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ON CENTRALLY-EXTENDED GENERALIZED JORDAN
∗-DERIVATIONS IN RINGS
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Abstract. Let R be an associative ring with an involution ’∗’. In this article, we
introduce the notions of centrally-extended generalized Jordan ∗-derivation, centrally
extended Jordan left ∗-centralizer and characterize these mappings in involutive
prime rings.

1. Introduction

Throughout this study, R is an associative ring with center Z(R). R is called prime,
if for any a, b ∈ R, aRb = (0) implies either a = 0 or b = 0; and it is called semiprime,
if aRa = (0), implies a = 0. Clearly, every prime ring is semiprime ring but the
converse need not be true, for instance Z × Z. The symmetric ring of quotients of R
is denoted by Qs with center C, which is known as the extended centroid of R; clearly
R ⊆ Qs and Z(R) ⊆ C. It is well-known that if R is prime then Qs is prime and
C is a field. The central closure of R is denoted by A(= RC + C); for more details
of these objects, we refer the reader to [6]. For any x, y ∈ R, the commutator (resp.
anti-commutator) of x, y is defined as [x, y] = xy − yx (resp. x ◦ y = xy + yx). It is
established knowledge that R satisfies s4 (the standard identity in four noncommuting
variables), if for all x1, x2, x3, x4 ∈ R, the equation

s4(x1, x2, x3, x4) =
∑

σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4) = 0,
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where S4 is the symmetric group of degree 4 and (−1)σ is the sign of permutation
σ ∈ S4. For some interesting equivalent forms of s4, one can refer [11, Lemma 1].

For any n ∈ Z+, R is called an n-torsion free if for any x ∈ R, nx = 0 implies x = 0.
An anti-automorphism ′∗′ of R is called involution if (x∗)∗ = x for all x ∈ R. A ring
equipped with an involution ′∗′ is called ∗-ring or ring with involution or involutive
ring. An element x in a ∗-ring R is called symmetric if x∗ = x, and it is called
skew-symmetric if x∗ = −x. The set of symmetric and skew symmetric elements of
a ring R is denoted by H(R) and S(R), respectively. Moreover, if R is a prime ring
endowed with the involution ′∗′, then ′∗′ can be uniquely extended to Qs(R) (see [15,
page 4]).

Let R be a ∗-ring, an additive mapping d : R → R is called ∗-derivation if
d(xy) = d(x)y∗ + xd(y) for all x, y ∈ R and it is called Jordan ∗-derivation if d(x2) =
d(x)x∗ + xd(x) for all x ∈ R. These notions are first mentioned in [12]. Note that
the mapping x 7→ xa − ax∗, where a is a fixed element of R, is an example of Jordan
∗-derivation, called inner Jordan ∗-derivation. Moreover, if a ∈ Qs, then such a map
is called X-inner Jordan ∗-derivation. The study of Jordan ∗-derivations has been
originated from the problem of representability of quadratic forms by bilinear forms
(see [28, 30]). Thereafter, some significant studies have taken place on the structure
of Jordan ∗-derivations in rings (see [5, 14,16,21]).

In [2], Ali introduced the notion of generalized ∗-derivation, which is a self-map F of
R associated with a ∗-derivation d satisfying F (xy) = F (x)y∗ + xd(y) for all x, y ∈ R.
In addition to this, a self-map F of R is called a generalized Jordan ∗-derivation
associated with a Jordan ∗-derivation d if F (x2) = F (x)x∗ + xd(x) for all x ∈ R (see
[16], [19]). For any fixed a, b ∈ R, a map x 7→ ax∗+xb is a basic example of generalized
Jordan ∗-derivation, which is called generalized inner Jordan ∗-derivation. Further, if
a, b comes from Qs, then this map is called generalized X-inner Jordan ∗-derivation.
There has been an ongoing interest in the investigation of such mappings, for more
details we refer the reader to [1, 4, 5, 16, 19] and references therein.

A mapping f of R is called centralizing (resp. commuting) on a subset S of R
if [f(x), x] ∈ Z(R) (resp. [f(x), x] = 0) for all x ∈ S. To our best knowledge,
Divinsky [17] initiated the study of commuting and centralizing mappings in rings
by proving a classical result which states that a simple Artinian ring is commutative
if it admits a commuting nontrivial automorphism. Since then, many significant
results on commuting and centralizing mappings have been established by Posner
[27], Mayne [25], Bell and Martindale [8], Brešar [10]. Moreover, let R be a ∗-ring,
a mapping f : R → R is called ∗-centralizing (∗-commuting) on a subset S of R if
[f(x), x∗] ∈ Z(R) (resp. [f(x), x∗] = 0) for all x ∈ S (see [3]).

Bell and Daif [7] introduced centrally-extended derivations and discussed their
existence. Accordingly, a mapping d : R → R is called centrally-extended derivation
if d(x + y) − d(x) − d(y) ∈ Z(R) and d(xy) − d(x)y − xd(y) ∈ Z(R) for all x, y ∈
R. Motivated by this, El-Deken and Nabiel [31] introduced that a mapping d is
called centrally-extended ∗-derivation if d(x + y) − d(x) − d(y) ∈ Z(R) and d(xy) −
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d(x)y∗ − xd(y) ∈ Z(R) for all x, y ∈ R. Furthermore, a mapping F is called centrally-
extended generalized ∗-derivation associated with a centrally-extended ∗-derivation d if
F (x+y)−F (x)−F (y) ∈ Z(R) and F (xy)−F (x)y∗−xd(y) ∈ Z(R) for all x, y ∈ R. In
a recent paper [9], we introduced and studied the concept of centrally-extended Jordan
∗-derivation, which is a mapping d : R → R such that d(x + y) − d(x) − d(y) ∈ Z(R)
and d(x ◦ y) − d(x)y∗ − d(y)x∗ − xd(y) − yd(x) ∈ Z(R) for all x, y ∈ R. Nowadays,
centrally-extended mappings are getting attention of many researchers, consequently
there has been rising literature on these mappings in rings under different settings,
for instance, see [7, 9, 18, 26,31–34].

In this article, we shall introduce centrally-extended generalized Jordan ∗-derivation
in rings and discuss their existence in noncommutative prime ring under suitable
torsion conditions. We also investigate some specific functional identities involving
centrally-extended generalized Jordan ∗-derivations. Precisely, in Section 4 of this arti-
cle, we prove a structural result on centrally-extended generalized Jordan ∗-derivations
which plays a key role in Sections 5 and 6, where we study centralizing and hyper-
commuting conditions involving centrally-extended generalized Jordan ∗-derivations,
respectively.

2. Preliminaries

The following lemmas constitute a set of results that will be instrumental in the
development of the paper.

Lemma 2.1 (Brauer’s Trick). Let G be a group and H1, H2 be subgroups of G. If
G = H1 ∪ H2, then either G = H1 or G = H2.

Lemma 2.2. If R is a prime ring, then Z(R) has no proper zero divisor.

Lemma 2.3. Let R is a prime for any a ∈ Z(R). If there exists b ∈ R such that
ab ∈ Z(R), then either a = 0 or b ∈ Z(R).

