
RET
RACTE

D

Kragujevac Journal of Mathematics
Volume 45(5) (2021), Pages 721–738.

WARPED PRODUCT POINTWISE SEMI-SLANT SUBMANIFOLDS
OF SASAKIAN MANIFOLDS

ION MIHAI1, SIRAJ UDDIN2, AND ADELA MIHAI3

Abstract. Recently, B.-Y. Chen and O. J. Garay studied pointwise slant sub-
manifolds of almost Hermitian manifolds. By using the notion of pointwise slant
submanifolds, we investigate the geometry of pointwise semi-slant submanifolds and
their warped products in Sasakian manifolds. We give non-trivial examples of such
submanifolds and obtain several fundamental results, including a characterization
for warped product pointwise semi-slant submanifolds of Sasakian manifolds.

1. Introduction

In [7], B.-Y. Chen introduced the notion of slant submanifolds of almost Hermitian
manifolds as a natural generalization of holomorphic (invariant) and totally real (anti-
invariant) submanifolds. Afterwards, the geometry of slant submanifolds became an
active topic of research in differential geometry. Later, A. Lotta [20] has extended
this study for almost contact metric manifolds. J. L. Cabrerizo et al. investigated
slant submanifolds of a Sasakian manifold [6]. N. Papaghiuc introduced in [22] a
class of submanifolds, called semi-slant submanifolds of almost Hermitian manifolds,
which are the generalizations of slant and CR-submanifolds. Later on, Cabrerizo et
al. [5] extended this idea for semi-slant submanifolds of contact metric manifolds and
provided many examples of such submanifolds.

Next, as an extension of slant submanifolds of an almost Hermitian manifold, F.
Etayo [16] introduced the notion of pointwise slant submanifolds of almost Hermitian
manifolds. B.-Y. Chen and O. J. Garay [14] studied pointwise slant submanifolds
of almost Hermitian manifolds. They have obtained several fundamental results, in
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particular, a characterization of these submanifolds. K. S. Park [23] has extended
this study. B. Sahin studied pointwise semi-slant submanifolds and warped product
pointwise semi-slant submanifolds by using the notion of pointwise slant submanifolds
[26]. In [31], the authors considered pointwise slant submanifolds of an almost contact
metric manifold such that the structure vector field ξ is tangent to the submanifold.
They have obtained a simple characterization for such submanifolds and studied
warped product pointwise pseudo-slant submanifolds of Sasakian manifolds.

In 1969, R. L. Bishop and B. O’Neill [3] introduced and studied warped product
manifolds. 30 years later, around the beginning of this century, B.-Y. Chen initiated
in [9,10] the study of warped product CR-submanifolds of Kaehler manifolds. Chen’s
work in this line of research motivated many geometers to study the geometry of
warped product submanifolds by using his idea for different structures on manifolds
(see, for instance, [2, 17, 21] and [27]). For a detailed survey on warped product
submanifolds we refer to Chen’s books [11,13] and his survey article [12] as well.

In [24], B. Sahin showed that there exists no proper warped product semi-slant
submanifold of Kaehler manifolds. Then, he introduced the notion of warped product
hemi-slant submanifolds of Kaehler manifolds [25]. He defined and studied warped
product pointwise semi-slant submanifolds and showed that there exists a non-trivial
warped product pointwise semi-slant submanifold of the form MT ×f Mθ in a Kaehler
manifold M̃ , whereMT andMθ are invariant and proper pointwise slant submanifolds
of M̃ , respectively [26]. For almost contact metric manifolds, we have seen in [19] and
[1] that there are no proper warped product semi-slant submanifolds in cosymplectic
and Sasakian manifolds. Then, we have considered warped product pseudo-slant
submanifolds (warped product hemi-slant submanifolds [25], in the same sense of
almost Hermitian manifolds) of cosymplectic [28] and Sasakian manifolds [29].

K. S. Park [23] studied warped product pointwise semi-slant submanifolds. He
proved that there do not exist warped product pointwise semi-slant submanifolds of
the form Mθ ×f MT such that Mθ and MT are proper pointwise slant and invariant
submanifolds, respectively. Then he provided many examples and obtained several
results for warped products by reversing these two factors, including sharp estimations
for the squared norm of the second fundamental form in terms of the warping functions.
Later, we also extended this idea in [31] to warped product pointwise pseudo-slant
submanifolds of Sasakian manifolds.

In this paper, we study warped product pointwise semi-slant submanifolds of the
form MT ×Mθ of Sasakian manifolds.

The present paper is organized as follows: in Section 2, we give basic definitions and
formulas needed for this paper. Section 3 is devoted to the study of pointwise semi-
slant submanifolds of Sasakian manifolds; we define pointwise semi-slant submanifolds
and in the definition of pointwise semi-slant submanifolds we assume that the structure
vector field ξ is always tangent to the submanifold. We give two non-trivial examples
of such submanifolds for the justification of our definition and a result which is useful
to the next section. In Section 4, we study warped product pointwise semi-slant
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submanifolds of Sasakian manifolds. In [1], we have seen that there are no warped
product semi-slant submanifolds of the form MT ×f Mθ in a Sasakian manifold other
than contact CR-warped products, but if we assume that Mθ is a proper pointwise
slant submanifold then there exists a non-trivial class of such warped products. In
this section, we obtain several new results which are generalizations of warped product
semi-slant submanifolds and contact CR-warped product submanifolds. In Section 5,
we provide nontrivial examples of Riemannian product and warped product pointwise
semi-slant submanifolds in Euclidean spaces.

