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WELL-POSEDNESS AND GENERAL DECAY OF SOLUTIONS FOR
THE HEAT EQUATION WITH A TIME VARYING DELAY TERM

ABDELKADER BRAIK1, ABDERRAHMANE BENIANI2, AND YAMINA MILOUDI3

Abstract. We consider the nonlinear heat equation in a bounded domain with a
time varying delay term

ut + ∆2u− J(t)
∫ t

0
g(t− s)∆2u(s)ds+ αK(t)u+ βK(t)u (t− τ(t)) = 0,

with initial conditions. By introducing suitable energy and Lyapunov function-
als, under some assumptions, we then prove a general decay result of the energy
associated of this system under some conditions.

1. Introduction and Statement

Let us consider the following problem

(1.1)



ut + ∆2u− J(t)
∫ t

0
g(t− s)∆2u(s)ds+ αK(t)u

+ βK(t)u (t− τ(t)) = 0, in Ω× ]0,+∞[ ,
u = 0, on ∂Ω× ]0,+∞[ ,
u (0) = u0, in Ω,
u (t− τ(0)) = h0 (t− τ(0)) , in Ω× ]0, τ(0)[ ,

where ∆2u = ∆(∆u), Ω be a bounded open domain in Rn, n ∈ N∗ of regular boundary
∂Ω, the function τ : ]0,+∞[ −→ ]0,+∞[, τ(t) is a time varying delay, α and β are
positive real numbers, and the initial data (u0, h0) belongs to a suitable function
space.
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Time delay is the property of a physical system by which the response to an applied
force is delayed in its effect (see [12]). Whenever material, information or energy is
physically transmitted from one place to another, there is a delay associated with the
transmission. In, physical, chemical, biological, electrical, mechanical and economic
phenomena.

in recent years, the stability of partial differential equations with time-varying
delays has been studied in [8, 15,20] via the Lyapunov method.

In the constant delay case the exponential stability was proved in [11,18] by using
the observability inequality which can not be applicable in the time-varying case (since
the system is not invariant by translation).

In recent years, the control of PDEs with time delay effects has become an active
area of research, see for example [1, 19, 23] and the references therein. In the case
of distributed parameter systems, even arbitrarily small delays in the feedback may
destabilize the system (see, e.g., [5, 9, 11, 15]). Hence the stability issue of systems
with delay is of theoretical and practical importance.

There are more works on the Lyapunov-based technique for delayed PDEs. Most of
these studies analyze the case of constant delays. Thus, the conditions of stability and
the exponential limits have been derived for some heat equations and scalar waves
with constant delays and boundary conditions of Dirichlet without delay in [21].

S. Bernard, J. Belair and M. C. Mackey [16] studied the stability of the following
linear differential equation

x′ = −αx(t)− β
∫ +∞

0
x(t− s)f(s)ds,

where α and β are constants.
Chengming Huang and Stefan Vandewalle [2] considered a more general equation,

(1.2) y′(t) = αy(t) + βy(t− τ) + γ
∫ t

t−τ
y(s)ds,

where α, β, γ ∈ R and u(t) = φ(t) on [−τ, 0], and proved that the repeated trapezium
rule retains the asymptotic stability of (1.2). Wu and Gan in [22] further extended
the above study to the case of neutral equations.

In Section 3, page 16, Chengming Huang and Stefan Vandewalle [3] considered the
asymptotic stability of multi-dimensional equations of the form

(1.3) y′(t) = Ly(t) +My(t− τ) +K
∫ t

t−τ
y(ν)dν, t > 0,

where L,M,K ∈ Cd×d and y(t) = φ(t) on [−τ, 0]. The characteristic equation equals

(1.4) det
[
λId − L−Me−τλ −K

∫ 0

−τ
e−τνdν

]
= 0,

where Id is the d × d identity matrix. The zero solution of (1.3) is asymptotically
stable if and only if all the roots λ of (1.4) have negative real parts.

Recently the stability of PDEs with time-varying delays was analyzed in [8, 20].
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Later, Mohamed Ferhat and Ali Hakem in [7] studied the decay properties of
solutions of the folowing system for the initial boundary value problem of a nonlinear
wave equation

(|u′|γ−2
u′)′ −∆xu−

∫ t

0
g(t− s)∆u(s)ds+ µ1Ψ(u′(x, t))

+ µ2Ψ(u′(x, t− τ(t))) = 0, in Ω× (0,+∞),
u = 0, on Γ× (0,+∞),
u(x, 0) = u0(x), u′(x, 0) = u1(x), in Ω,
u′(t− τ(0)) = f0(t− τ(0)), on Ω× (0, τ(0)),

where Ω is a bounded domain in Rn, n ∈ N∗, with a smooth boundary ∂Ω, τ(t) > 0
is a time varying delay, µ1 and µ2 are positive real numbers.