Lemma 2.4. ([1, Proposition 2.3]). Let R be a 2-torsion free semiprime ring with
involution ′∗′. If f : R → R is an additive map such that f(x2) = f(x)x∗ for all
x ∈ R, then there exists q ∈ Qr(R) such that f(x) = qx∗ for all x ∈ R.

Lemma 2.5. ([3, Lemma 2.2]). Let R be a 2-torsion free semiprime ring with involu-
tion ′∗′. If an additive mapping f of R into itself such that [f(x), x∗] ∈ Z(R) for all
x ∈ R, then [f(x), x∗] = 0 for all x ∈ R.

Lemma 2.6. ([6, Theorem 6.4.6]). Let R be a prime ring with extended centroid C,
anti-automorphism g and maximal right ring of quotients Qmr(R) = Q. If 0 ̸= ϕ =
ϕ(x1, . . . , xn, g(x1), . . . , g(xn)) ∈ QC< X ∪ g(X) > is a g-identity on K ideal of R,
then ϕ is a g-identity on Qs = Qs(R).

Lemma 2.7. ([9, Theorem 4.6]). Let R be a 2-torsion free noncommutative prime
ring. If R admits a non-zero centrally-extended Jordan derivation d : R → R such
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that [d(x), x] ∈ Z(R) for all x ∈ R, then either d = 0 or R is an order in a central
simple algebra of dimension at most 4 over its center.
Lemma 2.8. ([9, Theorem 4.7]). Let R be a 2-torsion free noncommutative prime
ring with involution ∗. If R admits a non-zero centrally-extended Jordan derivation
d : R → R such that [d(x), x∗] ∈ Z(R) for all x ∈ R, then either d = 0 or R is an
order in a central simple algebra of dimension at most 4 over its center.
Lemma 2.9. ([10, Proposition 3.1]). Let R be a 2-torsion free semiprime ring and
U be a Jordan subring of R. If an additive mapping F of R into itself is centralizing
on U, then F is commuting on U.

Lemma 2.10. ([10, Theorem 3.2]). Let R be a prime ring. If an additive mapping
F : R → R is commuting on R, then there exists λ ∈ C and an additive ξ : R → C,
such that F (x) = λx + ξ(x) for all x ∈ R.
Lemma 2.11. ([19, Theorem 2.2]). Let R be a 2-torsion free prime ring with involu-
tion ′∗′. Let F : R → R be a generalized Jordan ∗-derivation associated with a Jordan
∗-derivation d. Then, F is of the form F (x) = qx∗ + d(x) for all x ∈ R and some
q ∈ Qs(R).
Lemma 2.12. ([20, Theorem 1]). Let R be a prime ring with involution ′∗′ and center
Z(R). If d is a non-zero derivation such that [d(h), h] ∈ Z(R) for all h ∈ H(R), then
R satisfies s4.
Lemma 2.13. ([20, Theorem 3]). Let R be a prime ring with involution ′∗′ and center
Z(R). If n be a fixed natural number such that xn ∈ Z(R) for all x ∈ H(R), then R
satisfies s4 identity.
Lemma 2.14. ([20, Theorem 6]). Let R be a prime ring with involution ′∗′ and center
Z(R). If d is a non-zero derivation on R such that d(x)x + xd(x) ∈ Z(R) for all
x ∈ H(R), then R satisfies s4 identity.
Lemma 2.15. ([20, Theorem 7]). Let R be a prime ring with involution ′∗′ and center
Z(R). If d is a non-zero derivation on R such that d(x)x + xd(x) ∈ Z(R) for all
x ∈ S(R), then R satisfies s4 identity.
Lemma 2.16. [21, Theorem 1.3]). Let R be a 2-torsion free noncommutative prime
ring with involution ′∗′, then any Jordan ∗-derivation on R is X-inner.
Lemma 2.17. Let R be a 2-torsion free prime ring. If q1 ∈ Qs(R) such that [q1, h] ∈ C
for all h ∈ H(R), then R satisfy s4 identity or q1 ∈ C.
Proof. Let us consider
(2.1) [q1, h] ∈ C, for all h ∈ H(R).
Replacing h by h2, where h ∈ H(R), we obtain [q1, h]h + h[q1, h] ∈ C, i.e., d(h)h +
hd(h) ∈ C for all h ∈ H(R), where d(x) = [q1, x]. If d ̸= 0, we have the result by
Lemma 2.14. If d = 0, then we conclude q1 ∈ C, as desired. □
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Lemma 2.18. Let R be a 2-torsion free prime ring with involution. If [h, k] = 0 for
all h ∈ H(R), k ∈ S(R), then R satisfy s4 identity.

Proof. Suppose that R does not satisfy s4 identity. By hypothesis, we have [h, k] =
0 ∈ C for all h ∈ H(R) and k ∈ S(R). In view of Lemma 2.17, it follows that either
R satisfies s4 or k ∈ Z(R) for all k ∈ S(R). Under the given hypothesis, we left with
S(R) ⊆ Z(R). Clearly h ◦ k ∈ S(R) for all h ∈ H(R) and k ∈ S(R), therefore we have
[h ◦ k, k] = 0, i.e., [h, k]k + k[h, k] = 0 for all h ∈ H(R) and k ∈ S(R). For a fixed
h ∈ H(R), we have d(k)k + kd(k) = 0 for all k ∈ S(R), where d(x) = [x, h] for all
x ∈ R. If d ̸= 0, then we have the result by Lemma 2.15. In case d = 0, we conclude
H(R) ⊆ Z(R) and hence by Lemma 2.13, we have a contradiction. Hence, R must
satisfies s4 identity. □

3. Definitions and Examples

We begin our discussions with the definition of centrally-extended generalized Jor-
dan ∗-derivations of rings with involution.

Definition 3.1. Let R be a ring with involution ′∗′. A mapping F : R → R is
called centrally-extended generalized Jordan ∗-derivation associated with an centrally-
extended Jordan ∗-derivation d, if

F (x + y) − F (x) − F (y) ∈ Z(R),(A)
F (x ◦ y) − F (x)y∗ − F (y)x∗ − xd(y) − yd(x) ∈ Z(R),(B)

for all x, y ∈ R.

Remark 3.1. If R is 2-torsion free noncommutative prime ring with involution ′∗′, then
for an additive mapping F to be a centrally-extended generalized Jordan ∗-derivation,
it is sufficient to satisfy the condition F (x2) − F (x)x∗ − xd(x) ∈ Z(R) for all x ∈ R.

Example 3.1. We now show the existence of centrally-extended generalized Jordan
∗-derivations in certain rings.

(I) Let Z be the ring of integers and R =
{(

x y
z t

)
: x, y, z, t ∈ Z

}
, a noncommu-

tative prime ring. Then the mapping ∗ : R → R such that
(

x y
z t

)∗

=
(

t −y
−z x

)
,

F : R → R such that F

(
x y
z t

)
=
(

x − t y
z 0

)
with associated mapping d : R → R

defined as d

(
x y
z t

)
=
(

x 0
0 x

)
. One can easily verify that F is a centrally-

extended generalized Jordan ∗-derivation with associated centrally-extended Jordan
∗-derivation d.
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(II) Let R be a ring defined as R := R × Z, where R =
{(

x y
0 z

)
: x, y, z ∈ Z2

}
.

