KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 50(8) (2026), PAGES 1329–1351.

ON CENTRALLY-EXTENDED GENERALIZED JORDAN *-DERIVATIONS IN RINGS

BHARAT BHUSHAN¹, GURNINDER S. SANDHU², SHAKIR ALI³, AND BRUNO LEONARDO MACEDO FERREIRA^{4,5,6}

ABSTRACT. Let R be an associative ring with an involution '*'. In this article, we introduce the notions of *centrally-extended generalized Jordan* *-*derivation*, *centrally extended Jordan left* *-*centralizer* and characterize these mappings in involutive prime rings.

1. INTRODUCTION

Throughout this study, R is an associative ring with center Z(R). R is called *prime*, if for any $a, b \in R$, aRb = (0) implies either a = 0 or b = 0; and it is called *semiprime*, if aRa = (0), implies a = 0. Clearly, every prime ring is semiprime ring but the converse need not be true, for instance $\mathbb{Z} \times \mathbb{Z}$. The symmetric ring of quotients of Ris denoted by Q_s with center C, which is known as the extended centroid of R; clearly $R \subseteq Q_s$ and $Z(R) \subseteq C$. It is well-known that if R is prime then Q_s is prime and C is a field. The central closure of R is denoted by A(=RC+C); for more details of these objects, we refer the reader to [6]. For any $x, y \in R$, the commutator (resp. anti-commutator) of x, y is defined as [x, y] = xy - yx (resp. $x \circ y = xy + yx$). It is established knowledge that R satisfies s_4 (the standard identity in four noncommuting variables), if for all $x_1, x_2, x_3, x_4 \in R$, the equation

$$s_4(x_1, x_2, x_3, x_4) = \sum_{\sigma \in S_4} (-1)^{\sigma} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)} = 0,$$

Key words and phrases. Prime ring, involution, centrally-extended Jordan *-derivation, centralyextended generalized Jordan *-derivation, centrally-extended Jordan left *-centralizer.

²⁰²⁰ Mathematics Subject Classification. Primary: 16W10. Secondary: 16N60, 16W25. DOI

Received: September 17, 2024.

Accepted: December 16, 2024.

where S_4 is the symmetric group of degree 4 and $(-1)^{\sigma}$ is the sign of permutation $\sigma \in S_4$. For some interesting equivalent forms of s_4 , one can refer [11, Lemma 1].

For any $n \in \mathbb{Z}^+$, R is called an n-torsion free if for any $x \in R$, nx = 0 implies x = 0. An anti-automorphism '*' of R is called *involution* if $(x^*)^* = x$ for all $x \in R$. A ring equipped with an involution '*' is called *-ring or ring with involution or involutive ring. An element x in a *-ring R is called symmetric if $x^* = x$, and it is called skew-symmetric if $x^* = -x$. The set of symmetric and skew symmetric elements of a ring R is denoted by H(R) and S(R), respectively. Moreover, if R is a prime ring endowed with the involution '*', then '*' can be uniquely extended to $Q_s(R)$ (see [15, page 4]).

Let R be a *-ring, an additive mapping $d : R \to R$ is called *-derivation if $d(xy) = d(x)y^* + xd(y)$ for all $x, y \in R$ and it is called Jordan *-derivation if $d(x^2) = d(x)x^* + xd(x)$ for all $x \in R$. These notions are first mentioned in [12]. Note that the mapping $x \mapsto xa - ax^*$, where a is a fixed element of R, is an example of Jordan *-derivation, called *inner Jordan *-derivation*. Moreover, if $a \in Q_s$, then such a map is called X-inner Jordan *-derivation. The study of Jordan *-derivations has been originated from the problem of representability of quadratic forms by bilinear forms (see [28, 30]). Thereafter, some significant studies have taken place on the structure of Jordan *-derivations in rings (see [5, 14, 16, 21]).

In [2], Ali introduced the notion of generalized *-derivation, which is a self-map F of R associated with a *-derivation d satisfying $F(xy) = F(x)y^* + xd(y)$ for all $x, y \in R$. In addition to this, a self-map F of R is called a generalized Jordan *-derivation associated with a Jordan *-derivation d if $F(x^2) = F(x)x^* + xd(x)$ for all $x \in R$ (see [16], [19]). For any fixed $a, b \in R$, a map $x \mapsto ax^* + xb$ is a basic example of generalized Jordan *-derivation, which is called generalized inner Jordan *-derivation. Further, if a, b comes from Q_s , then this map is called generalized X-inner Jordan *-derivation. There has been an ongoing interest in the investigation of such mappings, for more details we refer the reader to [1, 4, 5, 16, 19] and references therein.

A mapping f of R is called centralizing (resp. commuting) on a subset S of Rif $[f(x), x] \in Z(R)$ (resp. [f(x), x] = 0) for all $x \in S$. To our best knowledge, Divinsky [17] initiated the study of commuting and centralizing mappings in rings by proving a classical result which states that a simple Artinian ring is commutative if it admits a commuting nontrivial automorphism. Since then, many significant results on commuting and centralizing mappings have been established by Posner [27], Mayne [25], Bell and Martindale [8], Brešar [10]. Moreover, let R be a *-ring, a mapping $f : R \to R$ is called *-centralizing (*-commuting) on a subset S of R if $[f(x), x^*] \in Z(R)$ (resp. $[f(x), x^*] = 0$) for all $x \in S$ (see [3]).

Bell and Daif [7] introduced centrally-extended derivations and discussed their existence. Accordingly, a mapping $d: R \to R$ is called centrally-extended derivation if $d(x + y) - d(x) - d(y) \in Z(R)$ and $d(xy) - d(x)y - xd(y) \in Z(R)$ for all $x, y \in$ R. Motivated by this, El-Deken and Nabiel [31] introduced that a mapping d is called centrally-extended *-derivation if $d(x + y) - d(x) - d(y) \in Z(R)$ and d(xy) - $d(x)y^* - xd(y) \in Z(R)$ for all $x, y \in R$. Furthermore, a mapping F is called *centrally-extended generalized* *-*derivation* associated with a centrally-extended *-derivation d if $F(x+y)-F(x)-F(y) \in Z(R)$ and $F(xy)-F(x)y^*-xd(y) \in Z(R)$ for all $x, y \in R$. In a recent paper [9], we introduced and studied the concept of *centrally-extended Jordan* *-*derivation*, which is a mapping $d: R \to R$ such that $d(x+y) - d(x) - d(y) \in Z(R)$ and $d(x \circ y) - d(x)y^* - d(y)x^* - xd(y) - yd(x) \in Z(R)$ for all $x, y \in R$. Nowadays, centrally-extended mappings are getting attention of many researchers, consequently there has been rising literature on these mappings in rings under different settings, for instance, see [7, 9, 18, 26, 31–34].

In this article, we shall introduce centrally-extended generalized Jordan *-derivation in rings and discuss their existence in noncommutative prime ring under suitable torsion conditions. We also investigate some specific functional identities involving centrally-extended generalized Jordan *-derivations. Precisely, in Section 4 of this article, we prove a structural result on centrally-extended generalized Jordan *-derivations which plays a key role in Sections 5 and 6, where we study centralizing and hypercommuting conditions involving centrally-extended generalized Jordan *-derivations, respectively.

2. Preliminaries

The following lemmas constitute a set of results that will be instrumental in the development of the paper.

Lemma 2.1 (Brauer's Trick). Let G be a group and H_1, H_2 be subgroups of G. If $G = H_1 \cup H_2$, then either $G = H_1$ or $G = H_2$.

Lemma 2.2. If R is a prime ring, then Z(R) has no proper zero divisor.

Lemma 2.3. Let R is a prime for any $a \in Z(R)$. If there exists $b \in R$ such that $ab \in Z(R)$, then either a = 0 or $b \in Z(R)$.

Lemma 2.4. ([1, Proposition 2.3]). Let R be a 2-torsion free semiprime ring with involution '*'. If $f : R \to R$ is an additive map such that $f(x^2) = f(x)x^*$ for all $x \in R$, then there exists $q \in Q_r(R)$ such that $f(x) = qx^*$ for all $x \in R$.

Lemma 2.5. ([3, Lemma 2.2]). Let R be a 2-torsion free semiprime ring with involution '*'. If an additive mapping f of R into itself such that $[f(x), x^*] \in Z(R)$ for all $x \in R$, then $[f(x), x^*] = 0$ for all $x \in R$.

Lemma 2.6. ([6, Theorem 6.4.6]). Let R be a prime ring with extended centroid C, anti-automorphism g and maximal right ring of quotients $Q_{mr}(R) = Q$. If $0 \neq \phi = \phi(x_1, \ldots, x_n, g(x_1), \ldots, g(x_n)) \in Q_C < X \cup g(X) > is$ a g-identity on K ideal of R, then ϕ is a g-identity on $Q_s = Q_s(R)$.

Lemma 2.7. ([9, Theorem 4.6]). Let R be a 2-torsion free noncommutative prime ring. If R admits a non-zero centrally-extended Jordan derivation $\mathfrak{d} : R \to R$ such

that $[\mathfrak{d}(x), x] \in Z(R)$ for all $x \in R$, then either $\mathfrak{d} = 0$ or R is an order in a central simple algebra of dimension at most 4 over its center.

