2.5)

= 1
2πi

∮
K

1
π

dξ

ξ − τ

π∫
0

Φ3

1; 1
2;
b
(

y
2

)2
sin2 t

ξ − τ
, a
(
y

2

)2
sin2 t

ω(x+ iy cos t, ξ)dt.

Here K is a circle in T0 ⊂ T with the center in ξ = τ.

c) With S = −
(
b ∂

∂τ

)2
, b ∈ R, b = const., k = 1, equation (Lk,S) becomes a

hyperbolic type equation

Φxx + Φyy + 1
y

Φy − b2Φττ = 0,
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with a solution

Φ(x, y, τ) = 1
2πi

∮
K

dξ

ξ − τ

π∫
0

ω(x+ iy cos t, ξ)1F1

(
1
2 ,

1
2 ,
by2 sin2 t

(ξ − τ)2

)
dt.(2.6)

Consider a differential equation

(Ln
k,S) Ln

k,SΦ =
(
∂2

∂x2 + ∂2

∂y2 + k

y
· ∂
∂y

+ S

)n

Φ = 0,

where Φ = Φ(x, y, τ) and S - linear operator of τ ∈ T.

Lemma 2.1. If Φr(z, z̄, τ), r = 0, n− 1 are 2(r+ 1) times continuously differentiable
solutions of the equation (Lk,S), then function defined by equality

Φ(x, y, τ) =
n−1∑
r=0

Φr(x, y, τ)xr(2.7)

satisfies the equation (Ln
k,S).

Proof. Let us prove it by the method of mathematical induction.
1) Let us show the validity of the statement for n = 2, that is

(L2
k,S) L2

k,SΦ = 0.
By direct verification, we make sure that the function

Φ(x, y, τ) = Φ0(x, y, τ) + xΦ1(x, y, τ),
where Φr(x, y, τ), r = 0, 1, satisfies equation (Lk,S), is a solution of the equation (L2

k,S)

L2
k,SΦ = Lk,S(Lk,SΦ) = Lk,S (Lk,SΦ0 + Lk,S (xΦ1)) = 2 ∂

∂x
(Lk,SΦ1) = 0.

2) Let Lemma 2.1 hold for some natural number n− 1, that is

Φ(x, y, τ)
n−2∑
r=0

Φr(x, y, τ)xr,

where Lk,S (Φr(x, y, τ)) = 0, r = 0, n− 2, satisfies equation (Ln−1
k,S ).

3) Based on the assumption, we will prove the validity of Lemma 2.1 for the following
natural number n. We make sure that the function is defined by equality (2.2) and is
a solution of the equation (Lk,S), satisfies equation (Ln

k,S). We have

Ln
k,S(Φ) = Lk,S

(
Ln−1

k,S Φ
)

= Lk,S

(
Ln−1

k,S

(
n−2∑
r=0

Φrx
r + Φn−1x

n−1
))

= Ln
k,S

(
xn−1Φn−1

)
,

because Ln−1
k,S

(∑n−2
r=0 Φrx

r
)

= 0 by assumption. So, let us prove that

Ln
k,S

(
xn−1Φn−1

)
= 0.(2.8)

Equality (2.8) is proved again by the method of mathematical induction.
With n = 1, Lk,S(Φ0) = 0 is true under the condition of Lemma 2.1.



INTEGRAL OPERATORS THAT DEFINE THE SOLUTION OF HIGHER-ORDER EQUATIONS421

Let Φn−1 = φ. Then, Ln
k,S (xn−1φ) = Ln−1

k,S (Lk,S (xn−1φ)) .
Let us consider

Lk,S

(
xn−1 φ

)
=xn−1

(
∂2φ

∂y2 + k

y
· ∂φ
∂y

+ Sφ

)
+ ∂2

∂x2

(
xn−1φ

)
=xn−1Lk,S φ+ (n− 1)(n− 2)xn−3φ+ 2(n− 1)xn−2∂φ

∂x
.

We assume the validity of (2.8) at r < n, that is

Lr
k,S

(
xr−1φ

)
= 0, r < n.

From here we have Ln
k,S (xr−1φ) = 0, r < n. Actually,

Ln
k,S

(
xr−1φ

)
= Ln−r

k,S

(
Lr

k,S

(
xr−1φ

))
= 0.

We prove the validity of (2.8) for n.

Ln
k,S

(
xn−1φ

)
=Ln−1

k,S

(
2(n− 1)xn−2∂φ

∂x
+ (n− 1)(n− 2)xn−3φ

)

=2(n− 1)Ln−1
k,S

(
xn−2∂φ

∂x

)
+ (n− 1)(n− 2)Ln−1

k,S

(
xn−3φ

)
= 0.