For any X =
(

x y
0 z

)
∈ R, let us define X∗ =

(
z y
0 x

)
and hence (X, k)∗ = (X∗, k),

which is an involution on R. Define F : R → R such that F

((
x y
0 z

)
, k

)
=((

0 x
0 x

)
, 1
)

with associated mapping d : R → R defined as d

((
x y
0 z

)
, k

)
=((

z y
0 x

)
, 1
)

. We observe that F is a centrally-extended generalized Jordan ∗-

derivation with an associated centrally-extended Jordan ∗-derivation.

Remark 3.2. It can be seen from the above example that every centrally-extended
generalized Jordan ∗-derivation is a centrally-extended Jordan ∗-derivation, but the
converse does not necessarily hold in general.

Definition 3.2. Let R be a ring with involution ′∗′. A mapping T : R → R is called
centrally-extended Jordan ∗-left centralizer (resp. centrally-extended Jordan ∗-right
centralizer) if

T (x + y) − T (x) − T (y) ∈ Z(R),(A)
T (x2) − T (x)x∗ ∈ Z(R) (resp. T (x2) − x∗T (x) ∈ Z(R)),(B)

for all x, y ∈ R. Moreover, T is called centrally-extended Jordan ∗-centralizer if it is
both a centrally-extended Jordan ∗-left centralizer and a centrally-extended Jordan
∗-right centralizer.

Example 3.2. Let R be a ring defined as R := M2(R) × C, where M2(R) denotes the
ring of 2 × 2 matrices over real numbers. For any r = (x, z1), s = (y, z2) ∈ R, we
define r∗ = (x∗, z1), where x∗ is defined as in Example 3.1 (I) and z1 is the complex
conjugate of z1. Define a mapping T : R → R such that T (x, z) = (0, 1) for all
(x, z) ∈ R. Then it can be easily verified that T is a centrally-extended Jordan ∗-left
centralizer of R.

4. Auxiliary Results

In this section, we shall mainly prove the following theorem which is crucial for the
results proved in the subsequent sections.

Theorem 4.1. Let R be a 2-torsion free noncommutative prime ring with involution
′∗′ and F be a centrally-extended generalized Jordan ∗-derivation of R associated with
a centrally-extended Jordan ∗-derivation d. Then, there exists q ∈ Qs(R) such that
F (x) = qx∗ + d(x) for all x ∈ R.

After proving few more facts in this regard, we shall return to the proof of Theo-
rem 4.1.
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Proposition 4.1. Let R be a 2-torsion free prime ring with involution ′∗′ and d :
R → R a Jordan ∗-derivation. Then, d can be uniquely extended to A, unless R
satisfies s4.

Proof. Suppose that R does not satisfy s4 identity. By Lemma 2.16, there exists
a ∈ Qs(R) such that d(x) = xa − ax∗ for all x ∈ R. Let us define d̄(q) = qa − aq∗ for
all q ∈ A. Clearly, d̄ is a well-defined map and it is an extension of d. Now, we claim
that the extension of d is unique.

Let D be also an extension of d. Since A is a noncommutative 2-torsion free prime
ring, D is X-inner on A, i.e., there exists b ∈ A such that D(u) = ub − bu∗ for all
u ∈ A. As D is an extension of d, so we have

(4.1) xb − bx∗ = xa − ax∗, for all x ∈ R.

In particular by taking h for x in (4.1), where h ∈ H(R), we obtain [h, b − a] = 0 for
all h ∈ H(R). Using Lemma 2.17, we have b − a ∈ C. That means there exists c ∈ C
such that b = a + c. From (4.1), we have xc − cx∗ = 0 for all x ∈ R. Replacing x by
k in the last expression, where k ∈ S(R), we get 2ck = 0 for all k ∈ S(R). If c ̸= 0,
then by using Lemma 2.2, we have S(R) = (0), thence H(R) = R; which implies that
for any x, y ∈ R, we have xy = (xy)∗ = y∗x∗ = yx, which is a contradiction. In case
c = 0, we have a = b. It proves our claim. □

Proposition 4.2. Let R be a 2-torsion free prime ring with involution ′∗′ and F :
R → R a generalized Jordan ∗-derivation associated with d a Jordan ∗-derivation.
Then, F can be uniquely extended to A, unless R satisfies s4.

Proof. By Lemma 2.11, there exists a ∈ Qs(R) such that F (x) = ax∗ + d(x) for all
x ∈ R. We define F̃ (u) = au∗ + d(u) for all u ∈ A. By Proposition 4.1, F̃ is a well
defined map and also it is an extension of F . Now, we will show that extension of F
is unique. Let G be also extension of F . Using Lemma 2.11, there exists b ∈ Qs and
g a Jordan ∗-derivation on A such that G(u) = bu∗ + g(u) for all u ∈ A. Since, G is
an extension of F . Therefore

(4.2) ax∗ + d(x) = bx∗ + g(x), for all x ∈ R.

By Lemma 2.16, there exists c, q ∈ Qs such that d(x) = xc − cx∗ and g(x) = xq − qx∗

for all x ∈ R. From (4.2), we have (a − c)x∗ + xc = (b − q)x∗ + xq for all x ∈ R.
As the preceding equation is a g-identity on R, application of Lemma 2.6 yields
(a − c)x∗ + xc = (b − q)x∗ + xq for all x ∈ Qs(R). Replacing x by 1, we obtain
a = b. From (4.2), we find d(x) = g(x) for all x ∈ R. In fact, Proposition 4.1 gives
d(x) = g(x) for all x ∈ A. It completes the proof. □

For the sake of brevity, we omit the proof of the following result, as it follows
proceeding along the same lines as the proof of Lemma 4.4 of [9], with insignificant
variations.
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Proposition 4.3. Let R be a ring with involution ∗ and with no non-zero central
ideal. If F is a centrally-extended generalized Jordan ∗-derivation associated with
centrally-extended Jordan ∗-derivation d of R, then F is additive.

Corollary 4.1. Let R be a noncommutative prime ring with involution ′∗′. If F is
a centrally-extended generalized Jordan ∗-derivation of R associated with centrally-
extended Jordan ∗-derivation d, then F is additive.

Proposition 4.4. Let R be a 2-torsion free noncommutative prime ring with invo-
lution ′∗′ and T : R → R a centrally-extended Jordan ∗-left centralizer. Then, there
exists q ∈ Qs(R) such that T (x) = qx∗ for all x ∈ R.

Proof. Note that T is additive by Proposition 4.1. If Z(R) = (0), then T (x2) = T (x)x∗

for all x ∈ R. Thus, we conclude the desired result by Lemma 2.4. In case Z(R) ̸= (0),
we first claim that there exists 0 ̸= z ∈ Z(R) such that z∗ = z.

Let us suppose that 0 ̸= zc ∈ Z(R). If z∗
c = zc, then we are done. If z∗

c ≠ zc, then
we take z1 = zc + z∗

c ; and observe that z1 = z∗
1 . Therefore, we can say that there exists

0 ̸= z ∈ Z(R) such that z∗ = z.
By the assumption, we have

(4.3) T (x2) − T (x)x∗ ∈ Z(R), for all x ∈ R.

Polarizing (4.3), we get
(4.4) T (xy + yx) − T (x)y∗ − T (y)x∗ ∈ Z(R), for all x, y ∈ R.