Recently, the case of time-varying delay has been studied in [13,18]. For example,
in Nicaise et al. [18] in one space dimension studied

u′ − auxx = 0, 0 < x < π, t > 0,
u(0, t) = 0, t > 0,
ux(π, t) = µ0u(π, t)− µ1u(π, t− τ(t)), t > 0,
u(x, 0) = u0(x), 0 < x < π,

u(π, t− τ(0)) = f0(t− τ(0)), 0 < t < τ(0),
where µ0, µ1 ≥ 0 and a > 0. They proved the exponential stability result under the
conditions

τ ′ < 1, for all t > 0,
exists M > 0, 0 < τ0 ≤ τ ≤M, for all t > 0,
τ ∈ W 2,∞([0, T ]), for all T > 0.

And in 2011 S. Nicaise and C. Pignotti in [13] considered an problem of the form

u′′ −∆u− a∆u′ = 0, in Ω× (0,+∞),
u = 0, on Γ× (0,+∞),

µu′′ = ∂(u+ au′)
∂ν

− ku′(t− τ(t)), on Γ1 × (0,+∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x), in Ω,
u′ = f0, on Γ1 × (−τ(0), 0).

We also recall the result by Xu, Yung and Li [4], where the authors proved a
result similar to the one in [11] for the one-space dimension by adopting the spectral
analysis approach. The case of time-varying delay in the wave equation has been
studied recently by Nicaise, Valein and Fridman [18]) in one-space dimension. They
proved an exponential stability result under the condition µ2 ≤

√
1− dµ1, where the

fuction τ satisfies τ ′(t) ≤ d < 1 for all t > 0.
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In [14], Nicaise, Pignotti and Valein extended the above result to higher space
dimensions and established an exponential decay.

The paper is organized as follows. In Section 2 we present some assumptions and
state the main result. The general decay result is proved in Sections 3.

We use the ideas given by G. Li, B. Zhu and Wenjun Liu in [10], and the multiplier
technique to prove our result.

2. Preliminaries and Main Results

Firstly we assume the following hypotheses.
(H1) k : R+ −→]0,+∞[ is a non-increasing function of class C1(R+) satisfying

(2.1) k′(t) ≤ −ck(t), for all t ≥ 0,

where c is a positive constant.
(H2) J, g, ψ : R+ −→]0,+∞[ are non-increasing differentiable functions satisfying

(2.2)
∫ +∞

0
g(s)ds < +∞, 1− J(t)

∫ t

0
g(s)ds ≥ l > 0,

and

(2.3) g′(t) < −ψ(t)g(t), for all t ≥ 0, lim
t−→+∞

J ′(t)
ψ(t)J(t) = 0.

(H3) For the time-varying delay τ , it is varying betwin two positive constants τ0, τ1,
and

τ ∈W 2,∞([0, T ]), for all T > 0,(2.4)
0 <τ0 ≤ τ(t) ≤ τ1, for all t > 0,(2.5)

τ ′(t) ≤d < 1, for all t > 0.(2.6)

(H4) α, β and δ are three positive constants satisfy,

(2.7) α ≥ βδ

and

(2.8) β ≤ 1
2δk(0) ,

for some δ > 0.
We now state some lemmas needed later.

Lemma 2.1 (Sobolev-Poincare’s inequality). There exists a constant Cp = C(Ω) such
that

(2.9)
∫

Ω
|w|2 dx ≤ Cp

∫
Ω
|∆w|2 dx, for all w ∈ H1

0 (Ω).
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We introduce, as in [11], the new variable

(2.10) z(x, ρ, t) = u(x, t− ρτ(t)), (x, ρ, t) ∈ Ω× (0, 1)× (0,+∞).
Then, we have

(2.11) τ(t)z′(x, ρ, t) = (τ ′(t)ρ− 1)zρ(x, ρ, t), in Ω× (0, 1)× (0,+∞),

where z′ := ∂z
∂t

and zρ := ∂z
∂ρ
. Then problem (1.1) may be rewritten as

(2.12)



ut + ∆2u− J(t)
∫ t

0
g(t− s)∆2u(s)ds+ αk(t)u

+ βk(t)z (1, t) = 0, in Ω× (0,+∞),
τ(t)z′(x, ρ, t) = (ρτ ′(t)− 1)zρ(x, ρ, t), in Ω× (0, 1)× (0,+∞),
u = 0, on ∂Ω×]0,+∞[,
u (0) = u0, in Ω,
z (0, t) = u(t), in Ω(0,+∞),
z (ρ, 0) = h0 (−ρτ(0)) , in Ω× (0, 1).