So, Lemma 2.1 is proved. □

Therefore, the following theorem holds.

Theorem 2.1. For all functions ωr(z, τ), r = 0, n− 1, analytic in G and continuous
in Ḡ,

Φ (z, z̄, τ) =
n−1∑
r=0

xr

π∫
0

ωr(x+ sy cos t, τ)0F1

[
k

2 ; −S

4 y
2 sin2 t

]
sink−1 tdt(2.9)

is a solution of the equation

Ln
k,SΦ =

(
∂2

∂x2 + ∂2

∂y2 + k

y
· ∂
∂y

+ S

)n

Φ = 0,

for arbitrary τ ∈ T0, T0 ⊂ T, and z, z̄ from neighborhood of z = 0, z̄ = 0.

Let us apply integral operators to solving problems of mathematical physics.
1. Let’s take S = α2

4 , n = 2, k = 1.
Cauchy problem. In the region 0 < x, y < +∞ find a regular solution of the

axisymmetric Helmholtz equation of the 4th order(
∂2

∂x2 + ∂2

∂y2 + 1
y

· ∂
∂y

+ α2

4

)2

Φ = 0,(2.10)

which satisfies the conditions
∂mΦ
∂xm

∣∣∣
x=0

= fm(y), m = 0, 3, ∂Φ
∂y

∣∣∣
y=0

= 0,(2.11)
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where fm(y) is a function given sufficiently many times continuously differentiable.
We look for a solution to the problem in the form (2.7), with n = 2

Φ(x, y) = Φ0(x, y) + xΦ1(x, y).

Since, according to Lemma 2.1, Φ0 and Φ1 satisfy (2.3), then satisfying the boundary
conditions (2.11) for finding Φ0(x, y), Φ1(x, y) we obtain the following boundary value
problems:

∂2Φ0

∂x2 + ∂2Φ0

∂y2 + 1
y

· ∂Φ0

∂y
+ α2

4 Φ0 = 0,(2.12)

∂Φ0

∂x

∣∣∣
x=0

= φ(y), ∂Φ0

∂y

∣∣∣
y=0

= 0,

∂2Φ1

∂x2 + ∂2Φ1

∂y2 + 1
y

· ∂Φ1

∂y
+ α2

4 Φ1 = 0,(2.13)

∂Φ1

∂x

∣∣∣
x=0

= ψ(y), ∂Φ1

∂y

∣∣∣
y=0

= 0,

where (see [5])

φ(y) = π

2

N0

(
α

2 y
) y∫

0

J0

(
α

2 y1

)
y1F (y1)dy1 − J0

(
α

2 y
) y∫

0

N0

(
α

2 y1

)
y1F (y1)dy1

 ,
(J0(z), N0(z) are cylindrical functions of the 1st and 2nd kind),

F (y) = 1
2

(
3f ′′

1 (y) + 1
y
f ′

1(y) + α2

4 f1(y)
)

+ f3(y),

ψ(y) = 1
2

(
f2(y) + f ′′

0 (y) + 1
y
f ′

0(y) + α2

4 f0(y)
)
.

Let us find a regular solution of problem (2.12) in the region x > 0, y > 0.
We look for a solution in the form (2.4), where ω0(z) = u0(x, y) + iv0(x, y) is an

analytical function in the given region, v0(x, 0) = 0. Using the inversion formula [8],
we obtain

∂u0

∂x
(0, y) = ∂

∂y

y∫
0

φ(ξ)
ch
(

α
2
√
y2 − ξ2

)
√
y2 − ξ2 ξdξ,

or, using that ∂u0
∂x

(x, y) = ∂v0
∂y

(x, y), we obtain

v0(0, y) =
y∫

0

φ(ξ)
ch
(

α
2
√
y2 − ξ2

)
√
y2 − ξ2 ξdξ.

Considering that v0(0,−y) = −v0(0, y), and when approaching infinity∣∣∣v0(0, y)
∣∣∣ ≤ M

|y|ε
(M, ε > 0),
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we find ω0(z) in form

ω0(z) = u0(x, y) + iv0(x, y) = − 1
π

+∞∫
−∞

v0(0, t)
t+ iz

dt.