Replacing y by z2, where z ∈ H(R) ∩ Z(R) in (4.4) to get
T (xz2 + z2x) − T (x)z2 − T (z2)x∗ ∈ Z(R), for all x ∈ R.

It implies
T (xz2 + z2x) − T (x)z2 − T (z)zx∗ − c1x

∗ ∈ Z(R), for all x ∈ R,

where c1 is the corresponding central element. It implies
(4.5) T (4xz2) − 2T (x)z2 − 2T (z)zx∗ − 2c1x

∗ ∈ Z(R).
Also, 4xz2 = z(xz + zx) + (xz + zx)z. From (4.4), we have

T (z(xz + zx) + (xz + zx)z) − T (z)(xz + zx)∗ − T (xz + zx)z ∈ Z(R).
Again using (4.4) in the last summand of the above relation, we get
(4.6) T (4xz2) − T (z)(x∗z + zx∗) − (T (x)z + T (z)x∗ + c2)z ∈ Z(R),
where c2 is the corresponding central element. Comparing (4.5) and (4.6) to obtain

T (x)z2 − T (z)x∗z − c1x
∗ ∈ Z(R).

It implies
([T (x)z, x∗] − [T (z)x∗, x∗])z = 0.

Application of Lemma 2.2 yields
(4.7) [T (x)z − T (z)x∗, x∗] = 0.
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Define G(x) = T (x)z − T (z)x∗ for all x ∈ R. From (4.7), we find G is an additive
∗-commuting map. Applying involution in (4.7) and using Lemma 2.10 in order to
get G(x)∗ = λx + σ(x) for all x ∈ R, for some λ ∈ C and σ : R → C. It implies
G(x)=T (x)z − T (z)x∗ = λ∗x∗ + σ(x)∗. Therefore, T (x)z = (T (z) + λ∗)x∗ + σ(x)∗

for all x ∈ R. It can also be written as T (x) = z−1(T (z) + λ∗)x∗ + σ(x)∗z−1. Thus,
T (x) = qx∗ + σ′(x) for all x ∈ R where q = z−1(T (z) + λ∗) and σ′(x) = z−1σ(x)∗.
From (4.3), we have q(x2)∗ + σ′(x2) − (qx∗ + σ′(x))x∗ ∈ Z(R) for all x ∈ R. It implies
(4.8) x∗σ′(x) ∈ C, for all x ∈ R..

For any fixed x ∈ R, using Lemma 2.3 in (4.8), we have either x ∈ Z(R) or σ′(x) = 0.
As σ′ is additive function, by application of Lemma 2.1, we find either x ∈ Z(R) for
all x ∈ R or σ′(x) = 0 for all x ∈ R. Since R is noncommutative, we have σ′ = 0.
Thus, T (x) = qx∗ for all x ∈ R. □

Proof of Theorem 4.1. Let T (x) = (F − d)(x) for all x ∈ R. Then for any x ∈ R,
T (x2) = (F − d)(x2) = F (x)x∗ + xd(x) + c1 − d(x)x∗ − xd(x) − c2 where c1 and c2 are
corresponding central element. It turns out to be T (x2) − T (x)x∗ = c1 + c2 ∈ Z(R)
for all x ∈ R. Therefore T is a centrally-extended Jordan ∗-left centralizer. Invoking
Proposition 4.4, we get T (x) = qx∗ for all x ∈ R, where q ∈ Qs(R). Thus F (x) =
qx∗ + d(x) for all x ∈ R. □

5. Centralizing Conditions

An astonishing result of Posner [27] states that a prime ring R is commutative if
it possesses a non-zero derivation d which is centralizing on R (i.e. [d(x), x] ∈ Z(R)).
Proceeding this investigation, Mayne [24,25] studied automorphisms and derivations
which are centralizing on appropriate subsets of a prime ring. Later on, Bell and
Martindale [8] examined centralizing mappings of semiprime rings. Since then several
authors have extended these results in different directions. In 2014, Ali and Dar
[3] introduced the notion of ∗-centralizing mappings in prime rings with involution.
Motivated by these studies, in this section, we are intended to describe the structure
of centralizing and ∗-centralizing centrally-extended generalized Jordan ∗-derivations
of a prime ring with involution ∗.

Theorem 5.1. Let R be a 2-torsion free prime ring with involution ′∗′ and F : R → R
a centrally-extended generalized Jordan ∗-derivation associated with centrally-extended
Jordan ∗-derivation d. If [F (x), x] ∈ Z(R) for all x ∈ R, then there exists λ ∈ C such
that F (x) = λx for all x ∈ R, unless R satisfies s4.

Proof. Suppose that R does not satisfies s4. By hypothesis, we have
[F (x), x] ∈ Z(R), for all x ∈ R.

If Z(R) = (0), then from Lemma 2.11, we find that there exists a ∈ Qs(R) such that
(5.1) F (x) = ax∗ + d(x), for all x ∈ R.
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Since F is a additive and centralizing map, by using Lemma 2.9 and Lemma 2.10,
there exists λ ∈ C and a map σ : R → C such that
(5.2) F (x) = λx + σ(x), for all x ∈ R.

In view of Proposition 4.2, it follows from equations (5.1) and (5.2) that
(5.3) λx + σ(x) = ax∗ + d(x), for all x ∈ A.

By Lemma 2.16 and Proposition 4.1, there exists b ∈ Qs(R) such that d(x) = xb − xb∗

for all x ∈ A. Therefore, from (5.3), we have
(5.4) λx + σ(x) = ax∗ + xb − bx∗, for all x ∈ A.

Taking 1 instead of x in (5.4), we find
(5.5) a ∈ C.

Replacing x by h in (5.4), we obtain
(5.6) λh + σ(h) = ah + d(h), for all h ∈ H(A),
where d(x) = [x, b]. Since a ∈ C, from (5.6), we see that [d(h), h] = 0 for all h ∈ H(A).
If d ̸= 0, then Lemma 2.12 leads us to a contradiction.

On the other hand, let d = 0, i.e., b ∈ C. Moreover, from (5.6), we get (λ−a)h ∈ C.
Since λ − a ∈ C, in view of Lemma 2.3, we have either λ = a or H(R) ⊆ Z(R). In
the latter case, we have a contradiction by Lemma 2.13, so we left with λ = a. With
this, from (5.4) we obtain
(5.7) 2λk − 2bk ∈ C, for all k ∈ S(R).
As λ, b ∈ C, it implies either S(R) ⊆ Z(R) or λ = b. In the former case, we have the
desired result by Lemma 2.18 and in the latter case, (5.1) yields F (x) = λx∗ +xλ−λx∗

for all x ∈ R, i.e., F (x) = λx for all x ∈ R, as desired.
In case Z(R) ̸= {0}, we have 0 ̸= hc ∈ Z(R) such that h∗

c = hc. By the assumption
[F (x), x] ∈ Z(R) for all x ∈ R. With the aid of Lemma 2.9 and Proposition 4.3, we
have
(5.8) [F (x), x] = 0, for all x ∈ R.