We define the energy of solution of problem (2.12) by

(2.13)
E(t) =1

2

[
αk(t) ‖u‖2

2 +
(

1− J(t)
∫ t

0
g(s)ds

)
‖∆u‖2

2 + J(t) (g ◦∆u) (t)

+ξk(t)τ(t)
∫

Ω

∫ 1

0
|z(ρ, t)|2 dρdx

]
,

where ξ is a positive constant, and

(g ◦∆w) (t) =
∫ t

0
g(t− ν) ‖∆w(t)−∆w(ν)‖2 dν.

Now we will establish a general decay rate estimate for the energy.

3. Decay of Solutions

We firstly give the global existence of solutions of the system, which has been proved
in [10].

Proposition 3.1. ([10, Lemma 2.1]). Let (H1)-(H4) hold. Then given u0 ∈ H0
1 (Ω),

h0 ∈ L2(Ω×(0, 1)) and T > 0, there exists a unique weak solution (u, z) of the problem
(2.12) on (0, T ) such that

u ∈ C(0, T ;H0
1 (Ω)) ∩ C1(0, T ;L2(Ω)).

Lemma 3.1. Let (2.6) and (2.7) be satisfied, ξ be a positive constant and δ sufficiently
small such that

(3.1) β

2δ (1− d) ≤ ξ ≤ αc,
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and (u, z) the solution of the problem (2.12). Then, the energy functional defined by
(2.13) it may be non-increasing function and satisfies

(3.2)

E ′(t) ≤1
2J(t) (g′ ◦∆u) (t)− 1

2J
′(t)

(∫ t

0
g(s)ds

)
‖∆u‖2

2

+ ξ

2k
′(t)τ(t)

∫
Ω

∫ 1

0
|z(ρ, t)|2 dρdx

≤1
2J(t) (g′ ◦∆u) (t)− 1

2J
′(t)

(∫ t

0
g(s)ds

)
‖∆u‖2

2 .

Proof. At first, multiplying the first equation in (2.12) by u′, integrating over Ω and
using integration by parts, we have

(3.3)

1
2
d

dt

(
‖∆u‖2

2 + αk(t) ‖u‖2
2

)
+ ‖u′‖2

2 −
1
2αk

′(t) ‖u‖2
2 + βk(t)

∫
Ω
u′z(1, t)dx

− J(t)
∫ t

0
g(t− s)

∫
Ω

∆u′∆u(s)dxds = 0.

We denote by I1(t) to the last term on the left side of (3.3) for I1(t) we have
(3.4)

I1(t) =J(t)
∫ t

0
g(t− s)

∫
Ω

∆u′(t) (∆u(t)−∆u(s)) dxds

− J(t)
∫ t

0
g(t− s)

∫
Ω

∆u′(t)∆u(t)dxds

=1
2
d

dt

[∫ t

0
J(t)g(t− s)

∫
Ω
|∆u(t)−∆u(s)|2 dxds

−J(t)
∫ t

0
g(s)

∫
Ω
|∆u(t)|2 dxds

]
+ 1

2

(
J(t)

∫ t

0
g(s)ds

)′ ∫
Ω
|∆u(t)|2 dxds

− 1
2

(∫ t

0
(J(t)g(t− s))′

∫
Ω
|∆u(t)−∆u(s)|2

)
dxds

=1
2
d

dt

[∫ t

0
J(t)g(t− s)

∫
Ω
|∆u(t)−∆u(s)|2 dxds

−J(t)
∫ t

0
g(s)ds

∫
Ω
|∆u(t)|2 dx

]
+ 1

2J(t)g(t) ‖∆u‖2
2

+ 1
2J
′(t)

(∫ t

0
g(s)ds

)
‖∆u‖2

2 −
1
2J
′(t) (g ◦∆u) (t)− 1

2J(t) (g′ ◦∆u) (t).

Inserting (3.4) into (3.3) and using Young’s inequality, we obtain

(3.5)

1
2
d

dt

(
αk(t) ‖u‖2

2 +
(

1− J(t)
∫ t

0
g(s)ds

)
‖∆u‖2

2 + J(t) (g ◦∆u) (t)
)

≤1
2αk

′(t) ‖u‖2
2 − (1− δβk(t)) ‖u′‖2

2 + βk(t)
4δ ‖z(1, t)‖2

2 + 1
2J
′(t) (g ◦∆u) (t)

+ 1
2J(t) (g′ ◦∆u) (t)− 1

2

(
J ′(t)

(∫ t

0
g(s)ds

)
+ J(t)g(t)

)
‖∆u‖2

2 .