Lemma 2.8. ([9, Theorem 4.7]). Let R be a 2-torsion free noncommutative prime ring with involution *. If R admits a non-zero centrally-extended Jordan derivation $\mathfrak{d}: R \to R$ such that $[\mathfrak{d}(x), x^*] \in Z(R)$ for all $x \in R$, then either $\mathfrak{d} = 0$ or R is an order in a central simple algebra of dimension at most 4 over its center.

Lemma 2.9. ([10, Proposition 3.1]). Let R be a 2-torsion free semiprime ring and U be a Jordan subring of R. If an additive mapping F of R into itself is centralizing on U, then F is commuting on U.

Lemma 2.10. ([10, Theorem 3.2]). Let R be a prime ring. If an additive mapping $F: R \to R$ is commuting on R, then there exists $\lambda \in C$ and an additive $\xi: R \to C$, such that $F(x) = \lambda x + \xi(x)$ for all $x \in R$.

Lemma 2.11. ([19, Theorem 2.2]). Let R be a 2-torsion free prime ring with involution '*'. Let $F : R \to R$ be a generalized Jordan *-derivation associated with a Jordan *-derivation d. Then, F is of the form $F(x) = qx^* + d(x)$ for all $x \in R$ and some $q \in Q_s(R)$.

Lemma 2.12. ([20, Theorem 1]). Let R be a prime ring with involution '*' and center Z(R). If d is a non-zero derivation such that $[d(h), h] \in Z(R)$ for all $h \in H(R)$, then R satisfies s_4 .

Lemma 2.13. ([20, Theorem 3]). Let R be a prime ring with involution '*' and center Z(R). If n be a fixed natural number such that $x^n \in Z(R)$ for all $x \in H(R)$, then R satisfies s_4 identity.

Lemma 2.14. ([20, Theorem 6]). Let R be a prime ring with involution '*' and center Z(R). If d is a non-zero derivation on R such that $d(x)x + xd(x) \in Z(R)$ for all $x \in H(R)$, then R satisfies s_4 identity.

Lemma 2.15. ([20, Theorem 7]). Let R be a prime ring with involution '*' and center Z(R). If d is a non-zero derivation on R such that $d(x)x + xd(x) \in Z(R)$ for all $x \in S(R)$, then R satisfies s_4 identity.

Lemma 2.16. [21, Theorem 1.3]). Let R be a 2-torsion free noncommutative prime ring with involution '*', then any Jordan *-derivation on R is X-inner.

Lemma 2.17. Let R be a 2-torsion free prime ring. If $q_1 \in Q_s(R)$ such that $[q_1, h] \in C$ for all $h \in H(R)$, then R satisfy s_4 identity or $q_1 \in C$.

Proof. Let us consider

(2.1) $[q_1, h] \in C, \text{ for all } h \in H(R).$

Replacing h by h^2 , where $h \in H(R)$, we obtain $[q_1, h]h + h[q_1, h] \in C$, i.e., $d(h)h + hd(h) \in C$ for all $h \in H(R)$, where $d(x) = [q_1, x]$. If $d \neq 0$, we have the result by Lemma 2.14. If d = 0, then we conclude $q_1 \in C$, as desired.

Lemma 2.18. Let R be a 2-torsion free prime ring with involution. If [h, k] = 0 for all $h \in H(R)$, $k \in S(R)$, then R satisfy s_4 identity.

Proof. Suppose that R does not satisfy s_4 identity. By hypothesis, we have $[h, k] = 0 \in C$ for all $h \in H(R)$ and $k \in S(R)$. In view of Lemma 2.17, it follows that either R satisfies s_4 or $k \in Z(R)$ for all $k \in S(R)$. Under the given hypothesis, we left with $S(R) \subseteq Z(R)$. Clearly $h \circ k \in S(R)$ for all $h \in H(R)$ and $k \in S(R)$, therefore we have $[h \circ k, k] = 0$, i.e., [h, k]k + k[h, k] = 0 for all $h \in H(R)$ and $k \in S(R)$. For a fixed $h \in H(R)$, we have d(k)k + kd(k) = 0 for all $k \in S(R)$, where d(x) = [x, h] for all $x \in R$. If $d \neq 0$, then we have the result by Lemma 2.15. In case d = 0, we conclude $H(R) \subseteq Z(R)$ and hence by Lemma 2.13, we have a contradiction. Hence, R must satisfies s_4 identity.

3. Definitions and Examples

We begin our discussions with the definition of centrally-extended generalized Jordan *-derivations of rings with involution.

Definition 3.1. Let R be a ring with involution '*'. A mapping $F : R \to R$ is called *centrally-extended generalized Jordan* *-*derivation* associated with an centrally-extended Jordan *-derivation d, if

(A)
$$F(x+y) - F(x) - F(y) \in Z(R),$$

(B)
$$F(x \circ y) - F(x)y^* - F(y)x^* - xd(y) - yd(x) \in Z(R),$$

for all $x, y \in R$.

Remark 3.1. If R is 2-torsion free noncommutative prime ring with involution '*', then for an additive mapping F to be a centrally-extended generalized Jordan *-derivation, it is sufficient to satisfy the condition $F(x^2) - F(x)x^* - xd(x) \in Z(R)$ for all $x \in R$.

Example 3.1. We now show the existence of centrally-extended generalized Jordan *-derivations in certain rings.

(I) Let
$$\mathbb{Z}$$
 be the ring of integers and $R = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} : x, y, z, t \in \mathbb{Z} \right\}$, a noncommutative prime ring. Then the mapping $*: R \to R$ such that $\begin{pmatrix} x & y \\ z & t \end{pmatrix}^* = \begin{pmatrix} t & -y \\ -z & x \end{pmatrix}$, $F: R \to R$ such that $F\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x - t & y \\ z & 0 \end{pmatrix}$ with associated mapping $d: R \to R$ defined as $d\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$. One can easily verify that F is a centrally-extended generalized Jordan *-derivation with associated centrally-extended Jordan *-derivation d .

(II) Let *R* be a ring defined as $R := \Re \times \mathbb{Z}$, where $\Re = \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} : x, y, z \in \mathbb{Z}_2 \right\}$. For any $X = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in \Re$, let us define $X^* = \begin{pmatrix} z & y \\ 0 & x \end{pmatrix}$ and hence $(X, k)^* = (X^*, k)$, which is an involution on *R*. Define $F : R \to R$ such that $F\left(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix}, k\right) = \left(\begin{pmatrix} 0 & x \\ 0 & x \end{pmatrix}, 1\right)$ with associated mapping $d : R \to R$ defined as $d\left(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix}, k\right) = \left(\begin{pmatrix} z & y \\ 0 & x \end{pmatrix}, 1\right)$. We observe that *F* is a centrally-extended generalized Jordan *-derivation with an associated centrally-extended Jordan *-derivation.

Remark 3.2. It can be seen from the above example that every centrally-extended generalized Jordan *-derivation is a centrally-extended Jordan *-derivation, but the converse does not necessarily hold in general.

Definition 3.2. Let R be a ring with involution '*'. A mapping $T : R \to R$ is called *centrally-extended Jordan* *-*left centralizer* (resp. *centrally-extended Jordan* *-*right centralizer*) if

(A)
$$T(x+y) - T(x) - T(y) \in Z(R),$$

(B)
$$T(x^2) - T(x)x^* \in Z(R) \text{ (resp. } T(x^2) - x^*T(x) \in Z(R)),$$

for all $x, y \in R$. Moreover, T is called *centrally-extended Jordan* *-*centralizer* if it is both a centrally-extended Jordan *-left centralizer and a centrally-extended Jordan *-right centralizer.

Example 3.2. Let R be a ring defined as $R := M_2(\mathbb{R}) \times \mathbb{C}$, where $M_2(\mathbb{R})$ denotes the ring of 2×2 matrices over real numbers. For any $r = (x, z_1), s = (y, z_2) \in R$, we define $r^* = (x^*, \overline{z_1})$, where x^* is defined as in Example 3.1 (I) and $\overline{z_1}$ is the complex conjugate of z_1 . Define a mapping $T : R \to R$ such that T(x, z) = (0, 1) for all $(x, z) \in R$. Then it can be easily verified that T is a centrally-extended Jordan *-left centralizer of R.

4. AUXILIARY RESULTS

In this section, we shall mainly prove the following theorem which is crucial for the results proved in the subsequent sections.

Theorem 4.1. Let R be a 2-torsion free noncommutative prime ring with involution '*' and F be a centrally-extended generalized Jordan *-derivation of R associated with a centrally-extended Jordan *-derivation \mathfrak{d} . Then, there exists $q \in Q_s(R)$ such that $F(x) = qx^* + \mathfrak{d}(x)$ for all $x \in R$.

After proving few more facts in this regard, we shall return to the proof of Theorem 4.1.

1334

Proposition 4.1. Let R be a 2-torsion free prime ring with involution '*' and d : $R \rightarrow R$ a Jordan *-derivation. Then, d can be uniquely extended to A, unless R satisfies s_4 .