2. Preliminaries

An almost contact structure (ϕ, ξ, η) on a (2n+1)-dimensional manifold M̃ is defined
by a (1, 1) tensor field ϕ, a vector field ξ, called characteristic or Reeb vector field,
and a 1-form η satisfying the following conditions
(2.1) ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ ξ = 0, η(ξ) = 1,
where I : TM̃ → TM̃ is the identity map [4]. There always exists a Riemannian
metric g on an almost contact manifold M̃ satisfying the following compatibility
condition
(2.2) g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ),
for any X, Y ∈ Γ(TM̃), the Lie algebra of vector fields on M̃ . This metric g is called a
compatible metric and the manifold M̃ together with the structure (ϕ, ξ, η, g) is called
an almost contact metric manifold. As an immediate consequence of (2.2), one has
η(X) = g(X, ξ) and g(ϕX, Y ) = −g(X,ϕY ). If ξ is a Killing vector field with respect
to g, then the contact metric structure is called a K-contact structure. A normal
contact metric manifold is said to be a Sasakian manifold. In terms of the covariant
derivative of ϕ, the Sasakian condition can be expressed by
(2.3) (∇̃Xϕ)Y = g(X, Y )ξ − η(Y )X,
for all X, Y ∈ Γ(TM̃), where ∇̃ is the Levi-Civita connection of g. From the formula
(2.3), it follows that

∇̃Xξ = −ϕX,(2.4)

for any X ∈ Γ(TM̃).
Let M be a Riemannian manifold isometrically immersed in M̃ and denote by the

same symbol g the Riemannian metric induced on M . Let Γ(TM) be the Lie algebra
of vector fields in M and Γ(T⊥M) the set of all vector fields normal to M . The Gauss
and Weingarten formulas are respectively given by
(2.5) ∇̃XY = ∇XY + h(X, Y )
and
(2.6) ∇̃XN = −ANX +∇⊥XN,
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for any X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where ∇ is the Levi-Civita connection on
M , ∇⊥ is the normal connection in the normal bundle T⊥M and AN is the shape
operator ofM with respect to the normal vector N . Moreover, h : TM×TM → T⊥M
is the second fundamental form of M in M̃ . Furthermore, AN and h are related by
[32]
(2.7) g(h(X, Y ), N) = g(ANX, Y ),
for any X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M).

For any X tangent to M , we write
(2.8) ϕX = PX + FX,

where PX and FX are the tangential and normal components of ϕX, respectively.
Then P is an endomorphism of the tangent bundle TM and F is a normal bundle
valued 1-form on TM . Similarly, for any vector field N normal to M , we put
(2.9) ϕN = tN + fN,

where tN and fN are the tangential and normal components of ϕN , respectively.
Moreover, from (2.2) and (2.8), we have
(2.10) g(PX, Y ) = −g(X,PY ),
for any X, Y ∈ Γ(TM).

Throughout this paper, we assume the structure field ξ is tangent to M ; otherwise
M is a C-totally real submanifold [20]. LetM be a Riemannian manifold isometrically
immersed in an almost contact metric manifold (M̃, ϕ, ξ, η, g). A submanifold M of
an almost contact metric manifold M̃ is said to be slant [6], if for each non-zero vector
X tangent to M at p ∈ M such that X is not proportional to ξp, the angle θ(X)
between ϕX and TpM is constant, i.e., it does not depend on the choice of p ∈ M
and X ∈ TpM − 〈ξp〉.

A slant submanifold is said to be proper slant if neither θ = 0 nor θ = π
2 . We note

that on a slant submanifold if θ = 0, then it is an invariant submanifold and if θ = π
2 ,

then it is an anti-invariant submanifold. A slant submanifold is said to be proper slant
if it is neither invariant nor anti-invariant.

As a natural extension of slant submanifolds, F. Etayo [16] introduced pointwise
slant submanifolds of an almost Hermitian manifold under the name of quasi-slant
submanifolds. Later on, B.-Y. Chen and O. J. Garay studied pointwise slant sub-
manifolds of almost Hermitian manifolds and obtained many interesting results [14].
In [31], the authors studied pointwise slant submanifolds of almost contact metric
manifolds tangent to the structure vector field ξ.

A submanifold M of an almost contact metric manifold M̃ is said to be pointwise
slant if for any nonzero vector X tangent to M at p ∈ M , such that X is not
propotional to ξp, the angle θ(X) between ϕX and T ∗pM = TpM −{0} is independent
of the choice of nonzero vector X ∈ T ∗pM . In this case, θ can be regarded as a function
on M , which is called the slant function of the pointwise slant submanifold.
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We note that every slant submanifold is a pointwise slant submanifold, but the
converse is not true. We also note that a pointwise slant submanifold is invariant
(respectively, anti-invariant) if for each point p ∈ M , the slant function θ = 0
(respectively, θ = π

2 ). A pointwise slant submanifold is slant if and only if the slant
function θ is constant on M . Moreover, a pointwise slant submanifold is proper if
neither θ = 0, π2 nor θ is constant.