WELL-POSEDNESS AND DECAY ESTIMATES 273

Secondly, we multiply the second equation in (2.12) by ξk(t)z(x, ρ, t) and integrate
over Ω× (0, 1), to get

ξ

2k(t)τ(t)
∫

Ω

∫ 1

0

d

dt
|z(ρ, t)|2 dρdx = −ξ2k(t)

∫
Ω

∫ 1

0
(1− ρτ ′(t)) ∂

∂ρ
|z(ρ, t)|2 dρdx.

And from there we find

(3.6)

d

dt

(
ξ

2k(t)τ(t)
∫

Ω

∫ 1

0
|z(ρ, t)|2 dρdx

)
=ξ

2 (k(t)τ(t))′
∫

Ω

∫ 1

0
|z(ρ, t)|2 dρdx

− ξ

2k(t)
∫

Ω

[
(1− ρτ ′(t)) |z(ρ, t)|2

]1
0
dx

− ξ

2k(t)τ ′(t)
∫

Ω

∫ 1

0
|z(ρ, t)|2 dρdx.

Taking the sum of (3.5) and (3.6), we obtain that
(3.7)
E ′(t) ≤1

2 (αk′(t) + ξk(t)) ‖u‖2
2 − (1− δβk(t)) ‖u′‖2

2 + 1
2J
′(t) (g ◦∆u) (t)

− k(t)
2

(
ξ (1− τ ′(t))− β

2δ

)
‖z(1, t)‖2

2 + 1
2J(t) (g′ ◦∆u) (t)

− 1
2

(
J ′(t)

(∫ t

0
g(s)ds

)
+ J(t)g(t)

)
‖∆u‖2

2 + ξ

2k
′(t)τ(t)

∫
Ω

∫ 1

0
|z(ρ, t)|2 dρdx.

Combining (3.1), (3.7) and hypotheses (H1)-(H4), the proof of Lemma 3.1 is complete.
�

Theorem 3.1. Assume (H1)-(H4). Then there exist positive constants C and K0
such that for any solution of problem (2.12), the energy satisfies the following estimate

(3.8) E(t) ≤ Ce
−K0

∫ t

0
ψ(t)J(t)dt

,

for every t ≥ 0.

Now, we define the functional F (t) as follows

(3.9) F (t) = 1
2

∫
Ω
u2dx.

Lemma 3.2. The functional F satisfies the following estimate

(3.10)
F ′(t) ≤

[
δ − 1 +

(∫ t

0
g(s)ds

)
J(t)

]
‖∆u‖2

2 + 1− l
4δ J(t) (g ◦ u) (t)

+ (δβ − α) k(t) ‖u‖2
2 + β

4δ ‖z(t, 1)‖2
2 .

Proof. Differentiating and integrating by parts, we get
(3.11)
F ′(t) = −‖∆u‖2

2 + J(t)
∫

Ω

∫ t

0
g(t− s)∆u(t)∆u(s)dsdx− k(t)

∫
Ω

(
αu2 + βuz(t, 1)

)
dx.
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We denote by F1(t) the second term on the right-hand side of above equality. By
using Young’s and Cauchy-Schwarz inequalities, we have
(3.12)
F1(t) =J(t)

∫
Ω

∫ t

0
g(t− s)∆u(t) [∆u(s)−∆u(t)] dsdx+ J(t)

(∫ t

0
g(s)ds

)
‖∆u‖2

2

≤J(t)
∫

Ω

∫ t

0
g(t− s) |∆u(t)| |∆u(s)−∆u(t)| dsdx+ J(t)

(∫ t

0
g(s)ds

)
‖∆u‖2

2

≤δ ‖∆u‖2
2 + J2(t)

4δ

∫
Ω

(∫ t

0
g(t− s) |∆u(s)−∆u(t)| ds

)2
dx

+ J(t)
(∫ t

0
g(s)ds

)
‖∆u‖2

2

≤
(∫ t

0
g(s)ds

)
J2(t)

4δ

∫
Ω

∫ t

0
g(t− s) |∆u(s)−∆u(t)|2 dsdx

+
(
δ + J(t)

(∫ t

0
g(s)ds

))
‖∆u‖2

2

≤
(
δ + J(t)

(∫ t

0
g(s)ds

))
‖∆u‖2

2 + 1− l
4δ J(t) (g ◦∆u) (t).