Proof. Suppose that R does not satisfy s_4 identity. By Lemma 2.16, there exists $a \in Q_s(R)$ such that $d(x) = xa - ax^*$ for all $x \in R$. Let us define $\overline{d}(q) = qa - aq^*$ for all $q \in A$. Clearly, \overline{d} is a well-defined map and it is an extension of d. Now, we claim that the extension of d is unique.

Let D be also an extension of d. Since A is a noncommutative 2-torsion free prime ring, D is X-inner on A, i.e., there exists $b \in A$ such that $D(u) = ub - bu^*$ for all $u \in A$. As D is an extension of d, so we have

(4.1)
$$xb - bx^* = xa - ax^*$$
, for all $x \in R$.

In particular by taking h for x in (4.1), where $h \in H(R)$, we obtain [h, b - a] = 0 for all $h \in H(R)$. Using Lemma 2.17, we have $b - a \in C$. That means there exists $c \in C$ such that b = a + c. From (4.1), we have $xc - cx^* = 0$ for all $x \in R$. Replacing x by k in the last expression, where $k \in S(R)$, we get 2ck = 0 for all $k \in S(R)$. If $c \neq 0$, then by using Lemma 2.2, we have S(R) = (0), thence H(R) = R; which implies that for any $x, y \in R$, we have $xy = (xy)^* = y^*x^* = yx$, which is a contradiction. In case c = 0, we have a = b. It proves our claim.

Proposition 4.2. Let R be a 2-torsion free prime ring with involution '*' and F : $R \rightarrow R$ a generalized Jordan *-derivation associated with d a Jordan *-derivation. Then, F can be uniquely extended to A, unless R satisfies s_4 .

Proof. By Lemma 2.11, there exists $a \in Q_s(R)$ such that $F(x) = ax^* + d(x)$ for all $x \in R$. We define $\tilde{F}(u) = au^* + d(u)$ for all $u \in A$. By Proposition 4.1, \tilde{F} is a well defined map and also it is an extension of F. Now, we will show that extension of F is unique. Let G be also extension of F. Using Lemma 2.11, there exists $b \in Q_s$ and g a Jordan *-derivation on A such that $G(u) = bu^* + g(u)$ for all $u \in A$. Since, G is an extension of F. Therefore

(4.2)
$$ax^* + d(x) = bx^* + g(x), \quad \text{for all } x \in R.$$

By Lemma 2.16, there exists $c, q \in Q_s$ such that $d(x) = xc - cx^*$ and $g(x) = xq - qx^*$ for all $x \in R$. From (4.2), we have $(a - c)x^* + xc = (b - q)x^* + xq$ for all $x \in R$. As the preceding equation is a g-identity on R, application of Lemma 2.6 yields $(a - c)x^* + xc = (b - q)x^* + xq$ for all $x \in Q_s(R)$. Replacing x by 1, we obtain a = b. From (4.2), we find d(x) = g(x) for all $x \in R$. In fact, Proposition 4.1 gives d(x) = g(x) for all $x \in A$. It completes the proof. \Box

For the sake of brevity, we omit the proof of the following result, as it follows proceeding along the same lines as the proof of Lemma 4.4 of [9], with insignificant variations.

Proposition 4.3. Let R be a ring with involution * and with no non-zero central ideal. If F is a centrally-extended generalized Jordan *-derivation associated with centrally-extended Jordan *-derivation \mathfrak{d} of R, then F is additive.

Corollary 4.1. Let R be a noncommutative prime ring with involution '*'. If F is a centrally-extended generalized Jordan *-derivation of R associated with centrally-extended Jordan *-derivation \mathfrak{d} , then F is additive.

Proposition 4.4. Let R be a 2-torsion free noncommutative prime ring with involution '*' and $T : R \to R$ a centrally-extended Jordan *-left centralizer. Then, there exists $q \in Q_s(R)$ such that $T(x) = qx^*$ for all $x \in R$.

Proof. Note that T is additive by Proposition 4.1. If Z(R) = (0), then $T(x^2) = T(x)x^*$ for all $x \in R$. Thus, we conclude the desired result by Lemma 2.4. In case $Z(R) \neq (0)$, we first claim that there exists $0 \neq z \in Z(R)$ such that $z^* = z$.

Let us suppose that $0 \neq z_c \in Z(R)$. If $z_c^* = z_c$, then we are done. If $z_c^* \neq z_c$, then we take $z_1 = z_c + z_c^*$; and observe that $z_1 = z_1^*$. Therefore, we can say that there exists $0 \neq z \in Z(R)$ such that $z^* = z$.

By the assumption, we have

(4.3)
$$T(x^2) - T(x)x^* \in Z(R), \quad \text{for all } x \in R.$$

Polarizing (4.3), we get

(4.4)
$$T(xy + yx) - T(x)y^* - T(y)x^* \in Z(R), \text{ for all } x, y \in R.$$

Replacing y by z^2 , where $z \in H(R) \cap Z(R)$ in (4.4) to get

$$T(xz^{2} + z^{2}x) - T(x)z^{2} - T(z^{2})x^{*} \in Z(R),$$
 for all $x \in R$

It implies

$$T(xz^2 + z^2x) - T(x)z^2 - T(z)zx^* - c_1x^* \in Z(R),$$
 for all $x \in R$,

where c_1 is the corresponding central element. It implies

(4.5)
$$T(4xz^2) - 2T(x)z^2 - 2T(z)zx^* - 2c_1x^* \in Z(R).$$

Also, $4xz^2 = z(xz + zx) + (xz + zx)z$. From (4.4), we have

$$T(z(xz + zx) + (xz + zx)z) - T(z)(xz + zx)^* - T(xz + zx)z \in Z(R).$$

Again using (4.4) in the last summand of the above relation, we get

(4.6)
$$T(4xz^2) - T(z)(x^*z + zx^*) - (T(x)z + T(z)x^* + c_2)z \in Z(R),$$

where c_2 is the corresponding central element. Comparing (4.5) and (4.6) to obtain

$$T(x)z^{2} - T(z)x^{*}z - c_{1}x^{*} \in Z(R)$$

It implies

$$([T(x)z, x^*] - [T(z)x^*, x^*])z = 0.$$

Application of Lemma 2.2 yields

(4.7)
$$[T(x)z - T(z)x^*, x^*] = 0.$$

Define $\mathfrak{G}(x) = T(x)z - T(z)x^*$ for all $x \in R$. From (4.7), we find \mathfrak{G} is an additive *-commuting map. Applying involution in (4.7) and using Lemma 2.10 in order to get $\mathfrak{G}(x)^* = \lambda x + \sigma(x)$ for all $x \in R$, for some $\lambda \in C$ and $\sigma : R \to C$. It implies $\mathfrak{G}(x) = T(x)z - T(z)x^* = \lambda^*x^* + \sigma(x)^*$. Therefore, $T(x)z = (T(z) + \lambda^*)x^* + \sigma(x)^*$ for all $x \in R$. It can also be written as $T(x) = z^{-1}(T(z) + \lambda^*)x^* + \sigma(x)^*z^{-1}$. Thus, $T(x) = qx^* + \sigma'(x)$ for all $x \in R$ where $q = z^{-1}(T(z) + \lambda^*)$ and $\sigma'(x) = z^{-1}\sigma(x)^*$. From (4.3), we have $q(x^2)^* + \sigma'(x^2) - (qx^* + \sigma'(x))x^* \in Z(R)$ for all $x \in R$. It implies

(4.8)
$$x^*\sigma'(x) \in C$$
, for all $x \in R$..

For any fixed $x \in R$, using Lemma 2.3 in (4.8), we have either $x \in Z(R)$ or $\sigma'(x) = 0$. As σ' is additive function, by application of Lemma 2.1, we find either $x \in Z(R)$ for all $x \in R$ or $\sigma'(x) = 0$ for all $x \in R$. Since R is noncommutative, we have $\sigma' = 0$. Thus, $T(x) = qx^*$ for all $x \in R$.

Proof of Theorem 4.1. Let $T(x) = (F - \mathfrak{d})(x)$ for all $x \in R$. Then for any $x \in R$, $T(x^2) = (F - \mathfrak{d})(x^2) = F(x)x^* + x\mathfrak{d}(x) + c_1 - \mathfrak{d}(x)x^* - x\mathfrak{d}(x) - c_2$ where c_1 and c_2 are corresponding central element. It turns out to be $T(x^2) - T(x)x^* = c_1 + c_2 \in Z(R)$ for all $x \in R$. Therefore T is a centrally-extended Jordan *-left centralizer. Invoking Proposition 4.4, we get $T(x) = qx^*$ for all $x \in R$, where $q \in Q_s(R)$. Thus $F(x) = qx^* + \mathfrak{d}(x)$ for all $x \in R$. \Box

5. Centralizing Conditions

An astonishing result of Posner [27] states that a prime ring R is commutative if it possesses a non-zero derivation d which is centralizing on R (i.e. $[d(x), x] \in Z(R)$). Proceeding this investigation, Mayne [24, 25] studied automorphisms and derivations which are centralizing on appropriate subsets of a prime ring. Later on, Bell and Martindale [8] examined centralizing mappings of semiprime rings. Since then several authors have extended these results in different directions. In 2014, Ali and Dar [3] introduced the notion of *-centralizing mappings in prime rings with involution. Motivated by these studies, in this section, we are intended to describe the structure of centralizing and *-centralizing centrally-extended generalized Jordan *-derivations of a prime ring with involution *.