Therefore, the solution of the problem (2.12) will be:

Φ0(x, y) = − 2
π2

y∫
0

cos
(

α
2
√
y2 − ξ2

)
√
y2 − ξ2 dξ

⊗
+∞∫

−∞

(t− ξ)dt
(t− ξ)2 + x2

t∫
0

φ(τ)
ch
(

α
2

√
t2 − τ 2

)
√
t2 − τ 2

τdτ.

Similarly, we obtain the solution of problem (2.13). Finally, the solution of the
Cauchy problem (2.10), (2.11) will be

Φ(x, y) = − 2
π2

y∫
0

cos
(

α
2
√
y2 − ξ2

)
√
y2 − ξ2 dξ

⊗
+∞∫

−∞

(t− ξ)dt
(t− ξ)2 + x2

t∫
0

(φ(τ) + xψ(τ))
ch
(

α
2

√
t2 − τ 2

)
√
t2 − τ 2

τdτ.

Cauchy special problem. Let G be a domain symmetric with respect to segment
d of the real axis and let ωm(z) (m is even) are arbitrary analytic functions in this
domain. Find in the domain G a regular solution of the axisymmetric Helmholtz
equation of the 4th order (2.10) that satisfies the conditions

Φ(x, 0) = ω0(x), ∂Φ
∂y

∣∣∣
y=0

= 0, ∂2Φ
∂y2

∣∣∣
y=0

= ω2(x), ∂3Φ
∂y3

∣∣∣
y=0

= 0.(2.14)

We will call the problem (2.10), (2.14) a special Cauchy problem, which is used to
establish the general integral representation of all regular solutions of the equation
(2.10).

In accordance with Lemma 2.1, we look for a solution to the problem (2.10), (2.14)
in the form

Φ(x, y) = Φ0(x, y) + xΦ1(x, y),
where Φ0(x, y), Φ1(x, y) satisfy (2.3). Checking the conditions (2.14), to find Φ0(x, y),
Φ1(x, y) we will get the following Cauchy problems:

∂2Φ0

∂x2 + ∂2Φ0

∂y2 + 1
y

· ∂Φ0

∂y
+ α2

4 Φ0 = 0,

Φ0

∣∣∣
y=0

= a(x), ∂Φ0

∂y

∣∣∣
y=0

= 0,

∂2Φ1

∂x2 + ∂2Φ1

∂y2 + 1
y

· ∂Φ1

∂y
+ α2

4 Φ1 = 0,
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Φ1

∣∣∣
y=0

= b(x), ∂Φ1

∂y

∣∣∣
y=0

= 0,

where

a(x) =ω0(x) − x

x∫
0

(
ω2(t) + 1

2ω
′′
0(t) + α2

8 ω0(t)
)
dt,

b(x) =
x∫

0

(
ω2(t) + 1

2ω
′′
0(t) + α2

8 ω0(t)
)
dt.

According to the integral representation (2.4), the desired solution of the special
Cauchy problem will be

Φ(x, y) = − i

π

z∫
z̄

ω0(σ)
cos

(
α
2

√
(z − σ)(z̄ − σ)

)
√

(z − σ)(z̄ − σ)
dσ

− i

π

z∫
z̄

(
ω2(σ) + 1

2ω
′′
0(σ) + α2

8 ω0(σ)
)

sin
(
α

2
√

(z − σ)(z̄ − σ)
)
dσ.

Riquier problem. In the region 0 < x, y < +∞ find a four-times irreverently
differentiable solution of the axisymmetric Helmholtz equation (2.10)(

∂2

∂x2 + ∂2

∂y2 + 1
y

· ∂
∂y

+ α2

4

)2

Φ = 0,

which satisfies the conditions

Φ(0, y) = a(y),
(
∂2

∂x2 + ∂2

∂y2 + 1
y

· ∂
∂y

+ α2

4

)
Φ
∣∣∣
x=0

= b(y), ∂Φ
∂y

∣∣∣
y=0

= 0,(2.15)

where a(y), b(y) are given sufficiently smooth functions. In accordance with Lemma
2.1, we look for a solution to the problem (2.10), (2.15) in the form Φ(x, y) = Φ0(x, y)+
xΦ1(x, y).

Since Φ0 and Φ1 satisfy the equation (2.3), satisfying the condition (2.15), the
problem (2.10), (2.15) reduces to problems relative to Φ0 and Φ1 with the conditions:

Φ0(0, y) = a(y), ∂Φ0

∂y

∣∣∣
y=0

= 0,(2.16)

∂Φ1

∂x

∣∣∣
x=0

= 1
2b(y), ∂Φ1

∂y

∣∣∣
y=0

= 0.(2.17)

We are looking for a solution to the problem (2.3), (2.16) in the form

Φ0(x, y) = 2
π

y∫
0

u0(x, τ) cos
(
α

2

√
y2 − τ 2

) (
y2 − τ 2

)− 1
2 dτ,
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where u0(x, y) = Reω0(z). Satisfying the condition (2.16), by the inversion formula
[8] we obtain

u0(0, y) = ∂

∂y

y∫
0

a(τ)ch
(
α

2

√
y2 − τ 2

) (
y2 − τ 2

)− 1
2 τdτ.