Inserting (3.12) into (3.11), we obtain the required proof. �

Lemma 3.3. Let G(t) be the function defined by

(3.13) G(t) =
∫

Ω

∫ t

0
g(t− s)u(t) [u(s)− u(t)] dsdx.

satisfies the estimate
(3.14)

G′(t) ≤
[
δ + 2δ (1− l)2 + (1− l)

(
δ1 −

(∫ t

0
g(s)ds

))]
‖∆u‖2

2

+
[
2δ + (αk(0) + δβ)

(∫ t

0
g(s)ds

)]
‖u‖2

2

+
(∫ t

0
g(s)ds

) [ 1
2δ + 2δJ2(0) + α2 + β2

4δ k2(0) +
(

1− l
4δ1

)]
(g ◦∆u) (t)

− g(0)
4δ C2

p (g′ ◦∆u) (t) +
(
β

4δk(0) + δ

)
‖z(t, 1)‖2

2 .

Proof. We take the derivative of G(t) to get,

(3.15)
G′(t) =

∫
Ω

∫ t

0
g(t− s)u′(t) [u(s)− u(t)] dsdx−

(∫ t

0
g(s)ds

) ∫
Ω
u.u′dx

+
∫

Ω

∫ t

0
g′(t− s)u(t) [u(s)− u(t)] dsdx,
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using the problem (2.12) we obtain

(3.16)

G′(t) =
∫

Ω

∫ t

0
g(t− s) [u(s)− u(t)] ds

[
−∆2u+ J(t)

∫ t

0
g(t− s)∆2u(s)ds

−αK(t)u− βK(t)z (1, t)] dx+
∫

Ω

∫ t

0
g′(t− s)u(t) [u(s)− u(t)] dsdx

−
(∫ t

0
g(s)ds

) ∫
Ω
u
[
−∆2u+ J(t)

∫ t

0
g(t− s)∆2u(s)ds

−αK(t)u− βK(t)z (1, t)] dx

=−
∫

Ω
∆u

∫ t

0
g(t− s) [∆u(s)−∆u(t)] dsdx

+ J(t)
∫

Ω

∫ t

0
g(t− s)∆u(s)ds

∫ t

0
g(t− s) [∆u(s)−∆u(t)] dsdx

+
∫

Ω

∫ t

0
g′(t− s)u(t) [u(s)− u(t)] dsdx+

(∫ t

0
g(s)ds

) ∫
Ω
|∆u|2 dx

− αK(t)
∫

Ω
u
∫ t

0
g(t− s) [u(s)− u(t)] dsdx

− βK(t)
∫

Ω
z (t, 1)

∫ t

0
g(t− s) [u(s)− u(t)] dsdx

+
(∫ t

0
g(s)ds

) ∫
Ω
u (αK(t)u+ βK(t)z (t, 1)) dx

− J(t)
(∫ t

0
g(s)ds

) ∫
Ω

∆u
∫ t

0
g(t− s)∆u(s)dsdx

=
8∑
i=1
Gi(t),

where Gi(t), i = 1, 8, denote the terms on the right side of the above equality in
order. G1(t), G2(t) and G3(t) can be estimated as in [17] as follows, for any δ > 0.
By Young’s and Cauchy-Schwartz, we obtain

(3.17) G1(t) ≤ δ ‖∆u‖2
2 + 1

4δ

(∫ t

0
g(s)ds

)
(g ◦∆u) (t)

and

(3.18)

G2(t) ≤δJ2(t)
∫

Ω

(∫ t

0
g(t− s) (|∆u(t)|+ |∆u(s)−∆u(t)|) ds

)2
dx

+ 1
4δ

∫
Ω

(∫ t

0
g(t− s) (|∆u(s)−∆u(t)|) ds

)2
dx

≤δJ2(t)
(∫ t

0
g(s)ds

) [
2
∫

Ω

∫ t

0
g(t− s) |∆u(s)−∆u(t)|2 dsdx

+2
∫

Ω

∫ t

0
g(t− s) |∆u(t)|2 dsdx

]
+ 1

4δ

(∫ t

0
g(s)ds

)
(g ◦∆u) (t)

≤
(

2δJ2(t) + 1
4δ

)(∫ t

0
g(s)ds

)
(g ◦∆u) (t) + 2δ (1− l)2 ‖∆u‖2

2 .
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For G3(t) and G5(t), we use Cauchy-Schwartz, Young’s and Poincare’s inequalities,
we get

G3(t) ≤
(∫

Ω
u2dx

) 1
2
(∫

Ω

(∫ t

0
g′(t− s) (u(s)− u(t)) ds

)2
dx

) 1
2

(3.19)