Theorem 5.1. Let R be a 2-torsion free prime ring with involution '*' and $F : R \to R$ a centrally-extended generalized Jordan *-derivation associated with centrally-extended Jordan *-derivation \mathfrak{d} . If $[F(x), x] \in Z(R)$ for all $x \in R$, then there exists $\lambda \in C$ such that $F(x) = \lambda x$ for all $x \in R$, unless R satisfies s_4 .

Proof. Suppose that R does not satisfies s_4 . By hypothesis, we have

$$[F(x), x] \in Z(R),$$
 for all $x \in R$.

If Z(R) = (0), then from Lemma 2.11, we find that there exists $a \in Q_s(R)$ such that (5.1) $F(x) = ax^* + \mathfrak{d}(x)$, for all $x \in R$. Since F is a additive and centralizing map, by using Lemma 2.9 and Lemma 2.10, there exists $\lambda \in C$ and a map $\sigma : R \to C$ such that

(5.2)
$$F(x) = \lambda x + \sigma(x), \text{ for all } x \in R.$$

In view of Proposition 4.2, it follows from equations (5.1) and (5.2) that

(5.3)
$$\lambda x + \sigma(x) = ax^* + \mathfrak{d}(x), \quad \text{for all } x \in A.$$

By Lemma 2.16 and Proposition 4.1, there exists $b \in Q_s(R)$ such that $\mathfrak{d}(x) = xb - xb^*$ for all $x \in A$. Therefore, from (5.3), we have

(5.4)
$$\lambda x + \sigma(x) = ax^* + xb - bx^*, \quad \text{for all } x \in A.$$

Taking 1 instead of x in (5.4), we find

Replacing x by h in (5.4), we obtain

(5.6)
$$\lambda h + \sigma(h) = ah + d(h), \text{ for all } h \in H(A),$$

where d(x) = [x, b]. Since $a \in C$, from (5.6), we see that [d(h), h] = 0 for all $h \in H(A)$. If $d \neq 0$, then Lemma 2.12 leads us to a contradiction.

On the other hand, let d = 0, i.e., $b \in C$. Moreover, from (5.6), we get $(\lambda - a)h \in C$. Since $\lambda - a \in C$, in view of Lemma 2.3, we have either $\lambda = a$ or $H(R) \subseteq Z(R)$. In the latter case, we have a contradiction by Lemma 2.13, so we left with $\lambda = a$. With this, from (5.4) we obtain

(5.7)
$$2\lambda k - 2bk \in C$$
, for all $k \in S(R)$.

As $\lambda, b \in C$, it implies either $S(R) \subseteq Z(R)$ or $\lambda = b$. In the former case, we have the desired result by Lemma 2.18 and in the latter case, (5.1) yields $F(x) = \lambda x^* + x\lambda - \lambda x^*$ for all $x \in R$, i.e., $F(x) = \lambda x$ for all $x \in R$, as desired.

In case $Z(R) \neq \{0\}$, we have $0 \neq h_c \in Z(R)$ such that $h_c^* = h_c$. By the assumption $[F(x), x] \in Z(R)$ for all $x \in R$. With the aid of Lemma 2.9 and Proposition 4.3, we have

(5.8)
$$[F(x), x] = 0, \quad \text{for all } x \in R.$$

From Lemma 2.10 and (5.8), we have

(5.9)
$$F(x) = \lambda x + \sigma(x), \text{ for all } x \in R,$$

for some $\lambda \in C$ and a map $\sigma : R \to C$. Application of Proposition 4.1 in (5.9) yields (5.10) $qx^* + \mathfrak{d}(x) = \lambda x + \sigma(x), \text{ for all } x \in R,$

for some $q \in Q_s(R)$. From (B), we find

(5.11)
$$F(x \circ h_c) - F(x)h_c - F(h_c)x^* - x\mathfrak{d}(h_c) - h_c\mathfrak{d}(x) \in Z(R), \quad \text{for all } x \in R.$$

Using (5.9) in (5.11), we find

$$\lambda(x \circ h_c) - \lambda x h_c - \lambda h_c x^* - \sigma(h_c) x^* - x \mathfrak{d}(h_c) - h_c \mathfrak{d}(x) \in C, \quad \text{for all } x \in R.$$

It implies

(5.12) $\lambda(x - x^*)h_c - \sigma(h_c)x^* - x\mathfrak{d}(h_c) - h_c\mathfrak{d}(x) \in C, \text{ for all } x \in R.$ Replacing x by h_c in (5.12), we conclude (5.13) $\mathfrak{d}(h_c) \in Z(R).$ Replacing x by h in (5.12), where $h \in H(R)$, we obtain (5.14) $-\sigma(h_c)h - h\mathfrak{d}(h_c) - h_c\mathfrak{d}(h) \in C.$ It implies

(5.15) $\mathfrak{d}(h_c)[h, x] + \sigma(h_c)[h, x] + h_c[\mathfrak{d}(h), x] = 0$, for all $h \in H(R), x \in R$. Replacing h by h^2 in (5.15), we find (5.16) $(\mathfrak{d}(h_c) + \sigma(h_c))([h, x]h + h[h, x]) + h_c[\mathfrak{d}(h)h + h\mathfrak{d}(h), x] = 0$, for all $h \in H(R), x \in R$.

Using (5.13) and (5.15) in (5.16), we obtain

$$h_c(\mathfrak{d}(h)[h,x] + [h,x]\mathfrak{d}(h)) = 0, \quad \text{ for all } h \in H(R), x \in R$$

It implies that

(5.17)
$$\mathfrak{d}(h)[h,x] + [h,x]\mathfrak{d}(h) = 0, \quad \text{for all } h \in H(R), x \in R.$$

Polarizing h in (5.17), we find

(5.18)

 $\mathfrak{d}(h_1)[h, x] + \mathfrak{d}(h)[h_1, x] + [h, x]\mathfrak{d}(h_1) + [h_1, x]\mathfrak{d}(h) = 0$, for all $h, h_1 \in H(R), x \in R$. In particular, replacing h_1 by h_c in (5.18) and thereby using (5.13), we conclude

(5.19)
$$2\mathfrak{d}(h_c)[h, x] = 0, \quad \text{for all } h \in H(R), x \in R$$

If $\mathfrak{d}(h_c) \neq 0$, then Lemma 2.2 in (5.19) implies $H(R) \subseteq Z(R)$. With the aid of Lemma 2.13, we arrive at a contradiction.

In case $\mathfrak{d}(h_c) = 0$, we obtain from (5.12) that

$$2\lambda kh_c + \sigma(h_c)k - h_c \mathfrak{d}(k) \in C$$
, for all $k \in S(R)$.

It implies $h_c[\mathfrak{d}(k), k] = 0$, for all $k \in S(R)$. From the fact $h_c \neq 0$ and Lemma 2.2, it follows that

$$(5.20) [\mathfrak{d}(k), k] = 0, for all k \in S(R).$$

By using $\mathfrak{d}(h_c) = 0$ and replacing h by k^2 in (5.14), where $k \in S(R)$, we have

$$-\sigma(h_c)k^2 - h_c\mathfrak{d}(k^2) \in C$$

It implies

$$\sigma(h_c)k^2 + h_c[\mathfrak{d}(k), k] \in C, \quad \text{for all } k \in S(R).$$

From (5.20), we find

(5.21) $\sigma(h_c)k^2 \in C, \quad \text{for all } k \in S(R).$

If $\sigma(h_c) \neq 0$, then Lemma 2.3 in (5.21) implies $k^2 \in Z(R)$ for all $k \in S(R)$. For any fixed $x \in R$, we have [k, x]k + k[k, x] = d(k)k + kd(k) = 0 for all $k \in S(R)$, where d(y) = [y, x] for all $y \in R$. If $d \neq 0$, then Lemma 2.15 yields a contradiction. Now, if d = 0, then we have [x, y] = 0 for all $x, y \in R$, hence R is commutative, which is a contradiction.

In case $\sigma(h_c) = 0$, using fact $\mathfrak{d}(h_c) = 0$, from (5.14), we have $h_c\mathfrak{d}(h) \in Z(R)$ for all $h \in H(R)$. Since $h_c \neq 0$, we have $\mathfrak{d}(h) \in Z(R)$ for all $h \in H(R)$ by Lemma 2.2. For any fixed $h \in H(R)$, using Lemma 2.2 in (5.17) we find that for each $h \in H(R)$, either $\mathfrak{d}(h) = 0$ or $h \in Z(R)$. Using Lemma 2.1, we have either $\mathfrak{d}(h) = 0$ for all $h \in H(R)$ or $H(R) \subseteq Z(R)$. In latter case, we have a contradiction by Lemma 2.13. In case $\mathfrak{d}(h) = 0$ for all $h \in H(R)$, we have

(5.22)
$$F(h^2) - F(h)h \in C, \quad \text{for all } h \in H(R)$$

Using (5.9) in (5.22), we conclude

(5.23)
$$\sigma(h)h \in C$$
, for all $h \in H(R)$.