In [31], we have obtained the following characterization theorem.

Theorem 2.1 ([31]). Let M be a submanifold of an almost contact metric manifold
M̃ such that ξ ∈ Γ(TM). Then, M is pointwise slant if and only if

P 2 = cos2 θ (−I + η ⊗ ξ) ,(2.11)
for some real valued function θ defined on the tangent bundle TM of M .

The following relations are immediate consequences of Theorem 2.1.
Let M be a pointwise slant submanifold of an almost contact metric manifold M̃ .

Then, we have
g(PX,PY ) = cos2 θ [g(X, Y )− η(X)η(Y )],(2.12)
g(FX,FY ) = sin2 θ [g(X, Y )− η(X)η(Y )],(2.13)

for any X, Y ∈ Γ(TM).
The next useful relations for a pointwise slant submanifold of an almost contact

metric manifold was obtained in [31]
(2.14) tFX = sin2 θ (−X + η(X)ξ) , fFX = −FPX,
for any X ∈ Γ(TM).

3. Pointwise Semi-Slant Submanifolds

B. Sahin [26] defined and studied pointwise semi-slant submanifolds of Kaehler
manifolds. In this section, we define and study pointwise semi-slant submanifolds of
Sasakian manifolds.

Definition 3.1. A submanifold M of an almost contact metric manifold M̃ is said to
be a pointwise semi-slant submanifold if there exists a pair of orthogonal distributions
D and Dθ on M such that

(i) the tangent bundle TM admits the orthogonal direct decomposition TM =
D⊕Dθ ⊕ 〈ξ〉;

(ii) the distribution D is invariant under ϕ, i.e., ϕ (D) = D;
(iii) the distribution Dθ is pointwise slant with slant function θ.

Note that the normal bundle T⊥M of a pointwise semi-slant submanifold M is
decomposed as

T⊥M = FDθ ⊕ ν, FDθ ⊥ ν,
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where ν is an invariant normal subbundle of T⊥M under ϕ.
If we denote the dimensions of D and Dθ by m1 and m2, respectively, then we have

the following.
(i) If m1 = 0, then M is a pointwise slant submanifold.
(ii) If m2 = 0, then M is an invariant submanifold.
(iii) If m1 = 0 and θ = π

2 , then M is an anti-invariant submanifold.
(iv) If m1 6= 0 and θ = π

2 , then M is a contact CR-submanifold.
(v) If θ is constant on M , then M is a semi-slant submanifold with slant angle θ.
We also note that a pointwise semi-slant submanifold is proper if neither m1,m2 = 0

nor θ = 0, π2 and θ should not be a constant.
Now, we provide the following non-trivial examples of pointwise semi-slant subman-

ifolds of an almost contact metric manifold.

Example 3.1. Let (R7, ϕ, ξ, η, g) be an almost contact metric manifold with cartesian
coordinates (x1, y1, x2, y2, x3, y3, z) and the almost contact structure

ϕ

(
∂

∂xi

)
= − ∂

∂yi
, ϕ

(
∂

∂yj

)
= ∂

∂xj
, ϕ

(
∂

∂z

)
= 0, 1 ≤ i, j ≤ 3,

where ξ = ∂
∂z
, η = dz and g is the standard Euclidean metric on R7. Then (ϕ, ξ, η, g)

is an almost contact metric structure on R7. Consider a submanifold M of R7

defined by ψ(u, v, w, t, z) = (u + v, −u + v, t cosw, t sinw, w cos t, w sin t, z), such
that w, t (w 6= t) are non-zero real numbers. Then the tangent space TM is spanned
by the following vector fields

X1 = ∂

∂x1
− ∂

∂y1
, X2 = ∂

∂x1
+ ∂

∂y1
,

X3 = −t sinw ∂

∂x2
+ t cosw ∂

∂y2
+ cos t ∂

∂x3
+ sin t ∂

∂y3
,

X4 = cosw ∂

∂x2
+ sinw ∂

∂y2
− w sin t ∂

∂x3
+ w cos t ∂

∂y3
, X5 = ∂

∂z
.

Thus, we observe that D = Span{X1, X2} is an invariant distribution and Dθ =
Span{X3, X4} is a pointwise slant distribution with pointwise slant function θ =
cos−1((t−w)/

√
(t2 + 1)(w2 + 1)). Hence, M is a pointwise semi-slant submanifold of

R7 such that ξ = ∂
∂z

is tangent to M .