From Lemma 2.10 and (5.8), we have
(5.9) F (x) = λx + σ(x), for all x ∈ R,

for some λ ∈ C and a map σ : R → C. Application of Proposition 4.1 in (5.9) yields
(5.10) qx∗ + d(x) = λx + σ(x), for all x ∈ R,

for some q ∈ Qs(R). From (B), we find
(5.11) F (x ◦ hc) − F (x)hc − F (hc)x∗ − xd(hc) − hcd(x) ∈ Z(R), for all x ∈ R.

Using (5.9) in (5.11), we find
λ(x ◦ hc) − λxhc − λhcx

∗ − σ(hc)x∗ − xd(hc) − hcd(x) ∈ C, for all x ∈ R.
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It implies
(5.12) λ(x − x∗)hc − σ(hc)x∗ − xd(hc) − hcd(x) ∈ C, for all x ∈ R.

Replacing x by hc in (5.12), we conclude
(5.13) d(hc) ∈ Z(R).
Replacing x by h in (5.12), where h ∈ H(R), we obtain
(5.14) −σ(hc)h − hd(hc) − hcd(h) ∈ C.

It implies
(5.15) d(hc)[h, x] + σ(hc)[h, x] + hc[d(h), x] = 0, for all h ∈ H(R), x ∈ R.

Replacing h by h2 in (5.15), we find
(5.16)
(d(hc)+σ(hc))([h, x]h+h[h, x])+hc[d(h)h+hd(h), x] = 0, for all h ∈ H(R), x ∈ R.

Using (5.13) and (5.15) in (5.16), we obtain
hc(d(h)[h, x] + [h, x]d(h)) = 0, for all h ∈ H(R), x ∈ R.

It implies that
(5.17) d(h)[h, x] + [h, x]d(h) = 0, for all h ∈ H(R), x ∈ R.

Polarizing h in (5.17), we find
(5.18)
d(h1)[h, x] + d(h)[h1, x] + [h, x]d(h1) + [h1, x]d(h) = 0, for all h, h1 ∈ H(R), x ∈ R.

In particular, replacing h1 by hc in (5.18) and thereby using (5.13), we conclude
(5.19) 2d(hc)[h, x] = 0, for all h ∈ H(R), x ∈ R.

If d(hc) ̸= 0, then Lemma 2.2 in (5.19) implies H(R) ⊆ Z(R). With the aid of Lemma
2.13, we arrive at a contradiction.

In case d(hc) = 0, we obtain from (5.12) that
2λkhc + σ(hc)k − hcd(k) ∈ C, for all k ∈ S(R).

It implies hc[d(k), k] = 0, for all k ∈ S(R). From the fact hc ̸= 0 and Lemma 2.2, it
follows that
(5.20) [d(k), k] = 0, for all k ∈ S(R).
By using d(hc) = 0 and replacing h by k2 in (5.14), where k ∈ S(R), we have

−σ(hc)k2 − hcd(k2) ∈ C.

It implies
−σ(hc)k2 + hc[d(k), k] ∈ C, for all k ∈ S(R).

From (5.20), we find
(5.21) σ(hc)k2 ∈ C, for all k ∈ S(R).
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If σ(hc) ̸= 0, then Lemma 2.3 in (5.21) implies k2 ∈ Z(R) for all k ∈ S(R). For any
fixed x ∈ R, we have [k, x]k + k[k, x] = d(k)k + kd(k) = 0 for all k ∈ S(R), where
d(y) = [y, x] for all y ∈ R. If d ̸= 0, then Lemma 2.15 yields a contradiction. Now,
if d = 0, then we have [x, y] = 0 for all x, y ∈ R, hence R is commutative, which is a
contradiction.

In case σ(hc) = 0, using fact d(hc) = 0, from (5.14), we have hcd(h) ∈ Z(R) for all
h ∈ H(R). Since hc ̸= 0, we have d(h) ∈ Z(R) for all h ∈ H(R) by Lemma 2.2. For
any fixed h ∈ H(R), using Lemma 2.2 in (5.17) we find that for each h ∈ H(R), either
d(h) = 0 or h ∈ Z(R). Using Lemma 2.1, we have either d(h) = 0 for all h ∈ H(R)
or H(R) ⊆ Z(R). In latter case, we have a contradiction by Lemma 2.13. In case
d(h) = 0 for all h ∈ H(R), we have
(5.22) F (h2) − F (h)h ∈ C, for all h ∈ H(R).
Using (5.9) in (5.22), we conclude
(5.23) σ(h)h ∈ C, for all h ∈ H(R).
For any fixed h ∈ H(R), using Lemma 2.3 in (5.23), we have either σ(h) = 0
or h ∈ Z(R). Aid of Lemma 2.1, we have either σ(h) = 0 for all h ∈ H(R) or
H(R) ⊆ Z(R). In the latter case, we have the desired result by using Lemma 2.13.
In case σ(h) = 0, replacing x by h, where h ∈ H(R) in (5.10), we get
(5.24) qh = λh for all h ∈ H(R).
Replacing h by hc in (5.24) and thereby using Lemma 2.2, we conclude q = λ.
Replacing x by k in (5.10), where k ∈ S(R), we find
(5.25) d(k) = 2λk + σ(k), for all k ∈ S(R).
Using (B), we have
(5.26) F (h ◦ k) + F (h)k − F (k)h − hd(k) ∈ Z(R), for all k ∈ S(R), h ∈ H(R).
Using (5.9) and (5.25) in (5.26), we conclude
λ(h ◦ k) + λhk − λkh − σ(k)h − h(2λk + σ(k)) ∈ C, for all k ∈ S(R), h ∈ H(R).

It implies
(5.27) σ(k)h ∈ C, for all k ∈ S(R), h ∈ H(R).
If there exists k ∈ S(R) such that σ(k) ̸= 0, then using Lemma 2.3 in (5.27), we find
H(R) ⊆ Z(R). With the aid of Lemma 2.13, we get a contradiction. In case σ(k) = 0
for all k ∈ S(R). From (5.9) and fact σ(k) = σ(h) = 0, we find F (x) = F (h + k) =
F (h) + F (k) = λh + λk = λ(h + k) = λx for all x ∈ R. □

Theorem 5.2. Let R be a 2-torsion free prime ring with involution ′∗′ and F : R →
R a centrally-extended generalized Jordan ∗-derivation with an associated centrally-
extended Jordan ∗-derivation d. If [F (x), x∗] ∈ Z(R) for all x ∈ R, then there exists
λ ∈ C such that F (x) = λx∗ for all x ∈ R, unless R satisfies s4.
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Proof. Suppose that R does not satisfies s4. If Z(R) = (0), then by Lemma 2.11, we
find
(5.28) F (x) = ax∗ + d(x), for all x ∈ R,

for some a ∈ Qs(R). From Lemma 2.5 and assumption, we find [F (x), x∗] = 0 for all
x ∈ R. Applying involution, we obtain [F (x)∗, x] = 0 for all x ∈ R. By Lemma 2.10,
we have

F (x)∗ = λx + σ(x), for all x ∈ R.

It implies
(5.29) F (x) = λ∗x∗ + σ(x)∗, for all x ∈ R.

By Proposition 4.2, Eq. (5.28) and (5.29), we conclude
(5.30) λ∗x∗ + σ(x)∗ = ax∗ + d(x), for all x ∈ A.

Replacing x by 1 in (5.30), we obtain
(5.31) a ∈ C.