≤ δ ‖u‖2
2 + 1

4δ

∫
Ω

(∫ t

0
g′(t− s) (u(s)− u(t)) ds

)2
dx

≤ δ ‖u‖2
2 + 1

4δ

∫
Ω

(∫ t

0
−g′(t− s)ds

)(∫ t

0
−g′(t− s) |u(s)− u(t)|2 ds

)
dx

≤ δ ‖u‖2
2 + 1

4δC
2
p

(∫ t

0
−g′(t− s)ds

)(∫ t

0
−g′(t− s) |∆u(s)−∆u(t)|2 ds

)
dx

≤ δ ‖u‖2
2 −

1
4δC

2
p

(∫ t

0
−g′(t− s)ds

)
(g′ ◦∆u) (t)

≤ δ ‖u‖2
2 −

g(0)
4δ C2

p (g′ ◦∆u) (t)

and

G5(t) ≤ δ ‖u‖2
2 + α2k(2t)

4δ

∫
Ω

(∫ t

0
g(t− s) (u(s)− u(t)) ds

)2
dx

(3.20)

≤ δ ‖u‖2
2 + α2k2(t)

4δ

(∫ t

0
g(s)ds

) ∫
Ω

∫ t

0
g(t− s) (u(s)− u(t))2 dsdx

≤ δ ‖u‖2
2 + α2k2(t)

4δ

(∫ t

0
g(s)ds

)
C2
p

∫
Ω

∫ t

0
g(t− s) (∆u(s)−∆u(t))2 dsdx

≤ δ ‖u‖2
2 + α2k2(0)

4δ C2
p

(∫ t

0
g(s)ds

)
(g ◦∆u) (t).

Similarly, we have

G6(t) ≤δ ‖z (t, 1)‖2
2 + α2k2(0)

4δ C2
p

(∫ t

0
g(s)ds

)
(g ◦∆u) (t),(3.21)

G7(t) ≤
(∫ t

0
g(s)ds

) [
(αk(0) + δβ) ‖u‖2

2 + β

4δk
2(0) ‖z(t, 1)‖2

2

]
(3.22)

and

G8(t) ≤−
(∫ t

0
g(s)ds

)
J(t)

[∫
Ω

∆u
∫ t

0
g(t− s) (∆u(s)−∆u(t)) dsdx

+
(∫ t

0
g(s)ds

)
‖∆u‖2

2

]
≤−

(∫ t

0
g(s)ds

)
J(t)

∫
Ω
|∆u|

∫ t

0
g(t− s) |∆u(s)−∆u(t)| dsdx

−
(∫ t

0
g(s)ds

)2
J(t) ‖∆u‖2

2
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≤
(∫ t

0
g(s)ds

)
J(t)

[
δ1 ‖∆u‖2

2 + 1
4δ1

∫
Ω

(∫ t

0
g(t− s) |∆u(s)−∆u(t)| ds

)2
dx

]

−
(∫ t

0
g(s)ds

)2
J(t) ‖∆u‖2

2 ,

(3.23)

G8(t) ≤
(∫ t

0
g(s)ds

)
J(t)

δ1 ‖∆u‖2
2 +

(∫ t

0
g(s)ds

)
4δ1

(g ◦∆u) (t)


−
(∫ t

0
g(s)ds

)2
J(t) ‖∆u‖2

2

≤
(∫ t

0
g(s)ds

)
J(t)

(δ1 −
∫ t

0
g(s)ds

)
‖∆u‖2

2 +

(∫ t

0
g(s)ds

)
4δ1

(g ◦∆u)


≤
(∫ t

0
g(s)ds

)(
δ1 −

∫ t

0
g(s)ds

)
J(t) ‖∆u‖2

2 + 1− l
4δ1

(∫ t

0
g(s)ds

)
(g ◦∆u) .

Summarizing these estimates with (3.16), we get (3.14). �

Lemma 3.4. Now, as in [7, Lemma 3.4], we introduce the folowing functional

(3.24) Φ(t) =
∫ 1

0
e−2ρτ(t)

∫
Ω
z2(t, ρ)dxdρ.

Then

(3.25) Φ′(t) ≤ d− 1
τ1

e−2τ1 ‖z(t, 1)‖2
2 + 1

τ0
‖u‖2

2 −
(
τ ′(t)
τ1

+ 2
)
e−2τ1

∫ 1

0
‖z(t, ρ)‖2

2 dρ.