For any fixed $h \in H(R)$, using Lemma 2.3 in (5.23), we have either $\sigma(h) = 0$ or $h \in Z(R)$. Aid of Lemma 2.1, we have either $\sigma(h) = 0$ for all $h \in H(R)$ or $H(R) \subseteq Z(R)$. In the latter case, we have the desired result by using Lemma 2.13. In case $\sigma(h) = 0$, replacing x by h, where $h \in H(R)$ in (5.10), we get

(5.24)
$$qh = \lambda h \text{ for all } h \in H(R)$$

Replacing h by h_c in (5.24) and thereby using Lemma 2.2, we conclude $q = \lambda$. Replacing x by k in (5.10), where $k \in S(R)$, we find

(5.25)
$$\mathfrak{d}(k) = 2\lambda k + \sigma(k), \quad \text{for all } k \in S(R).$$

Using (B), we have

(5.26)
$$F(h \circ k) + F(h)k - F(k)h - h\mathfrak{d}(k) \in Z(R)$$
, for all $k \in S(R)$, $h \in H(R)$.

Using
$$(5.9)$$
 and (5.25) in (5.26) , we conclude

$$\lambda(h \circ k) + \lambda hk - \lambda kh - \sigma(k)h - h(2\lambda k + \sigma(k)) \in C, \quad \text{for all } k \in S(R), h \in H(R).$$

It implies

(5.27)
$$\sigma(k)h \in C$$
, for all $k \in S(R), h \in H(R)$

If there exists $k \in S(R)$ such that $\sigma(k) \neq 0$, then using Lemma 2.3 in (5.27), we find $H(R) \subseteq Z(R)$. With the aid of Lemma 2.13, we get a contradiction. In case $\sigma(k) = 0$ for all $k \in S(R)$. From (5.9) and fact $\sigma(k) = \sigma(h) = 0$, we find $F(x) = F(h+k) = F(h) + F(k) = \lambda h + \lambda k = \lambda (h+k) = \lambda x$ for all $x \in R$.

Theorem 5.2. Let R be a 2-torsion free prime ring with involution '*' and $F : R \to R$ a centrally-extended generalized Jordan *-derivation with an associated centrallyextended Jordan *-derivation \mathfrak{d} . If $[F(x), x^*] \in Z(R)$ for all $x \in R$, then there exists $\lambda \in C$ such that $F(x) = \lambda x^*$ for all $x \in R$, unless R satisfies s_4 . *Proof.* Suppose that R does not satisfies s_4 . If Z(R) = (0), then by Lemma 2.11, we find

(5.28)
$$F(x) = ax^* + \mathfrak{d}(x), \quad \text{for all } x \in R,$$

for some $a \in Q_s(R)$. From Lemma 2.5 and assumption, we find $[F(x), x^*] = 0$ for all $x \in R$. Applying involution, we obtain $[F(x)^*, x] = 0$ for all $x \in R$. By Lemma 2.10, we have

$$F(x)^* = \lambda x + \sigma(x), \quad \text{for all } x \in R.$$

It implies

(5.29)
$$F(x) = \lambda^* x^* + \sigma(x)^*, \quad \text{for all } x \in R$$

By Proposition 4.2, Eq. (5.28) and (5.29), we conclude

(5.30)
$$\lambda^* x^* + \sigma(x)^* = ax^* + \mathfrak{d}(x), \quad \text{for all } x \in A.$$

Replacing x by 1 in (5.30), we obtain

$$(5.31) a \in C$$

Using (5.31) in (5.30), we obtain

 $[\mathfrak{d}(x), x^*] = 0, \quad \text{for all } x \in R.$

Application of Lemma 2.8 implies $\mathfrak{d} = 0$ or R satisfy s_4 identity. For non trivial solution, we have $\mathfrak{d} = 0$. Thus using it in (5.28), we obtain $F(x) = ax^*$ for all $x \in R$, where $a \in C$ as desired.

Let $Z(R) \neq \{0\}$. Then there exists $0 \neq h_c \in Z(R)$ such that $h_c^* = h_c$. By the assumption, we have $[F(x), x^*] \in Z(R)$ for all $x \in R$. With the aid of Lemma 2.5 and Lemma 4.3, we have

(5.32)
$$[F(x), x^*] = 0, \text{ for all } x \in R.$$

Applying involution both sides in (5.32), we find

(5.33)
$$[F(x)^*, x] = 0, \text{ for all } x \in R.$$

Application of Lemma 2.10 in (5.33) implies

(5.34)
$$F(x)^* = \lambda x + \sigma(x), \quad \text{for all } x \in R,$$

for some $\lambda \in C$ and a mapping $\sigma : R \to C$. Applying involution both sides in (5.34), we get

(5.35)
$$F(x) = \lambda^* x^* + \sigma(x)^*, \quad \text{for all } x \in R.$$

From (B), we have

$$(5.36) \quad F(x \circ y) - F(x)y^* - F(y)x^* - x\mathfrak{d}(y) - y\mathfrak{d}(x) \in Z(R), \quad \text{for all } x, y \in R$$

Using (5.35) in (5.36), we find

$$\lambda^*(x \circ y)^* - \lambda^*(x)^*y^* - \sigma(x)^*y^* - \lambda^*y^*x^* - \sigma(y)^*x^* - x\mathfrak{d}(y) - y\mathfrak{d}(x) \in C,$$

for all $x, y \in R$. It implies

(5.37) $-\sigma(x)^*y^* - \sigma(y)^*x^* - x\mathfrak{d}(y) - y\mathfrak{d}(x) \in C$, for all $x, y \in R$. Replacing x and y by h_c in (5.37), we find $h_c\mathfrak{d}(h_c) \in Z(R)$. It forces

$$(5.38) $\mathfrak{d}(h_c) \in Z(R)$$$

Replacing y by h_c in (5.37) and using (5.38), we find

(5.39)
$$-\sigma(h_c)^* x^* - x\mathfrak{d}(h_c) - h_c\mathfrak{d}(x) \in Z(R), \quad \text{for all } x \in R.$$

Replacing x by h in (5.39), where $h \in H(R)$, we have

$$-\sigma(h_c)^*h - h\mathfrak{d}(h_c) - h_c\mathfrak{d}(h) \in C.$$

Commuting with x and using (5.38), we obtain

(5.40)
$$\mathfrak{d}(h_c)[h, x] + \sigma(h_c)^*[h, x] + h_c[\mathfrak{d}(h), x] = 0, \text{ for all } x \in R, h \in H(R).$$

Replacing h by h^2 in (5.40) and using it, we conclude

$$\mathfrak{d}(h)[h,x] + [h,x]\mathfrak{d}(h) = 0.$$

Polarizing (5.41), we find

(5.42)
$$\mathfrak{d}(h_1)[h, x] + \mathfrak{d}(h)[h_1, x] + [h, x]\mathfrak{d}(h_1) + [h_1, x]\mathfrak{d}(h) = 0$$
, for all $h, h_1 \in H(R)$.

In particular, replacing h_1 by h_c in (5.42) to obtain

(5.43)
$$2\mathfrak{d}(h_c)[h, x] = 0, \quad \text{for all } h \in H(R).$$

If $\mathfrak{d}(h_c) \neq 0$, then using Lemma 2.2 and (5.38) in (5.43), we find $H(R) \subseteq Z(R)$. With the aid of Lemma 2.13, we have contradiction.

In case $\mathfrak{d}(h_c) = 0$, from (5.39), we find $[\mathfrak{d}(x), x^*] = 0$ for all $x \in R$. For non trivial solution, Lemma 2.8 yields $\mathfrak{d} = 0$. Using it in (5.37), we get

$$\sigma(y)^*[x^*, y^*] = 0, \quad \text{for all } x, y \in R.$$

For any fixed $y \in R$, we have either $\sigma(y) = 0$ or $[y^*, R] = 0$. Application of Lemma 2.1 implies that either $\sigma = 0$ or [y, R] = (0) for all $y \in R$. But R is noncommutative, so we left with $\sigma = 0$. Thus, from (5.35) we have $F(x) = ax^*$, where $a = \lambda^* \in C$. It completes the proof.

6. Hypercommuting Conditions

A pair of mappings f and g satisfying the condition f(x)x - xg(x) = 0 (resp. $f(x)x^* - x^*g(x) = 0$) on an appropriate subset K of a ring (resp. ring with involution) R is called hypercommuting (resp. *-hypercommuting). Obviously, it is a more general concept than that of commuting (*-commuting) mappings. In this section, we study a pair (F, G) of centrally-extended generalized Jordan *-derivations which is hypercommuting or *-hypercommuting.

Theorem 6.1. Let R be a 2-torsion free prime ring with involution '*' and F, G: $R \to R$ are centrally-extended generalized Jordan *-derivations with an associated centrally-extended Jordan *-derivations $\mathfrak{d}, \mathfrak{g}$, respectively. If F(x)x - xG(x) = 0 for all $x \in R$, then there exits $\lambda \in C$ such that $F(x) = G(x) = \lambda x$ for all $x \in R$, unless R satisfies s_4 .

Proof. Assume that R does not satisfy s_4 . By the hypothesis, we have

$$F(x)x - xG(x) = 0$$
, for all $x \in R$.