Using (5.31) in (5.30), we obtain
[d(x), x∗] = 0, for all x ∈ R.

Application of Lemma 2.8 implies d = 0 or R satisfy s4 identity. For non trivial
solution, we have d = 0. Thus using it in (5.28), we obtain F (x) = ax∗ for all x ∈ R,
where a ∈ C as desired.

Let Z(R) ̸= {0}. Then there exists 0 ̸= hc ∈ Z(R) such that h∗
c = hc. By the

assumption, we have [F (x), x∗] ∈ Z(R) for all x ∈ R. With the aid of Lemma 2.5 and
Lemma 4.3, we have
(5.32) [F (x), x∗] = 0, for all x ∈ R.

Applying involution both sides in (5.32), we find
(5.33) [F (x)∗, x] = 0, for all x ∈ R.

Application of Lemma 2.10 in (5.33) implies
(5.34) F (x)∗ = λx + σ(x), for all x ∈ R,

for some λ ∈ C and a mapping σ : R → C. Applying involution both sides in (5.34),
we get
(5.35) F (x) = λ∗x∗ + σ(x)∗, for all x ∈ R.

From (B), we have
(5.36) F (x ◦ y) − F (x)y∗ − F (y)x∗ − xd(y) − yd(x) ∈ Z(R), for all x, y ∈ R.

Using (5.35) in (5.36), we find
λ∗(x ◦ y)∗ − λ∗(x)∗y∗ − σ(x)∗y∗ − λ∗y∗x∗ − σ(y)∗x∗ − xd(y) − yd(x) ∈ C, .
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for all x, y ∈ R. It implies

(5.37) −σ(x)∗y∗ − σ(y)∗x∗ − xd(y) − yd(x) ∈ C, for all x, y ∈ R.

Replacing x and y by hc in (5.37), we find hcd(hc) ∈ Z(R). It forces

(5.38) d(hc) ∈ Z(R).

Replacing y by hc in (5.37) and using (5.38), we find

(5.39) −σ(hc)∗x∗ − xd(hc) − hcd(x) ∈ Z(R), for all x ∈ R.

Replacing x by h in (5.39), where h ∈ H(R), we have

−σ(hc)∗h − hd(hc) − hcd(h) ∈ C.

Commuting with x and using (5.38), we obtain

(5.40) d(hc)[h, x] + σ(hc)∗[h, x] + hc[d(h), x] = 0, for all x ∈ R, h ∈ H(R).

Replacing h by h2 in (5.40) and using it, we conclude

(5.41) d(h)[h, x] + [h, x]d(h) = 0.

Polarizing (5.41), we find

(5.42) d(h1)[h, x]+d(h)[h1, x]+ [h, x]d(h1)+ [h1, x]d(h) = 0, for all h, h1 ∈ H(R).

In particular, replacing h1 by hc in (5.42) to obtain

(5.43) 2d(hc)[h, x] = 0, for all h ∈ H(R).

If d(hc) ̸= 0, then using Lemma 2.2 and (5.38) in (5.43), we find H(R) ⊆ Z(R). With
the aid of Lemma 2.13, we have contradiction.

In case d(hc) = 0, from (5.39), we find [d(x), x∗] = 0 for all x ∈ R. For non trivial
solution, Lemma 2.8 yields d = 0. Using it in (5.37), we get

σ(y)∗[x∗, y∗] = 0, for all x, y ∈ R.

For any fixed y ∈ R, we have either σ(y) = 0 or [y∗, R] = 0. Application of Lemma 2.1
implies that either σ = 0 or [y, R] = (0) for all y ∈ R. But R is noncommutative, so
we left with σ = 0. Thus, from (5.35) we have F (x) = ax∗, where a = λ∗ ∈ C. It
completes the proof. □

6. Hypercommuting Conditions

A pair of mappings f and g satisfying the condition f(x)x − xg(x) = 0 (resp.
f(x)x∗ −x∗g(x) = 0) on an appropriate subset K of a ring (resp. ring with involution)
R is called hypercommuting (resp. ∗-hypercommuting). Obviously, it is a more
general concept than that of commuting (∗-commuting) mappings. In this section,
we study a pair (F, G) of centrally-extended generalized Jordan ∗-derivations which
is hypercommuting or ∗-hypercommuting.
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Theorem 6.1. Let R be a 2-torsion free prime ring with involution ′∗′ and F, G :
R → R are centrally-extended generalized Jordan ∗-derivations with an associated
centrally-extended Jordan ∗-derivations d, g, respectively. If F (x)x − xG(x) = 0 for
all x ∈ R, then there exits λ ∈ C such that F (x) = G(x) = λx for all x ∈ R, unless
R satisfies s4.

Proof. Assume that R does not satisfy s4. By the hypothesis, we have

F (x)x − xG(x) = 0, for all x ∈ R.

Suppose that Z(R) = (0). Clearly in this case F and G becomes generalized Jordan
∗-derivations. Thus with the aid of Lemma 2.11, we have F (x) = ax∗ + d(x), G(x) =
bx∗ + g(x) for all x ∈ R, where a, b ∈ Qs(R). Using it in our hypothesis, we find

(ax∗ + d(x))x − x(bx∗ + g(x)) = 0, for all x ∈ R.

The fact of Lemma 2.16 yields d(x) = xc − cx∗, g(x) = xd − dx∗ for all x ∈ R for
some c, d ∈ Qs(R). In this view it follows that R satisfies the functional identity

(6.1) (ax∗ + xc − cx∗)x = x(bx∗ + xd − dx∗), for all x ∈ R.

Application of Lemma 2.6 in (6.1) yields

(6.2) (ax∗ + xc − cx∗)x = x(bx∗ + xd − dx∗), for all x ∈ A.

Replacing x by 1 in (6.2), we find a = b. Polarizing (6.2), we obtain (ax∗ + xc −
cx∗)y + (ay∗ + yc − cy∗)x = y(bx∗ + xd − dx∗) + x(by∗ + yd − dy∗) for all x, y ∈ A.
Replacing y by 1, we get ax∗ + xc − cx∗ + ax = bx∗ + xd − dx∗ + xb for all x, y ∈ A.
By using the fact a = b in preceding equation, we find

(6.3) xc − cx∗ − xd + dx∗ + [a, x] = 0, for all x ∈ A.

Replacing x by h in (6.3), where h ∈ H(R), to obtain

(6.4) −[c, h] + [d, h] + [a, h] = 0.

It implies [d − c + a, h] = 0. With the aid of Lemma 2.17, we have d − c + a ∈ C.
Replacing x by k in (6.3), where k ∈ S(R) and thereby using the fact d − c + a ∈ C,
we find k ◦ (c − d) + [c − d, k] = 0 for all k ∈ S(R). It implies

(6.5) (c − d)k = 0, for all k ∈ S(R).

Replacing k by h ◦ k in (6.5), where h ∈ H(R), k ∈ S(R) and using (6.5), we find

(6.6) (c − d)hk = 0, for all h ∈ H(R), k ∈ S(R).

From (6.5) and (6.6), we get

(6.7) (c − d)[k, h] = 0, for all k ∈ S(R), h ∈ H(R).