Example 3.2. Consider a submanifold of R7 with almost contact structure ϕ given in
Example 3.1. If the immersion ψ : R5 → R7 is given by

ψ(u1, u2, u3, u4, t) =
(
u1,

u2
3 + u2

4
2 , cosu4,−u2,

u2
3 − u2

4
2 , sin u4, t

)
, u4 6= 0,
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then the tangent space TM is spanned by X1, X2, X3, X4 and X5, where

X1 = ∂

∂x1
, X2 = − ∂

∂y1
, X3 = u3

∂

∂x2
+ u3

∂

∂y2
,

X4 = u4
∂

∂x2
− u4

∂

∂y2
− sin u4

∂

∂x3
+ cosu4

∂

∂y3
, X5 = ∂

∂t
.

Therefore, M is a pointwise semi-slant submanifold such that D = Span{X1, X2} is
an invariant distribution and Dθ = Span{X3, X4} is a pointwise slant distribution
with pointwise slant function θ = cos−1

(√
2u4/

√
1 + 2u2

4

)
.

Now, we obtain the following useful results for semi-slant submanifolds of a Sasakian
manifold.

Lemma 3.1. Let M be a pointwise semi-slant submanifold of a Sasakian manifold
M̃ . Then, we have

(i) sin2 θ g(∇XY, Z) = g(h(X,ϕY ), FZ)− g(h(X, Y ), FPZ),
(ii) sin2 θ g(∇ZW,X) = g(h(X,Z), FPW )− g(h(ϕX,Z), FW ),

for any X, Y ∈ Γ(D⊕ 〈ξ〉) and Z,W ∈ Γ(Dθ).

Proof. The first and second parts of the lemma can be proved in a similar way. For
any X, Y ∈ Γ(D⊕ 〈ξ〉) and Z ∈ Γ(Dθ), we have

g(∇XY, Z) = g(∇̃XY, Z) = g(ϕ∇̃XY, ϕZ).
From the covariant derivative formula of ϕ, we derive

g(∇XY, Z) = g(∇̃XϕY, ϕZ)− g((∇̃Xϕ)Y, ϕZ).
Then, from (2.3), (2.8) and the orthogonality of the two distributions, we find

g(∇XY, Z) = g(∇̃XϕY, PZ) + g(∇̃XϕY, FZ)
= −g(∇̃XPZ, ϕY ) + g(h(X,ϕY ), FZ)
= g(ϕ∇̃XPZ, Y ) + g(h(X,ϕY ), FZ).

Again, from the covariant derivative formula of ϕ, we get
g(∇XY, Z) = g(∇̃XϕPZ, Y )− g((∇̃Xϕ)PZ, Y ) + g(h(X,ϕY ), FZ).

Using (2.3), (2.8) and the orthogonality of vector fields, we obtain
g(∇XY, Z) = g(∇̃XP

2Z, Y ) + g(∇̃XFPZ, Y ) + g(h(X,ϕY ), FZ).
Then, from (2.11) and (2.6), we have

g(∇XY, Z) =− cos2 θ g(∇̃XZ, Y ) + sin 2θ X(θ) g(Y, Z)− g(h(X, Y ), FPZ)
+ g(h(X,ϕY ), FZ).

From the orthogonality of the two distributions the above equation takes the form
g(∇XY, Z) = cos2 θ g(∇̃XY, Z)− g(h(X, Y ), FPZ) + g(h(X,ϕY ), FZ).
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Hence, (i) follows from the above relation. In a similar way we can prove (ii). �

4. Warped Product Pointwise Semi-Slant Submanifolds

In this section, we study warped product submanifolds of Sasakian manifolds, by
considering that one factor is a pointwise slant submanifold. In the following, first we
give a brief introduction on warped product manifolds.

In [3], R. L. Bishop and B. O’Neill introduced the notion of warped product man-
ifolds as follows: Let M1 and M2 be two Riemannian manifolds with Riemannian
metrics g1 and g2, respectively, and a positive differentiable function f on M1. Con-
sider the product manifold M1 ×M2 with its projections π1 : M1 ×M2 → M1 and
π2 : M1 ×M2 → M2. Then their warped product manifold M = M1 ×f M2 is the
Riemannian manifold M1×M2 = (M1×M2, g) equipped with the Riemannian metric

g(X, Y ) = g1(π1?X, π1?Y ) + (f ◦ π1)2g2(π2?X, π2?Y ),

for any vector field X, Y tangent toM , where ? is the symbol for the tangent maps. A
warped product manifold M = M1×fM2 is said to be trivial or simply a Riemannian
product manifold if the warping function f is constant.

Let X be a vector field tangent to M1 and Z be an another vector field on M2; then
from Lemma 7.3 of [3], we have

(4.1) ∇XZ = ∇ZX = X(ln f)Z,

where ∇ is the Levi-Civita connection on M . If M = M1 ×f M2 is a warped product
manifold then the base manifold M1 is totally geodesic in M and the fiber M2 is
totally umbilical in M [3, 9].

By analogy to CR-warped products which are introduced by B.-Y. Chen in [9], one
defines the warped product pointwise semi-slant submanifolds as follows.

Definition 4.1. A warped product of an invariant and a pointwise slant submanifolds,
say MT and Mθ of a Sasakian manifold M̃ is called a warped product pointwise semi-
slant submanifold.

A warped product pointwise semi-slant submanifold is called proper if Mθ is a
proper pointwise slant submanifold and MT is an invariant submanifold of M̃ .