Proof. By differentiating, using the second equation in (2.12) and integrating by parts
over (0, 1), we get
(3.26)

Φ′(t) =− 2τ ′(t)
∫ 1

0
ρe−2ρτ(t)

∫
Ω
z2(t, ρ)dxdρ+ 2

∫ 1

0
e−2ρτ(t)

∫
Ω
z′(t, ρ)z(t, ρ)dxdρ

=− 2τ ′(t)
∫ 1

0
ρe−2ρτ(t)

∫
Ω
z2(t, ρ)dxdρ

+ 2
∫ 1

0
e−2ρτ(t)

∫
Ω

ρτ ′(t)− 1
τ(t) zρ(t, ρ)z(t, ρ)dxdρ.

We denote by Φ1(t) the last term in the right-hand side of the equality above

Φ1(t) =
∫ 1

0
e−2ρτ(t)

∫
Ω

ρτ ′(t)− 1
τ(t)

d

dρ
z2(t, ρ)dxdρ

=
[
e−2ρτ(t)

∫
Ω

ρτ ′(t)− 1
τ(t) z2(t, ρ)dx

]1

0
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−
∫

Ω

∫ 1

0
z2(t, ρ) d

dρ

(
e−2ρτ(t)ρτ

′(t)− 1
τ(t)

)
dρdx

Φ1(t) =
[
e−2ρτ(t)

∫
Ω

ρτ ′(t)− 1
τ(t) z2(t, ρ)dx

]1

0
+ 2τ ′(t)

∫
Ω

∫ 1

0
ρe−2ρτ(t)z2(t, ρ)dρdx

(3.27)

−
(
τ ′(t)
τ(t) + 2

)∫
Ω

∫ 1

0
e−2ρτ(t)z2(t, ρ)dρdx

≤τ
′(t)− 1
τ(t) e−2τ(t)

∥∥∥z2(t, 1)
∥∥∥2

2
+ 1
τ(t)

∥∥∥z2(t, 0)
∥∥∥2

2

+ 2τ ′(t)
∫

Ω

∫ 1

0
ρe−2ρτ(t)z2(t, ρ)dρdx−

(
τ ′(t)
τ(t) + 2

)
e−2τ(t)

∫
Ω

∫ 1

0
z2(t, ρ)dρdx.

Since
e−2τ1 ≤ e−2τ(t) ≤ e−2ρτ(t) ≤ 1, for all ρ ∈ (0, 1), t > 0,

inserting (3.27) in (3.26), we obtain (3.25). �

Now, we are ready to prove the general decay result. For this, we define the
Lyapunov functional L by

L(t) = NE(t) + J(t) (εF (t) + ε1G(t) + ε2Φ(t)) .

Taking the derivative of L(t) with respect to t we have
(3.28)
L′(t) = NE ′(t) + J(t) (εF ′(t) + ε1G

′(t) + ε2Φ′(t)) + J ′(t) (εF (t) + ε1G(t) + ε2Φ(t)) .

By using (3.9), (3.13), (3.24), Young’s and Poincare’s inequalities, we obtain
(3.29)
J ′(t) [εF (t) + ε1G(t) + ε2Φ(t)] ≤

(
ε− ε1

2

)
J ′(t) ‖u‖2

2 + ε2J
′(t)e−2τ0

∫ 1

0
‖z(t, ρ)‖2

2 dρ

− ε1
2

(∫ t

0
g(s)ds

)
C2
pJ
′(t) (g ◦∆u) (t).

Exploiting (3.29) in (3.28) and using (3.7), (3.10), (3.14) and (H2), we arrive at

L′(t) ≤− J(t)
[(
ε− ε1

2

)
J ′(t)
J(t) + ε (α− βδ′0)M

(3.30)

−ε1
(

2δ + (k(0)α + δβ)
(∫ t

0
g(s)ds

)
J(t)

)
− ε2
τ0

]
‖u‖2

2

−
[
N
M

2

(
ξ (1− d)− β

2δ

)
− J(0)

(
εβ

4δ + ε1

(
β

4δk
2(0) + δ

))]
‖z(1, t)‖2

2

+ J(t)
[
N

2 − ε1
g(0)
4δ C2

p

]
(g′ ◦∆u) (t)
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− J(t)
[
N

2

(∫ t

0
g(s)ds

)
J ′(t)
J(t) + ε (1− δ)− ε1

(
δ + 2δ (1− l)2

)
−
(∫ t

0
g(s)ds

)
J(t)

(
(ε+ ε1δ1)− ε1

(∫ t

0
g(s)ds

))]
‖∆u‖2

2

− J(t)
[
ε2e
−2τ1 + J ′(t)

J(t) e
−2τ0

] ∫ 1

0
‖z(ρ, t)‖2

2 dρ

+
[
ε1

(∫ t

0
g(s)ds

)( 1
2δ + 2δJ2(0) + α2 + β2

4δ k2(0) + 1− l
4δ1

)

+ε1− l4δ J(0)− ε1
2

(∫ t

0
g(s)ds

)
C2
p

J ′(t)
J(t)

]
J(t) (g ◦∆u) (t).