Let u0(0,−y) = u0(0, y) and when approaching infinity |u0(0, y)| ≤ M
|y|ε , M, ε → 0.

Then, the analytic function ω0(z) is determined by equality

ω0(z) = u0(x, y) + iv0(x, y) = − 1
πi

+∞∫
−∞

u0(0, t)
t+ iz

dt,

and the solution of the problem (2.3), (2.16) will look like

Φ0(x, y) =
( 2
π

)2
x

y∫
0

cos
(

α
2
√
y2 − τ 2

)
√
y2 − τ 2 dτ(2.18)

⊗
+∞∫
0

(t2 + τ 2 + x2) dt
(t2 − τ 2 + x2)2 + 4x2τ 2

· ∂
∂t

t∫
0

a(ξ)
ch
(

α
2
√
t2 − ξ2

)
√
t2 − ξ2 ξdξ.

We are looking for a solution to the problem (2.3), (2.17) in the form

Φ1(x, y) = 2
π

y∫
0

u1(x, τ) cos
(
α

2

√
y2 − τ 2

) (
y2 − τ 2

)− 1
2 dτ,

u1(x, y) = Reω1(x+ iy).
By similar reasoning, we obtain the solution to the problem (2.3), (2.17)

Φ1(x, y) = −
( 2
π

)2 1
2

y∫
0

cos
(

α
2
√
y2 − τ 2

)
√
y2 − τ 2 dτ(2.19)

⊗
+∞∫
0

t (t2 − τ 2 + x2) dt
(t2 − τ 2 + x2)2 + 4x2τ 2

t∫
0

b(ξ)
ch
(

α
2
√
t2 − ξ2

)
√
t2 − ξ2 ξdξ.

Finally, the solution of Riquier problem is
Φ(x, y) = Φ0(x, y) + xΦ1(x, y),

where Φ0(x, y) is given by (2.18), and Φ1(x, y) by (2.19).
2. When S = −

(
a+ b ∂

∂τ

)
, relying on Lemma 2.1 and using the representation (2.5),

we come to the following theorem.

Theorem 2.2. For all functions ωr(z, τ), r = 0, n− 1, holomorphic in G and contin-
uous in Ḡ

Φ (z, z̄, τ) = 1
2πi

n−1∑
r=0

xr
∮
K

dξ

ξ − τ

π∫
0

ωr(x+ iy cos t, ξ)
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⊗ Φ3

1, 1
2 , a

(
y

2

)2
sin2 t,

b
(

y
2

)2
sin2 t

ξ − τ

 dt
is a solution of a parabolic equation of the n-th order(

∂2

∂x2 + ∂2

∂y2 + 1
y

· ∂
∂y

− b
∂

∂τ
− a

)n

Φ = 0,

for arbitrary τ ∈ T0, and z, z̄ from neighborhood of the z = 0, z̄ = 0.

3. When S = −
(
b ∂

∂τ

)2
. Relying on Lemma 2.1 and using representation (2.6), we

will have the following theorem.

Theorem 2.3. For all functions ωr(z, τ), r = 0, n− 1, that are analytic in G and
continuous in Ḡ

Φ (z, z̄, τ) = 1
2πi

n−1∑
r=0

xr
∮
K

dξ

ξ − τ

π∫
0

ωr(x+ iy cos t, ξ)1F1

(
1
2; 1

2; by
2 sin2 t

(ξ − τ)2

)
dt

is a solution of an equation of hyperbolic type of the n-th order(
∂2

∂x2 + ∂2

∂y2 + 1
y

· ∂
∂y

− b2 ∂
2

∂τ 2

)n

Φ = 0,

for arbitrary τ ∈ T0, and z, z̄ from neighborhood of the z = 0, z̄ = 0.

3. Conclusions

Riemann operator method allows studying iterative generalized axisymmetric equa-
tions from a single position. The involvement of the apparatus of special functions
contributes to the successful solution of boundary value problems for iterative equa-
tions.

New integral representations of solutions of some iterative equations of elliptic,
parabolic and hyperbolic types are obtained.
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