The non-existence of warped product pointwise semi-slant submanifolds of the form
Mθ ×f MT in Kaehler manifolds is proved in [26]. A similar result holds in Sasakian
manifolds. On the other hand, there exist non-trivial warped product pointwise semi-
slant submanifolds of the form MT ×Mθ of Kaehler manifolds [26] and contact metric
manifolds.

Note that a warped product pointwise semi-slant submanifold M = MT ×f Mθ is a
warped product contact CR-submanifold if the slant function θ = π

2 . Similarly, the
warped product pointwise semi-slant submanifoldM = MT×fMθ is a warped product
semi-slant submanifold if θ is constant on M , i.e., Mθ is a proper slant submanifold.
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In this section, we study the warped product pointwise semi-slant submanifold of
the form M = MT ×f Mθ of a Sasakian manifold M̃ . To fill the gap in the earlier
study, we obtain some results as a generalization.

On a warped product pointwise semi-slant submanifold M = MT ×f Mθ, if we
consider the structure vector field ξ tangent to M , then either ξ ∈ Γ(TMT ) or
ξ ∈ Γ(TMθ). When ξ is tangent to Mθ, then it is easy to check that warped product
is trivial (see [27]); therefore we always consider ξ ∈ Γ(TMT ).

First, we prove the following useful results.

Lemma 4.1. Let M = MT ×f Mθ be a warped product pointwise semi-slant subman-
ifold of a Sasakian manifold M̃ such that ξ ∈ Γ(TMT ), where MT is an invariant
submanifold and Mθ is a proper pointwise slant submanifold of M̃ . Then, we have

g(h(X,W ), FPZ)− g(h(X,PZ), FW ) = sin 2θ X(θ) g(Z,W ),(4.2)
for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Proof. For any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ), we have
g(∇̃XZ,W ) = X(ln f) g(Z,W ).(4.3)

On the other hand, we can obtain g(∇̃XZ,W ) = g(ϕ∇̃XZ, ϕW ). Using the covariant
derivative formula of ϕ, we get

g(∇̃XZ,W ) = g(∇̃XϕZ, ϕW )− g((∇̃Xϕ)Z, ϕW ).
The second term in the right hand side of above relation is identically zero by using
(2.3) and the orthogonality of vector fields. Then, from (2.5), (2.8), (4.1) and the
orthogonality of vector fields, we find

g(∇̃XZ,W ) =g(∇̃XPZ, PW ) + g(∇̃XPZ, FW ) + g(∇̃XFZ, ϕW )
=X(ln f) g(PZ, PW ) + g(h(X,PZ), FW )− g(ϕ∇̃XFZ,W )
= cos2 θ X(ln f) g(Z,W ) + g(h(X,PZ), FW )− g(∇̃XϕFZ,W )

+ g((∇̃Xϕ)FZ,W ).
Again, the last term in the above equation is zero by using (2.3) and the orthogonality
of vector fields. Then, from (2.9) and (2.14), we derive

g(∇̃XZ,W ) = cos2 θ X(ln f) g(Z,W ) + g(h(X,PZ), FW ) + sin2 θ g(∇̃XZ,W )
+ sin 2θ X(θ) g(Z,W ) + g(∇̃ZFPX, Y ).(4.4)

Hence, the result follows from (4.3) and (4.4) by using (2.6)–(2.7) and (4.1). �

Lemma 4.2. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M̃ such that ξ ∈ Γ(TMT ), where MT and Mθ are
invariant and pointwise slant submanifolds of M̃ , respectively. Then

(i) g(PZ,W ) = −ξ(ln f) g(Z,W );
(ii) g(h(X, Y ), FZ) = 0;
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(iii) g(h(X,Z), FW ) = X(ln f) g(PZ,W )− ϕX(ln f) g(Z,W )− η(X) g(Z,W ),
for any X, Y ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Proof. From (2.4), (2.5) and (2.8), we have ∇Zξ = −PZ, for any Z ∈ Γ(TMθ). Using
(4.1) and taking the inner product with W ∈ Γ(TMθ), we get (i). For the other parts
of the lemma, considering any X, Y ∈ Γ(TMT ) and Z ∈ Γ(TMθ), we have

g(h(X, Y ), FZ) = g(∇̃XY, FZ) = g(∇̃XY, ϕZ)− g(∇̃XY, PZ).
From (2.2) and (4.1), we get

g(h(X, Y ), FZ) = −g(ϕ∇̃XY, Z) +X(ln f) g(Y, PZ).
By covariant derivative formula of ϕ and the orthogonality of vector fields, we find

g(h(X, Y ), FZ) = g((∇̃Xϕ)Y, Z)− g(∇̃XϕY, Z).
Using (2.3) and the fact that ξ ∈ Γ(TMT ), the first term in the right hand side of
above equation vanishes identically and then by using (4.1) and the orthogonality of
vector fields, we find (ii). Now, for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ), we have

g(h(X,Z), FW ) = g(∇̃ZX,FW ) = g(∇̃XZ, ϕW )− g(∇̃XZ, PW ).
Again, using the covariant derivative formula of the Riemannain connection and (4.1),
we get

g(h(X,Z), FW ) = g((∇̃Zϕ)X,W )− g(∇̃ZϕX,W )−X(ln f) g(Z, PW ).
Then from (2.3), (2.5) and (4.1), we derive

g(h(X,Z), FW ) = −η(X) g(Z,W )− ϕX(ln f) g(Z,W )−X(ln f) g(Z, PW ),
which is the third part of the lemma. Hence, the proof is complete. �

Lemma 4.3. Let M = MT ×f Mθ be a warped product pointwise semi-slant subman-
ifold of a Sasakian manifold M̃ such that ξ ∈ Γ(TMT ), where MT is an invariant
submanifold and Mθ is a pointwise slant submanifold of M̃ . Then

g(h(ϕX,Z), FW ) =X(ln f) g(Z,W )− η(X) g(Z, PW )− ϕX(ln f) g(Z, PW ),(4.5)
for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Proof. Interchanging X by ϕX, for any X ∈ Γ(TMT ) in Lemma 4.2 (iii) and using
the first part of Lemma 4.2, we get the required result. �

Lemma 4.4. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M̃ such that ξ ∈ Γ(TMT ), where MT and Mθ are
invariant and pointwise slant submanifolds of M̃ , respectively. Then, we have

g(h(X,PZ), FW ) = ϕX(ln f) g(Z, PW )− η(X) g(PZ,W )− cos2 θ X(ln f) g(Z,W ),
(4.6)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).
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Proof. Interchange Z by PZ, for any Z ∈ Γ(TMθ) in Lemma 4.2 (iii) and after using
(2.12), we get (4.6). �

Similarly, if we interchange W by PW , for any W ∈ Γ(TMθ) in Lemma 4.2 (iii),
then we can obtain the following result.

Lemma 4.5. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M̃ such that ξ ∈ Γ(TMT ), where MT and Mθ are
invariant and pointwise slant submanifolds of M̃ , respectively. Then

g(h(X,Z), FPW ) = cos2 θ X(ln f) g(Z,W )− ϕX(ln f) g(Z, PW )− η(X) g(Z, PW ),
(4.7)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Lemma 4.6. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M̃ such that ξ ∈ Γ(TMT ), where MT and Mθ are
invariant and proper pointwise slant submanifolds of M̃ , respectively. Then, we have

g(AFWϕX,Z)− g(AFPWX,Z) = sin2 θ X(ln f) g(Z,W ),(4.8)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).

Proof. Subtracting (4.7) from (4.5), we get (4.8). �

A warped product submanifold M = M1 ×f M2 of a Sasakian manifold M̃ is said
to be mixed totally geodesic if h(X,Z) = 0, for any X ∈ Γ(TM1) and Z ∈ Γ(TM2),
where M1 and M2 are any Riemannian submanifolds of M̃ .

From Lemma 4.6, we obtain the following result.

Theorem 4.1. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M̃ . If M is mixed totally geodesic, then either M is
warped product of invariant submanifolds or the warping function f is constant on M .

Proof. From (4.8) and the mixed totally geodesic condition, we have

sin2 θ X(ln f) g(Z,W ) = 0.

Since g is a Riemannian metric, then either sin2 θ = 0 or X(ln f) = 0. Therefore,
either M is warped product of invariant submanifolds or f is constant on M , thus,
the proof is complete. �

Lemma 4.7. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M̃ such that ξ ∈ Γ(TMT ), where MT and Mθ are
invariant and pointwise slant submanifolds of M̃ , respectively. Then, we have

g(AFPZW,X)− g(AFWPZ,X) = 2 cos2 θ X(ln f) g(Z,W ),(4.9)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ).
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Proof. Interchanging Z and W in (4.7) and using (2.10), we get

g(h(X,W ), FPZ) = cos2 θ X(ln f) g(Z,W ) + ϕX(ln f) g(Z, PW ) + η(X) g(Z, PW ),
(4.10)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ). Subtracting (4.6) from (4.10), we
find (4.9). �

Also, with the help of Lemma 4.7, we find the following result.

Theorem 4.2. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M̃ . If M is mixed totally geodesic, then either M
is a contact CR-warped product of the form MT ×f M⊥ or the warping function f is
constant on M .

Proof. From (4.9) and the mixed totally geodesic condition, we have
cos2 θ X(ln f) g(Z,W ) = 0.

Since g is a Riemannian metric, then either cos2 θ = 0 or X(ln f) = 0. Therefore,
either M is a contact CR-warped product or f is constant on M , which ends the
proof. �

From Theorem 4.1 and Theorem 4.2, we conclude the following result.

Corollary 4.1. There does not exist any mixed totally geodesic proper warped product
pointwise semi-slant submanifold M = MT ×f Mθ of a Sasakian manifold.

Also, from Lemma 4.1 and Lemma 4.7, we have the following result.

Theorem 4.3. Let M = MT ×f Mθ be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M̃ such that ξ ∈ Γ(TMT ), where MT is an invariant
submanifold and Mθ is a pointwise slant submanifold of M̃ . Then, either M is a
contact CR-warped product of the form M = MT ×f M⊥ or ∇(ln f) = tan θ∇θ, for
any X ∈ Γ(TMT ), where ∇f is the gradient of f .