At this point, choose ε1, ε2 small enough such that 0 < ε2 < ε1 < ε and δ1 sufficiently
small such that

ε (l − δ) > ε1

(
δ + 2δ (1− l)2 − (1− l)

(
δ1 −

∫ t

0
g(s)ds

))
= C (ε1, δ) > 0

and

C0 (ε1, ε2) = ε (α− βδ)M − ε1
(

2δ + (k(0)α + δβ)
(∫ t

0
g(s)ds

))
− ε2
τ0
> 0.

Since (3.1), once ε1 and δ are fixed, we want to choose N large enough such that

N
M

2

(
ξ (1− d)− β

2δ

)
− J(0)

(
εβ

4δ + ε1

(
β

4δk
2(0) + δ

))
> 0

and
N

2 − ε1
g(0)
4δ C2

p > 0.

For this, (3.30) becomes

(3.31)

L′(t) ≤− J(t)
[
N

2

(∫ t

0
g(s)ds

)
J ′(t)
J(t) + ε (1− δ)− C (ε1, δ)

]
‖∆u‖2

2

− J(t)
[
ε2e
−2τ1 + J ′(t)

J(t) e
−2τ0

] ∫ 1

0
‖z(ρ, t)‖2

2 dρ

+
[
C1 −

ε1
2

(∫ t

0
g(s)ds

)
C2
p

J ′(t)
J(t)

]
J(t) (g ◦∆u) (t)

− J(t) [ε− C0 (ε1, ε2)] ‖u‖2
2 ,

where
(3.32)

C1 =ε1
(∫ t

0
g(s)ds

)( 1
4δ + 1

4δ + 2δJ2(0) + α2 + β2

4δ k2(0) + 1− l
4δ1

)
+ ε

1− l
4δ J(0).
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We then use (H2) and choose t1 ≥ t0 so that there exist two positive constants C2
and C3, such that (3.31) takes the form
(3.33) L′(t) ≤ −C2J(t)E(t) + C3J(t) (g ◦∆u) (t), for all t > t1.

On the other hand, as in [6], multiplying (3.33) by ψ(t) and using (3.31) and (3.2),
we have

(3.34)

ψ(t)L′(t) ≤ −C2ψ(t)J(t)E(t) + C3ψ(t)J(t) (g ◦∆u) (t)
≤ −C2ψ(t)J(t)E(t)− C3J(t) (g′ ◦∆u) (t)

≤ −C2ψ(t)J(t)E(t)− 2C3E
′(t)− C3J

′(t)
(∫ t

0
g(s)ds

)
‖∆u‖2

2 .

By (2.13), we have
(3.35)

(ψ(t)L(t) + 2C3E(t))′ ≤ −C2ψ(t)J(t)E(t)− C3J
′(t)

(∫ t

0
g(s)ds

)
‖∆u‖2

2

≤ −ψ(t)J(t)
[
C2 + 2

lψ(t)J(t)C3J
′(t)

(∫ t

0
g(s)ds

)]
E(t).

From limt→+∞
J ′(t)

ψ(t)J(t) = 0, we can choose t2 ≥ t1 and then (3.35) gives

(3.36) (ψ(t)L(t) + 2C3E(t))′ ≤ −C2

2 ψ(t)J(t)E(t), for all t > t2.

We define here, the function L by
(3.37) L(t) = ψ(t)L(t) + 2C3E(t).
By the definition of the functionals F (t), G(t), Φ(t) and E(t), since ψ′(t) ≤ 0, we can
prove L(t) equivalent to E(t) and there exists a positive constant λ such that
(3.38) L′(t) ≤ −λψ(t)J(t)L(t), for all t ≥ t2.

By simple integration of 3.38 over [t2, t] and use the equivalence of L(t) and E(t) we
obtain

E(t) ≤ Ce
−K0

∫ t

t2
ψ(t)J(t)dt

, for all t ≥ t2.

By the continuity and boundedness of E(t) in the interval [0, t2], we have

E(t) ≤ Ce−K0
∫ t

0 ψ(t)J(t)dt, for all t ≥ 0.
The proof of Theorem 3.1 is completed.
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