Suppose that Z(R) = (0). Clearly in this case F and G becomes generalized Jordan *-derivations. Thus with the aid of Lemma 2.11, we have $F(x) = ax^* + \mathfrak{d}(x)$, $G(x) = bx^* + \mathfrak{g}(x)$ for all $x \in R$, where $a, b \in Q_s(R)$. Using it in our hypothesis, we find

$$(ax^* + \mathfrak{d}(x))x - x(bx^* + \mathfrak{g}(x)) = 0, \text{ for all } x \in R.$$

The fact of Lemma 2.16 yields $\mathfrak{d}(x) = xc - cx^*$, $\mathfrak{g}(x) = xd - dx^*$ for all $x \in R$ for some $c, d \in Q_s(R)$. In this view it follows that R satisfies the functional identity

(6.1)
$$(ax^* + xc - cx^*)x = x(bx^* + xd - dx^*), \text{ for all } x \in R.$$

Application of Lemma 2.6 in (6.1) yields

(6.2)
$$(ax^* + xc - cx^*)x = x(bx^* + xd - dx^*), \text{ for all } x \in A.$$

Replacing x by 1 in (6.2), we find a = b. Polarizing (6.2), we obtain $(ax^* + xc - cx^*)y + (ay^* + yc - cy^*)x = y(bx^* + xd - dx^*) + x(by^* + yd - dy^*)$ for all $x, y \in A$. Replacing y by 1, we get $ax^* + xc - cx^* + ax = bx^* + xd - dx^* + xb$ for all $x, y \in A$. By using the fact a = b in preceding equation, we find

(6.3)
$$xc - cx^* - xd + dx^* + [a, x] = 0$$
, for all $x \in A$.

Replacing x by h in (6.3), where $h \in H(R)$, to obtain

(6.4)
$$-[c,h] + [d,h] + [a,h] = 0.$$

It implies [d - c + a, h] = 0. With the aid of Lemma 2.17, we have $d - c + a \in C$. Replacing x by k in (6.3), where $k \in S(R)$ and thereby using the fact $d - c + a \in C$, we find $k \circ (c - d) + [c - d, k] = 0$ for all $k \in S(R)$. It implies

(6.5)
$$(c-d)k = 0$$
, for all $k \in S(R)$.

Replacing k by $h \circ k$ in (6.5), where $h \in H(R)$, $k \in S(R)$ and using (6.5), we find

(6.6)
$$(c-d)hk = 0, \quad \text{for all } h \in H(R), k \in S(R).$$

From (6.5) and (6.6), we get

(6.7)
$$(c-d)[k,h] = 0$$
, for all $k \in S(R), h \in H(R)$.

Replacing k by $k \circ h_1$ in (6.7), we obtain

(6.8)
$$(c-d)h_1[k,h] + (c-d)[k,h]h_1 + (c-d)k[h,h_1] + (c-d)[h,h_1]k = 0.$$

Using (6.5) and (6.7) in (6.8), we find

(6.9) $(c-d)h_1[k,h] = 0, \text{ for all } k \in S(R), h, h_1 \in H(R).$

Equation (6.5) also implies

(6.10)
$$(c-d)k_1[k,h] = 0$$
, for all $k, k_1 \in S(R), h \in H(R)$.

From (6.9) and (6.10), we have

$$2(c-d)x[k,h] = (c-d)(2x)[k,h] = (c-d)(h_1+k_1)[k,h] = (c-d)h_1[k,h] + (c-d)k_1[k,h] = 0, for all $x \in R, h \in H(R), k \in S(R).$$$

Thus, we have (c-d)R[k,h] = (0) for all $k \in S(R)$ and $h \in H(R)$. In case $c \neq d$, primeness of R implies [H(R), S(R)] = (0). Lemma 2.18 leads us to the contradiction. In case c = d, we find $\mathfrak{d} = \mathfrak{g}$. Using the fact a = b, we conclude F(x) = G(x) for all $x \in R$. Thus, we have the desired result by Theorem 5.1.

Let $Z(R) \neq (0)$. Then there exists $0 \neq h_c \in Z(R)$ such that $h_c^* = h_c$. By the assumption, we have

(6.11)
$$F(x)x - xG(x) = 0, \quad \text{for all } x \in R.$$

Replacing x by h_c in (6.11), we find

(6.12)
$$F(h_c) - G(h_c) = 0.$$

Proposition 4.1 yields

(6.13)
$$F(x) = q_1 x^* + \mathfrak{d}(x), \quad \text{for all } x \in R,$$

(6.14)
$$G(x) = q_2 x^* + \mathfrak{g}(x), \quad \text{for all } x \in R,$$

for some $q_1, q_2 \in Q_s(R)$. Using (6.13) and (6.14) in (6.12), we obtain

(6.15)
$$(q_1 - q_2)(h_c) + (\mathfrak{d} - \mathfrak{g})(h_c) = 0.$$

Polarizing (6.11) to obtain

(6.16)
$$F(x)y - yG(x) + F(y)x - xG(y) = 0$$
, for all $x, y \in R$.

Replacing y by h_c in (6.16) to obtain

(6.17)
$$(F(x) - G(x))h_c + F(h_c)x - xG(h_c) = 0, \text{ for all } x \in R.$$

Using (6.12) in (6.17), we have

(6.18)
$$(F(x) - G(x))h_c + [F(h_c), x] = 0, \text{ for all } x \in R.$$

Replacing h_c by h_c^2 in (6.18) and using Lemma 2.2, we conclude

(6.19)
$$[\mathfrak{d}(h_c), x] = 0, \quad \text{for all } x \in R.$$

It implies $\mathfrak{d}(h_c) \in Z(R)$. In the same way, we compute $\mathfrak{g}(h_c) \in Z(R)$. Using (6.13) and (6.19) in (6.18), we obtain

$$(F(x) - G(x) + [q_1, x])h_c = 0$$
, for all $x \in R$.

It implies

(6.20)
$$F(x) - G(x) + [q_1, x] = 0$$
, for all $x \in R$

Since F and G are centrally-extended generalized Jordan *-derivation, replacing x by $h \circ h_c$ in (6.20) to obtain

$$(F(h) - G(h))h_c + (F(h_c) - G(h_c))h + h_c(\mathfrak{d}(h) - \mathfrak{g}(h))$$

(6.21) $+h(\mathfrak{d}(h_c)-\mathfrak{g}(h_c))+2[q,h]h_c\in Z(R), \quad \text{for all } h\in H(R).$

Using (6.12) and (6.20) in (6.21), we see that

(6.22)
$$(\mathfrak{d}(h) - \mathfrak{g}(h))h_c + [q, h]h_c + h(\mathfrak{d}(h_c) - \mathfrak{g}(h_c)) \in Z(R),$$
 for all $h \in H(R)$.
Replacing h by h^2 in (6.22), we obtain

$$(\mathfrak{d}(h) - \mathfrak{g}(h))hh_c + h(\mathfrak{d}(h) - \mathfrak{g}(h))h_c + [q_1, h]hh_c + h[q_1, h]h_c$$

(6.23)
$$+ h^2(\mathfrak{d}(h_c) - \mathfrak{g}(h_c)) \in Z(R), \quad \text{for all } h \in H(R).$$

From (6.22) and (6.23), we conclude

(6.24)
$$h^2(\mathfrak{d}(h_c) - \mathfrak{g}(h_c)) \in Z(R).$$

If $\mathfrak{d}(h_c) - \mathfrak{g}(h_c) \neq 0$, then using Lemma 2.3 in (6.24), we have $h^2 \in Z(R)$ for all $h \in H(R)$. Thus, we have the result by Lemma 2.13. If $\mathfrak{d}(h_c) - \mathfrak{g}(h_c) = 0$, then from (6.15), we obtain

$$(6.25) (q_1 - q_2)h_c = 0.$$

Using Lemma 2.2 in (6.25), we have $q_1 = q_2$. With the aid of (6.13), (6.14) and the fact $q_1 = q_2$ in (6.20), we find

(6.26)
$$\mathfrak{d}(x) - \mathfrak{g}(x) + [q_1, x] = 0, \quad \text{for all } x \in R$$

Replacing x by $h \circ k$ where $h \in H(R)$, $k \in S(R)$ in (6.26), we obtain

$$(\mathfrak{d}(h) - \mathfrak{g}(h))(-k) + k(\mathfrak{d}(h) - \mathfrak{g}(h)) + (\mathfrak{d}(k) - \mathfrak{g}(k))h + h(\mathfrak{d}(k) - \mathfrak{g}(k))$$

$$(6.27) + [q_1, h]k + k[q_1, h] + [q_1, k]h + h[q_1, k] \in Z(R).$$

Using (6.26) in (6.27) to conclude

(6.28)
$$2[q_1, h]k \in Z(R), \quad \text{for all } h \in H(R), k \in S(R).$$

We now split the proof into the following two parts.