Proof. From Lemma 4.1 and Lemma 4.7, we have
cos2 θ{X(ln f)− tan θ X(θ)} g(Z,W ) = 0.

Since g is a Riemannian metric, therefore, we conclude that either cos2 θ = 0 or
X(ln f)− tan θ X(θ) = 0. Consequently, either θ = π

2 or X(ln f) = tan θ X(θ), which
proves the theorem completely. �

As an application of Theorem 4.3, we have the following consequence.

Remark 4.1. If we consider that the slant function θ is constant, i.e., Mθ is a proper
slant submanifold in Theorem 4.3, then Z(ln f) = 0, i.e., there are no warped product
semi-slant submanifolds of the formMT×fMθ in Sasakian manifolds. Hence, Theorem
3.3 of [1] is a special case of Theorem 4.3.
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In order to give a characterization result for pointwise semi-slant submanifolds of a
Sasakian manifold, we need the following well-known result of Hiepko [18].

Theorem 4.4 (Hiepko’s Theorem). Let D1 and D2 be two orthogonal distribution on
a Riemannian manifold M . Suppose that both D1 and D2 are involutive such that
D1 is a totally geodesic foliation and D2 is a spherical foliation. Then M is locally
isometric to a non-trivial warped product M1 ×f M2, where M1 and M2 are integral
manifolds of D1 and D2, respectively.

Theorem 4.5. Let M be a pointwise semi-slant submanifold of a Sasakian manifold
M̃ . Then M is locally a non-trivial warped product submanifold of the form MT×fMθ,
where MT is an invariant submanifold and Mθ is a proper pointwise slant submanifold
of M̃ if and only if

AFWϕX − AFPWX = sin2 θ X(µ)W, for all X ∈ Γ(D⊕ 〈ξ〉),W ∈ Γ(Dθ),(4.11)

for some smooth function µ on M satisfying Z(µ) = 0 for any Z ∈ Γ(Dθ).

Proof. Let M = MT ×f Mθ be a warped product pointwise semi-slant submanifold
of a Sasakian manifold M̃ . Then for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TMθ), from
Lemma 4.2 (ii) we have

g(AFWX, Y ) = 0.(4.12)

Interchanging X by ϕX in (4.12), we get g(AFWϕX, Y ) = 0, which means that
AFWϕX has no component in TMT . Similarly, if we interchange W by PW in
(4.12) then, we get g(AFPWX, Y ) = 0, i.e., AFPWX also has no component in TMT .
Therefore, AFWϕX − AFPWX lies in TMθ, using this fact with Lemma 4.6, we
find (4.11).

Conversely, if M is a pointwise semi-slant submanifold such that (4.11) holds, then
from Lemma 3.1 (i), we have

g(∇XY,W ) = csc2 θ g(AFWϕY − AFPWY,X),

for any X, Y ∈ Γ(D⊕ 〈ξ〉) and W ∈ Γ(Dθ). From (4.11), we arrive at

g(∇XY,W ) = Y (µ)g(X,W ) = 0,

which means that the leaves of the distribution D ⊕ 〈ξ〉 are totally geodesic in M .
Also, from Lemma 3.1 (ii), we have

g(∇ZW,X) = csc2 θ g(AFPWX − AFWϕX,Z),(4.13)

for any Z,W ∈ Γ(Dθ) and X ∈ Γ(D⊕ 〈ξ〉). By polarization, we derive

g(∇WZ,X) = csc2 θ g(AFPZX − AFZϕX,W ).(4.14)

Substracting (4.14) from (4.13), we get

sin2 θ g([Z,W ], X) = g(AFZϕX − AFPZX,W )− g(AFWϕX − AFPWX,Z).
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Using (4.11), we get
sin2 θ g([Z,W ], X) = X(µ) g(Z,W )−X(µ) g(W,Z) = 0.

Since M is proper pointwise semi-slant, then sin2 θ 6= 0, thus we conclude that the
pointwise slant distribution Dθ is integrable. Let us consider Mθ to be a leaf of Dθ

and hθ is the second fundamental form of Mθ in M . Then from (4.14), we have
g(hθ(Z,W ), X) = g(∇ZW,X) = − csc2 θ g(AFWϕX − AFPWX,Z).

Using (4.11), we find that
g(hθ(Z,W ), X) = −X(µ) g(Z,W ).

Then from the definition of the gradient of a function, we arrive at
hθ(Z,W ) = −(~∇µ) g(Z,W ).