Replacing k by k ◦ h1 in (6.7), we obtain

(6.8) (c − d)h1[k, h] + (c − d)[k, h]h1 + (c − d)k[h, h1] + (c − d)[h, h1]k = 0.
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Using (6.5) and (6.7) in (6.8), we find

(6.9) (c − d)h1[k, h] = 0, for all k ∈ S(R), h, h1 ∈ H(R).

Equation (6.5) also implies

(6.10) (c − d)k1[k, h] = 0, for all k, k1 ∈ S(R), h ∈ H(R).

From (6.9) and (6.10), we have

2(c − d)x[k, h] = (c − d)(2x)[k, h]
= (c − d)(h1 + k1)[k, h]
= (c − d)h1[k, h] + (c − d)k1[k, h]
= 0, for all x ∈ R, h ∈ H(R), k ∈ S(R).

Thus, we have (c − d)R[k, h] = (0) for all k ∈ S(R) and h ∈ H(R). In case c ̸= d,
primeness of R implies [H(R), S(R)] = (0). Lemma 2.18 leads us to the contradiction.
In case c = d, we find d = g. Using the fact a = b, we conclude F (x) = G(x) for all
x ∈ R. Thus, we have the desired result by Theorem 5.1.

Let Z(R) ̸= (0). Then there exists 0 ̸= hc ∈ Z(R) such that h∗
c = hc. By the

assumption, we have

(6.11) F (x)x − xG(x) = 0, for all x ∈ R.

Replacing x by hc in (6.11), we find

(6.12) F (hc) − G(hc) = 0.

Proposition 4.1 yields

F (x) =q1x
∗ + d(x), for all x ∈ R,(6.13)

G(x) =q2x
∗ + g(x), for all x ∈ R,(6.14)

for some q1, q2 ∈ Qs(R). Using (6.13) and (6.14) in (6.12), we obtain

(6.15) (q1 − q2)(hc) + (d − g)(hc) = 0.

Polarizing (6.11) to obtain

(6.16) F (x)y − yG(x) + F (y)x − xG(y) = 0, for all x, y ∈ R.

Replacing y by hc in (6.16) to obtain

(6.17) (F (x) − G(x))hc + F (hc)x − xG(hc) = 0, for all x ∈ R.

Using (6.12) in (6.17), we have

(6.18) (F (x) − G(x))hc + [F (hc), x] = 0, for all x ∈ R.

Replacing hc by h2
c in (6.18) and using Lemma 2.2, we conclude

(6.19) [d(hc), x] = 0, for all x ∈ R.
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It implies d(hc) ∈ Z(R). In the same way, we compute g(hc) ∈ Z(R). Using (6.13)
and (6.19) in (6.18), we obtain

(F (x) − G(x) + [q1, x])hc = 0, for all x ∈ R.

It implies
(6.20) F (x) − G(x) + [q1, x] = 0, for all x ∈ R.

Since F and G are centrally-extended generalized Jordan ∗-derivation, replacing x by
h ◦ hc in (6.20) to obtain

(F (h) − G(h))hc + (F (hc) − G(hc))h + hc(d(h) − g(h))
+ h(d(hc) − g(hc)) + 2[q, h]hc ∈ Z(R), for all h ∈ H(R).(6.21)

Using (6.12) and (6.20) in (6.21), we see that
(6.22) (d(h) − g(h))hc + [q, h]hc + h(d(hc) − g(hc)) ∈ Z(R), for all h ∈ H(R).
Replacing h by h2 in (6.22), we obtain

(d(h) − g(h))hhc + h(d(h) − g(h))hc + [q1, h]hhc + h[q1, h]hc

+ h2(d(hc) − g(hc)) ∈ Z(R), for all h ∈ H(R).(6.23)
From (6.22) and (6.23), we conclude
(6.24) h2(d(hc) − g(hc)) ∈ Z(R).

If d(hc) − g(hc) ̸= 0, then using Lemma 2.3 in (6.24), we have h2 ∈ Z(R) for all
h ∈ H(R). Thus, we have the result by Lemma 2.13. If d(hc) − g(hc) = 0, then from
(6.15), we obtain
(6.25) (q1 − q2)hc = 0.

Using Lemma 2.2 in (6.25), we have q1 = q2. With the aid of (6.13), (6.14) and the
fact q1 = q2 in (6.20), we find
(6.26) d(x) − g(x) + [q1, x] = 0, for all x ∈ R.

Replacing x by h ◦ k where h ∈ H(R), k ∈ S(R) in (6.26), we obtain
(d(h) − g(h))(−k) + k(d(h) − g(h)) + (d(k) − g(k))h + h(d(k) − g(k))
+ [q1, h]k + k[q1, h] + [q1, k]h + h[q1, k] ∈ Z(R).(6.27)

Using (6.26) in (6.27) to conclude
(6.28) 2[q1, h]k ∈ Z(R), for all h ∈ H(R), k ∈ S(R).
We now split the proof into the following two parts.

Case 1. If mapping induced on centroid is non identity map, then there exists
0 ̸= z ∈ C such that z∗ ̸= z. Replacing h by x + x∗ and k by y − y∗ in (6.28), where
x, y ∈ R in order to obtain
(6.29) 2[q1, x + x∗](y − y∗) ∈ Z(R), for all x, y ∈ R.
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With the aid of Lemma 2.6 in (6.29), we have
(6.30) [q1, x + x∗](y − y∗) ∈ Z(R), for all x, y ∈ Qs(R).
Replace y by z in (6.30), we have
(6.31) [q1, x + x∗](z − z∗) ∈ C, for all x ∈ Qs(R).
Using Lemma 2.3 in (6.31), we have
(6.32) [q1, x + x∗] ∈ Z(R), for all x ∈ Qs(R).
Replacing x by h, where h ∈ H(R) in (6.32), we obtain [q1, h] ∈ Z(R). Using Lemma
2.17, we conclude q1 ∈ Z(R). From (6.20), we have F (x) = G(x) for all x ∈ R. Hence,
by Theorem 5.1, we get the desired result.

Case 2. If mapping induced on centroid is an identity map, then c∗ = c for all
c ∈ C. From (6.28), we have

([q1, h]k)∗ = [q1, h]k, for all h ∈ H(R), k ∈ S(R).
It implies
(6.33) [q1, h]k − k[q1

∗, h] = 0, for all h ∈ H(R), k ∈ S(R).
Replacing k by k ◦ h1 in (6.33), where k ∈ S(R), h1 ∈ H(R), we obtain
(6.34) [q1, h]h1k + [q1, h]kh1 − kh1[q1

∗, h] − h1k[q1
∗, h] = 0.

Using (6.28) and (6.33) in (6.34) to conclude
(6.35) [q1, h]h1k − kh1[q1

∗, h] = 0, for all h, h1 ∈ H(R), k ∈ S(R).
Replacing h1 by k2

1 in (6.35), where k1 ∈ S(R), we find
([q1, h]k1)k1k − kk1(k1[q1

∗, h]) = 0.

It implies
(6.36) ([q1, h]k1)k1k − kk1([q1, h]k1)∗ = 0, for all h ∈ H(R), k, k1 ∈ S(R).
Using (6.28) and (6.33) in (6.36), we obtain
(6.37) [q1, h]k1[k1, k] = 0.