Case 1. If mapping induced on centroid is non identity map, then there exists $0 \neq z \in C$ such that $z^* \neq z$. Replacing h by $x + x^*$ and k by $y - y^*$ in (6.28), where $x, y \in R$ in order to obtain

(6.29)
$$2[q_1, x + x^*](y - y^*) \in Z(R), \text{ for all } x, y \in R.$$

With the aid of Lemma 2.6 in (6.29), we have

(6.30)
$$[q_1, x + x^*](y - y^*) \in Z(R), \text{ for all } x, y \in Q_s(R).$$

Replace y by z in (6.30), we have

(6.31)
$$[q_1, x + x^*](z - z^*) \in C, \text{ for all } x \in Q_s(R).$$

Using Lemma 2.3 in (6.31), we have

(6.32)
$$[q_1, x + x^*] \in Z(R), \quad \text{for all } x \in Q_s(R).$$

Replacing x by h, where $h \in H(R)$ in (6.32), we obtain $[q_1, h] \in Z(R)$. Using Lemma 2.17, we conclude $q_1 \in Z(R)$. From (6.20), we have F(x) = G(x) for all $x \in R$. Hence, by Theorem 5.1, we get the desired result.

Case 2. If mapping induced on centroid is an identity map, then $c^* = c$ for all $c \in C$. From (6.28), we have

$$([q_1, h]k)^* = [q_1, h]k$$
, for all $h \in H(R), k \in S(R)$.

It implies

(6.33) $[q_1, h]k - k[q_1^*, h] = 0, \quad \text{for all } h \in H(R), k \in S(R).$

Replacing k by $k \circ h_1$ in (6.33), where $k \in S(R)$, $h_1 \in H(R)$, we obtain

$$(6.34) [q_1, h]h_1k + [q_1, h]kh_1 - kh_1[q_1^*, h] - h_1k[q_1^*, h] = 0$$

Using (6.28) and (6.33) in (6.34) to conclude

(6.35) $[q_1, h]h_1k - kh_1[q_1^*, h] = 0, \quad \text{for all } h, h_1 \in H(R), k \in S(R).$

Replacing h_1 by k_1^2 in (6.35), where $k_1 \in S(R)$, we find

$$([q_1, h]k_1)k_1k - kk_1(k_1[q_1^*, h]) = 0.$$

It implies

(6.36)
$$([q_1, h]k_1)k_1k - kk_1([q_1, h]k_1)^* = 0, \text{ for all } h \in H(R), k, k_1 \in S(R).$$

Using (6.28) and (6.33) in (6.36), we obtain

$$(6.37) [q_1, h]k_1[k_1, k] = 0.$$

For fixed $k_1 \in S(R)$, from the fact $[q_1, h]k_1 \in C$, using Lemma 2.2 in (6.37), we have either $[q_1, h]k_1 = 0$ for all $h \in H(R)$ or $[k_1, k] = 0$ for all $k \in S(R)$. Invoking Lemma 2.1 yields that either $[q_1, h]k_1 = 0$ for all $h \in H(R)$, $k_1 \in S(R)$ or $[k_1, k] = 0$ for all $k, k_1 \in S(R)$. In the latter case, replace k_1 by $h \circ k$ to obtain [h, k]k + k[h, k] = 0for all $h \in H(R)$, $k \in S(R)$. For any fixed $h \in H(R)$, we obtain d(k)k + kd(k) = 0, where d(x) = [h, x] for all $k \in S(R)$. With the aid of Lemma 2.15, we find either Rsatisfies s_4 identity or d = 0. In case d = 0, we have $H(R) \subseteq Z(R)$. Application of Lemma 2.13 gives a contradiction. If $[q_1, h]k_1 = 0$, then using the similar arguments as in (6.5), we find $[q_1, H(R)] = (0)$. With the aid of Lemma 2.17, we have $q_1 \in C$. From (6.20), we have F(x) = G(x) for all $x \in R$. Thus, we get the desired conclusion from Theorem 5.1. **Theorem 6.2.** Let R be a 2-torsion free prime ring with involution '*' and F, G : $R \rightarrow R$ are centrally-extended generalized Jordan *-derivations associated with centrallyextended Jordan *-derivations $\mathfrak{d}, \mathfrak{g}$, respectively. If $F(x)x^* - x^*G(x) = 0$ for all $x \in R$, then there exists $\lambda \in C$ such that $F(x) = G(x) = \lambda x^*$, unless R satisfies s_4 .

Proof. Suppose that R does not satisfies s_4 . By the hypothesis, we have $F(x)x^* - x^*G(x) = 0$ for all $x \in R$.

If Z(R) = (0), then application of Lemma 2.11 yields $F(x) = ax^* + \mathfrak{d}(x)$, $G(x) = bx^* + \mathfrak{g}(x)$ for all $x \in R$, where $a, b \in Q_s(R)$. Using it in our hypothesis, we find

(6.38)
$$(ax^* + \mathfrak{d}(x))x^* - x^*(bx^* + \mathfrak{g}(x)) = 0, \text{ for all } x \in R.$$

With the aid of Lemma 2.16, we conclude $\mathfrak{d}(x) = xc - cx^*$, $\mathfrak{g}(x) = xd - dx^*$ for all $x \in R$ for some $c, d \in U(R)$. Using it in (6.38), we find

(6.39)
$$(ax^* + xc - cx^*)x^* = x^*(bx^* + xd - dx^*), \text{ for all } x \in R.$$

Using Lemma 2.6 in (6.39), we conclude

(6.40)
$$(ax^* + xc - cx^*)x^* = x^*(bx^* + xd - dx^*), \text{ for all } x \in A.$$

Replacing x by 1 in (6.40), we get a = b. Polarizing (6.40), we obtain

$$(ax^* + xc - cx^*)y^* + (ay^* + yc - cy^*)x^*$$

(6.41)
$$= y^*(bx^* + xd - dx^*) + x^*(by^* + yd - dy^*), \text{ for all } x, y \in R.$$

Replacing y by 1 in (6.41), we find

(6.42)
$$ax^* + xc - cx^* + ax^* = bx^* + xd - dx^* + x^*b$$
, for all $x, y \in R$.

Using the fact a = b in (6.42), we conclude

(6.43)
$$xc - cx^* - xd + dx^* + [a, x^*] = 0$$
, for all $x \in R$.

Replacing x by h in (6.43), where $h \in H(R)$, we obtain

$$(6.44) -[c,h] + [d,h] + [a,h] = 0.$$

Since (6.44) is the same as (6.4), using similar arguments, we can reach our conclusion.

Let $Z(R) \neq (0)$. Then there exists $0 \neq h_c \in Z(R)$ such that $h_c^* = h_c$. By the assumption, we have

(6.45)
$$F(x)x^* - x^*G(x) = 0$$
, for all $x \in R$.

Replacing x by h_c in (6.45), we obtain

(6.46)
$$F(h_c) - G(h_c) = 0.$$

Invoking Proposition 4.1, we have

(6.47)
$$F(x) = q_1 x^* + \mathfrak{d}(x), \quad \text{for all } x \in R,$$

(6.48) $G(x) = q_2 x^* + \mathfrak{g}(x), \quad \text{for all } x \in R,$

for some $q_1, q_2 \in Q_s(R)$. Using (6.47) and (6.48) in (6.46), we obtain

(6.49)
$$(q_1 - q_2)(h_c) + (\mathfrak{d} - \mathfrak{g})(h_c) = 0.$$

Polarizing (6.45) to get

 $F(x)y^* - y^*G(x) + F(y)x^* - x^*G(y) = 0$, for all $x, y \in R$. (6.50)Replacing y by h_c in (6.50), we see that $(F(x) - G(x))h_c + F(h_c)x^* - x^*G(h_c) = 0,$ for all $x \in R$. (6.51)Using (6.46) in (6.51), we have (6.52) $(F(x) - G(x))h_c + [F(h_c), x^*] = 0,$ for all $x \in R$. Replacing h_c by h_c^2 in (6.52), we obtain for all $x \in R$. (6.53) $[\mathfrak{d}(h_c), x^*] = 0,$ It implies $\mathfrak{d}(h_c) \in Z(R)$. In the same way, one can easily observe that $\mathfrak{g}(h_c) \in Z(R)$. With the aid of (6.47), (6.53) in (6.52), we have $(F(x) - G(x) + [q_1, x^*])h_c = 0$, for all $x \in R$. (6.54)It yields $F(x) - G(x) + [q_1, x^*] = 0$, for all $x \in R$. (6.55)Replacing x by $h \circ h_c$ in (6.55) where $h \in H(R)$, we obtain $(F(h) - G(h))h_c + (F(h_c) - G(h_c))h + h_c(\mathfrak{d}(h) - \mathfrak{g}(h))$ $+h(\mathfrak{d}(h_c)-\mathfrak{g}(h_c))+2[q,h]h_c\in Z(R),$ for all $h\in H(R)$. (6.56)

Using (6.46) and (6.55) in (6.56), we conclude

(6.57)
$$(\mathfrak{d}(h) - \mathfrak{g}(h))h_c + [q, h]h_c + h(\mathfrak{d}(h_c) - \mathfrak{g}(h_c)) \in Z(R),$$
 for all $h \in H(R)$.
Replacing h by h^2 in (6.57), we obtain

$$(\mathfrak{d}(h) - \mathfrak{g}(h))hh_c + h(\mathfrak{d}(h) - \mathfrak{g}(h))h_c + [q_1, h]hh_c + h[q_1, h]h_c$$

(6.58)
$$+h^2(\mathfrak{d}(h_c)-\mathfrak{g}(h_c))\in Z(R), \quad \text{for all } h\in H(R).$$

From (6.57) and (6.58), we conclude

(6.59)
$$h^2(\mathfrak{d}(h_c) - \mathfrak{g}(h_c)) \in Z(R).$$

If $\mathfrak{d}(h_c) - \mathfrak{g}(h_c) \neq 0$, then using Lemma 2.3 in (6.59), we have $h^2 \in Z(R)$ for all $h \in H(R)$. Thus, a contradiction follows from Lemma 2.13. In case $\mathfrak{d}(h_c) - \mathfrak{g}(h_c) = 0$, from (6.49), we obtain

$$(q_1 - q_2)h_c = 0,$$

and it implies $q_1 = q_2$. Now from (6.47), (6.48) and (6.55) we find
(6.60) $\mathfrak{d}(x) - \mathfrak{g}(x) + [q_1, x^*] = 0,$ for all $x \in R.$

Replacing x by $h \circ k$ in (6.60), where $h \in H(R)$, $k \in S(R)$, we find

$$(\mathfrak{d}(h) - \mathfrak{g}(h))(-k) + k(\mathfrak{d}(h) - \mathfrak{g}(h)) + (\mathfrak{d}(k) - \mathfrak{g}(k))h + h(\mathfrak{d}(k))$$

$$(6.61) \qquad \qquad -\mathfrak{g}(k)) - [q_1, h]k - k[q_1, h] - [q_1, k]h - h[q_1, k] \in Z(R).$$

Using (6.60) in (6.61), we conclude

(6.62) $-2k[q_1, h] \in Z(R), \quad \text{for all } h \in H(R), k \in S(R).$

As (6.62) is same as (6.28), similar arguments are taking us to the desired conclusion. \Box

Acknowledgements. The first author would like to thank the University Grants Commission, New Delhi, for the financial support (Grant No. 402996). The third named author is supported by SERB-DST MATRICS Project (Grant No. MTR/2019/000603), India.

References

- [1] A. Alahmadi, H. Alhazmi, S. Ali, N. A. Dar and A. N. Khan, Additive maps on prime and semiprime rings with involution, Hacettepe J. Math. Stat. 49(3) (2020), 1126–1133. https: //doi.org/10.15672/hujms.661178
- [2] S. Ali, On generalized *-derivation in *-rings, Palestine J. Math. 1 (2012), 32–37.
- [3] S. Ali and N. A. Dar, On *-centralizing mappings in rings with involution, Georgian Math. J. 21(1) (2014), 25-28. https://doi.org/10.1515/gmj-2014-0006
- S. Ali, N. A. Dar and J. Vukman, Jordan left *-centralizers of prime and semiprime rings with involution, Beitr Algebra Geom. 54(2) (2013), 609-624. https://doi.org/10.1007/ S13366-012-0117-3
- [5] S. Ali, A. Fošner, M. Fošner and M. S. Khan, On generalized Jordan triple (α, β)*-derivations and related maps, Mediterr. J. Math. 10 (2013), 1657–1668. https://doi.org/10.1007/ s00009-013-0277-x
- [6] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, *Rings with Generalized Identities*, Pure Appl. Math. 196, Marcel Dekker Inc., New York, 1996.
- [7] H. E. Bell and M. N. Daif, On centrally-extended maps on rings, Beitr Algebra Geom. 8 (2016), 129–136. https://doi.org/10.1007/s13366-015-0244-8
- [8] H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), 92-101. https://doi.org/10.4153/CMB-1987-014-x
- B. Bhushan, G. Sandhu, S. Ali and D. Kumar, On centrally extended Jordan derivations and related maps in rings, Hacettepe J. Math. Stat. 52(1) (2023), 23-35. https://doi.org/10. 15672/hujms.1008922
- [10] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156(2) (1993), 385-394. https://doi.org/10.1006/jabr.1993.1080
- M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Tran. Amer. Math. Soc. 335(2) (1993), 525-546. https://doi.org/10.1090/ S0002-9947-1993-1069746-X
- M. Brešar and J. Vukman, On some additive mappings in rings with involution, Aeq. Math. 38 (1989), 178–185. https://doi.org/10.1007/BF01840003
- M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89–93. https://doi.org/10.1017/S0017089500008077
- [14] M. Brešar and B. Zalar, On the structure of Jordan *-derivations, Colloq. Math. 63 (1992), 163-171. https://doi.org/10.4064/cm-63-2-163-171
- [15] C. L. Chuang, *-Differential identities of prime rings with involution, Trans. Amer. Math. Soc. 316(1) (1989), 251–279. https://doi.org/10.1090/s0002-9947-1989-0937242-2
- [16] N. A. Dar and S. Ali, On the structure of generalized Jordan *-derivations of prime rings, Commun. Algebra 49(4) (2021), 1422–1430. https://doi.org/10.1080/00927872.2020.1837148

- [17] N. Divinsky, On commuting automorphisms of rings, Trans. Royal Soc. Can. Sec. III 3(49) (1955), 19–22. https://doi.org/
- [18] O. H. Ezzat, Functional equations related to higher derivations in semiprime rings, Open Math. 19 (2021), 1359-1365. https://doi.org/10.1515/math-2021-0123
- [19] A. N. Khan, N. A. Dar and A. Abbasi, A note on generalized Jordan *-derivations on prime *-rings, Bull. Iran. Math. Soc. 47(2) (2021), 1-12. https://doi.org/10.1007/ s41980-020-00390-w
- [20] T. K. Lee and P. H. Lee, Derivations centralizing symmetric or skew elements, Bull. Inst. Math. Acad. Sin. 14(3) (1986), 249–256.
- [21] T. K. Lee and Y. Zhou, Jordan *-derivations of prime rings, J. Algebra Appl. 13(4) (2014), Article ID 1350126. https://doi.org/10.1142/S0219498813501260
- [22] J.-H. Lin, Weak Jordan derivations of prime rings, Linear Multi. Algebra 69(8) (2021), 1422– 1445. https://doi.org/10.1080/03081087.2019.1630061
- [23] W. S. Martindale III, Prime rings with involution and generalized polynomial identities, J. Algebra 22 (1972), 502–516. https://doi.org/10.1016/0021-8693(72)90164-0
- [24] J. H. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19(1) (1976), 113-115. https://doi.org/10.4153/CMB-1976-017-1
- [25] J. H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27(1) (1984), 122–126. https://doi.org/10.4153/CMB-1984-018-2
- [26] N. Muthana and Z. Alkhmisi, On centrally-extended multiplicative (generalized)-(α, β)-derivations in semiprime rings, Hacettape J. Math. Stat. 49(2) (2020), 578-585. https://doi.org/10. 15672/hujms.568378
- [27] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. https: //doi.org/10.2307/2032686
- [28] P. Semrl, On Jordan *-derivations and an application, Colloq. Math. 59 (1990), 241–251.
- [29] M. A. Siddeeque, N. Khan and A. A. Abdullah, Weak Jordan *-derivations of prime rings, J. Algebra Appl. 22(5) (2023), Article ID 230105. https://doi.org/10.1142/S0219498823501050
- [30] P. Šemrl, Quadratic functionals and Jordan *-derivations, Stud. Math. 97 (1991), 157–165. https://doi.org/10.4064/SM-97-3-157-165
- [31] S. F. El-Deken and H. Nabiel, Centrally-extended generalized *-derivations on rings with involution, Beitr Algebra Geom. 60 (2019), 217-224. https://doi.org/10.1007/S13366-018-0415-5
- [32] S. F. El-Deken and M. M. El-Soufi, On centrally-extended reverse and generalized reverse derivations, Indian J. Pure Appl. Math. 51(3) (2020), 1165–1180. https://doi.org/10.1007/ s13226-020-0456-y
- [33] M. S. T. El-Sayiad, N. M. Muthana and Z. S. Alkhamisi, On rings with some kind of centrally-extended maps, Beitr Algebra Geom. 57(3) (2016), 579–588. https://doi.org/10. 1007/s13366-015-0274-2
- [34] M. S. T. El-Sayiad, A. Ageeb and A. M. Khalid, What is the action of a multiplicative centrallyextended derivation on a ring?, Georgian Math. J. 29(4) (2022), 607–613. https://doi.org/10. 1515/gmj-2022-2164

ON CENTRALLY-EXTENDED GENERALIZED JORDAN *-DERIVATIONS IN RINGS 1351

¹DEPARTMENT OF MATHEMATICS, AKAL UNIVERSITY, TALWANDI SABO-151302, INDIA. *Email address*: bharat_rs18@pbi.ac.in ORCID iD: https://orcid.org/0000-0001-6127-0731

²DEPARTMENT OF MATHEMATICS, PATEL MEMORIAL NATIONAL COLLEGE, RAJPURA-140401, INDIA *Email address*: gurninder_rs@pbi.ac.in ORCID iD: https://orcid.org/0000-0001-8618-6325

³DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH-202002, INDIA *Email address*: asmith@example.com ORCID iD: https://orcid.org/0000-0001-5162-7522

⁴FEDERAL UNIVERSITY OF TECHNOLOGY-PARANÁ-BRAZIL,
⁵FEDERAL UNIVERSITY OF ABC,
⁶UNIVERSITY OF SÃO PAULO, BRAZIL *Email address*: brunoferreira@utfpr.edu.br
ORCID iD: https://orcid.org/0000-0003-1621-8197