For fixed k1 ∈ S(R), from the fact [q1, h]k1 ∈ C, using Lemma 2.2 in (6.37), we have
either [q1, h]k1 = 0 for all h ∈ H(R) or [k1, k] = 0 for all k ∈ S(R). Invoking Lemma
2.1 yields that either [q1, h]k1 = 0 for all h ∈ H(R), k1 ∈ S(R) or [k1, k] = 0 for all
k, k1 ∈ S(R). In the latter case, replace k1 by h ◦ k to obtain [h, k]k + k[h, k] = 0
for all h ∈ H(R), k ∈ S(R). For any fixed h ∈ H(R), we obtain d(k)k + kd(k) = 0,
where d(x) = [h, x] for all k ∈ S(R). With the aid of Lemma 2.15, we find either R
satisfies s4 identity or d = 0. In case d = 0, we have H(R) ⊆ Z(R). Application of
Lemma 2.13 gives a contradiction. If [q1, h]k1 = 0, then using the similar arguments
as in (6.5), we find [q1, H(R)] = (0). With the aid of Lemma 2.17, we have q1 ∈ C.
From (6.20), we have F (x) = G(x) for all x ∈ R. Thus, we get the desired conclusion
from Theorem 5.1. □
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Theorem 6.2. Let R be a 2-torsion free prime ring with involution ′∗′ and F, G : R →
R are centrally-extended generalized Jordan ∗-derivations associated with centrally-
extended Jordan ∗-derivations d, g, respectively. If F (x)x∗ −x∗G(x) = 0 for all x ∈ R,
then there exists λ ∈ C such that F (x) = G(x) = λx∗, unless R satisfies s4.

Proof. Suppose that R does not satisfies s4. By the hypothesis, we have F (x)x∗ −
x∗G(x) = 0 for all x ∈ R.

If Z(R) = (0), then application of Lemma 2.11 yields F (x) = ax∗ + d(x), G(x) =
bx∗ + g(x) for all x ∈ R, where a, b ∈ Qs(R). Using it in our hypothesis, we find
(6.38) (ax∗ + d(x))x∗ − x∗(bx∗ + g(x)) = 0, for all x ∈ R.

With the aid of Lemma 2.16, we conclude d(x) = xc − cx∗, g(x) = xd − dx∗ for all
x ∈ R for some c, d ∈ U(R). Using it in (6.38), we find
(6.39) (ax∗ + xc − cx∗)x∗ = x∗(bx∗ + xd − dx∗), for all x ∈ R.

Using Lemma 2.6 in (6.39), we conclude
(6.40) (ax∗ + xc − cx∗)x∗ = x∗(bx∗ + xd − dx∗), for all x ∈ A.

Replacing x by 1 in (6.40), we get a = b. Polarizing (6.40), we obtain
(ax∗ + xc − cx∗)y∗ + (ay∗ + yc − cy∗)x∗

=y∗(bx∗ + xd − dx∗) + x∗(by∗ + yd − dy∗), for all x, y ∈ R.(6.41)
Replacing y by 1 in (6.41), we find
(6.42) ax∗ + xc − cx∗ + ax∗ = bx∗ + xd − dx∗ + x∗b, for all x, y ∈ R.

Using the fact a = b in (6.42), we conclude
(6.43) xc − cx∗ − xd + dx∗ + [a, x∗] = 0, for all x ∈ R.

Replacing x by h in (6.43), where h ∈ H(R), we obtain
(6.44) −[c, h] + [d, h] + [a, h] = 0.

Since (6.44) is the same as (6.4), using similar arguments, we can reach our conclusion.
Let Z(R) ̸= (0). Then there exists 0 ̸= hc ∈ Z(R) such that h∗

c = hc. By the
assumption, we have
(6.45) F (x)x∗ − x∗G(x) = 0, for all x ∈ R.

Replacing x by hc in (6.45), we obtain
(6.46) F (hc) − G(hc) = 0.

Invoking Proposition 4.1, we have
F (x) =q1x

∗ + d(x), for all x ∈ R,(6.47)
G(x) =q2x

∗ + g(x), for all x ∈ R,(6.48)
for some q1, q2 ∈ Qs(R). Using (6.47) and (6.48) in (6.46), we obtain
(6.49) (q1 − q2)(hc) + (d − g)(hc) = 0.
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Polarizing (6.45) to get
(6.50) F (x)y∗ − y∗G(x) + F (y)x∗ − x∗G(y) = 0, for all x, y ∈ R.

Replacing y by hc in (6.50), we see that
(6.51) (F (x) − G(x))hc + F (hc)x∗ − x∗G(hc) = 0, for all x ∈ R.

Using (6.46) in (6.51), we have
(6.52) (F (x) − G(x))hc + [F (hc), x∗] = 0, for all x ∈ R.

Replacing hc by h2
c in (6.52), we obtain

(6.53) [d(hc), x∗] = 0, for all x ∈ R.

It implies d(hc) ∈ Z(R). In the same way, one can easily observe that g(hc) ∈ Z(R).
With the aid of (6.47), (6.53) in (6.52), we have
(6.54) (F (x) − G(x) + [q1, x∗])hc = 0, for all x ∈ R.

It yields
(6.55) F (x) − G(x) + [q1, x∗] = 0, for all x ∈ R.

Replacing x by h ◦ hc in (6.55) where h ∈ H(R), we obtain
(F (h) − G(h))hc + (F (hc) − G(hc))h + hc(d(h) − g(h))
+ h(d(hc) − g(hc)) + 2[q, h]hc ∈ Z(R), for all h ∈ H(R).(6.56)

Using (6.46) and (6.55) in (6.56), we conclude
(6.57) (d(h) − g(h))hc + [q, h]hc + h(d(hc) − g(hc)) ∈ Z(R), for all h ∈ H(R).
Replacing h by h2 in (6.57), we obtain

(d(h) − g(h))hhc + h(d(h) − g(h))hc + [q1, h]hhc + h[q1, h]hc

+ h2(d(hc) − g(hc)) ∈ Z(R), for all h ∈ H(R).(6.58)
From (6.57) and (6.58), we conclude
(6.59) h2(d(hc) − g(hc)) ∈ Z(R).

If d(hc) − g(hc) ̸= 0, then using Lemma 2.3 in (6.59), we have h2 ∈ Z(R) for all
h ∈ H(R). Thus, a contradiction follows from Lemma 2.13. In case d(hc) −g(hc) = 0,
from (6.49), we obtain

(q1 − q2)hc = 0,

and it implies q1 = q2. Now from (6.47), (6.48) and (6.55) we find
(6.60) d(x) − g(x) + [q1, x∗] = 0, for all x ∈ R.

Replacing x by h ◦ k in (6.60), where h ∈ H(R), k ∈ S(R), we find
(d(h) − g(h))(−k) + k(d(h) − g(h)) + (d(k) − g(k))h + h(d(k)
− g(k)) − [q1, h]k − k[q1, h] − [q1, k]h − h[q1, k] ∈ Z(R).(6.61)
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Using (6.60) in (6.61), we conclude
(6.62) −2k[q1, h] ∈ Z(R), for all h ∈ H(R), k ∈ S(R).
As (6.62) is same as (6.28), similar arguments are taking us to the desired conclusion.

□
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