Hence, Mθ is a totally umbilical submanifold of M with the mean curvature vector
Hθ = −~∇µ, where ~∇µ is the gradient of the function µ. Since Z(µ) = 0, for any
Z ∈ Γ(Dθ), then we can show that Hθ = −~∇µ is parallel with respect to the normal
connection, say Dn of Mθ in M (see [25, 26], [28]). Thus, Mθ is a totally umbilical
submanifold of M with a non vanishing parallel mean curvature vector Hθ = −~∇µ,
i.e., Mθ is an extrinsic sphere in M . Then from Heipko’s Theorem [18], we conclude
that M is a warped product manifold of MT and Mθ, where MT and Mθ are integral
manifolds of D⊕ 〈ξ〉 and Dθ, respectively. Thus, the proof is complete. �

As an application of Theorem 4.5, if we consider θ = π
2 in Theorem 4.5, then by

interchanging X by ϕX in (4.11), we get the condition (74) of Theorem 3.2 in [21];
thus the Theorem 4.5 is true for contact CR-warped product submanifolds of the form
MT ×f M⊥. Hence, Theorem 3.2 of [21] is a special case of Theorem 4.5 as follows.

Corollary 4.2 (Theorem 3.2 of [21]). A strictly proper CR-submanifold M of a
Sasakian manifold M̃ tangent to the structure vector field ξ is locally a contact CR-
warped product if and only if

AϕZX = (η(X)− ϕX(µ))Z, X ∈ Γ(D⊕ 〈ξ〉), Z ∈ Γ(D⊥),(4.15)

for some function µ on M satisfying Wµ = 0, for all W ∈ Γ(D⊥).

5. Examples

In this section, we provide the following non-trivial examples of Riemannian prod-
ucts and warped product pointwise semi-slant submanifolds in Euclidean spaces.

Example 5.1. Let M be a submanifold of Euclidean 7-space R7 with its cartesian
coordinates (x1, . . . , x3, y1, . . . , y3, t) and the almost contact structure

ϕ

(
∂

∂xi

)
= − ∂

∂yi
, ϕ

(
∂

∂yj

)
= ∂

∂xj
, ϕ

(
∂

∂t

)
= 0, 1 ≤ i, j ≤ 3.
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If M is given by the equations

x1 =u1, x2 = u3 cosu4, x3 = u2
3

2 , y1 = u2, y2 = u3 sin u4,

y3 =u4, t = t,

for any non-zero function u3 on M , then tangent space TM of M is spanned by
X1, X2, X3, X4 and X5, where

X1 = ∂

∂x1
, X2 = ∂

∂y1
, X3 = cosu4

∂

∂x2
+ u3

∂

∂x3
+ sin u4

∂

∂y2
,

X4 = −u3 sin u4
∂

∂x2
+ u3 sin u4

∂

∂y2
+ ∂

∂y3
, X5 = ∂

∂t
.

Then, M is a pointwise semi-slant submanifold with invariant distribution D =
Span{X1,X2} and the pointwise slant distribution Dθ = Span{X3, X4}. Clearly, the
slant function is θ = cos−1(2u3/

√
1 + u2

3). Moreover, D and Dθ are integrable. If MT

and Mθ are integral manifolds of D and Dθ, respectively, then, M = MT ×Mθ is a
Riemannian product of MT and Mθ in R9.

Example 5.2. Consider the Euclidean 9-space R9 with its Cartesian coordinates
(x1, . . . , x4, y1, . . . , y4, t) and the almost contact structure

ϕ

(
∂

∂xi

)
= − ∂

∂yi
, ϕ

(
∂

∂yj

)
= ∂

∂xj
, ϕ

(
∂

∂t

)
= 0, 1 ≤ i, j ≤ 4.

Let M be a submanifold of R9 defined by the immersion ψ as follows:

ψ(u, v, w, s, t) =
(
u+ v,

1
2w

2, s cosw, s sinw,−u+ v,
1
2s

2,−w sin s, w cos s, t
)
,

for any non-zero real numbers w and s. The tangent space of M is spanned by the
following vectors

X1 = ∂

∂x1
− ∂

∂y1
, X2 = ∂

∂x1
+ ∂

∂y1
,

X3 = w
∂

∂x2
− s sinw ∂

∂x3
+ s cosw ∂

∂x4
− sin s ∂

∂y3
+ cos v ∂

∂y4
,

X4 = cosw ∂

∂x3
+ sinw ∂

∂x4
+ s

∂

∂y2
− w cos s ∂

∂y3
− w sin s ∂

∂y4
, X5 = ∂

∂t
.

Then, M is a pointwise semi-slant submanifold such that the structure vector field
ξ = ∂

∂t
is tangent to M and D = Span{X1, X2} is an invariant distribution and Dθ =

Span{X3, X4} is a pointwise slant distribution with slant function
θ = cos−1

(
(1−ws) sin(w−s)−ws

1+w2+s2

)
. It is easy to observe that both the distributions are inte-

grable. If we denote the integral manifolds of D and Dθ by MT and Mθ, respectively,
then M is a Riemannian product of invariant and pointwise slant submanifolds in R9.
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Example 5.3. Let M be a submanifold of R13 given by the immersion ψ : R5 → R13

as follows:

ψ(u1, v1, u2, v2, t) =(u1 − v1, u1 cos(u2 + v2), u1 sin(u2 + v2), v2, u1 cos(u2 − v2),
u1 sin(u2 − v2), u1 + v1, v1 cos(u2 + v2), v1 sin(u2 + v2), u2,

v1 cos(u2 − v2), v1 sin(u2 − v2), t),

for non-zero functions u1 and v1. We use the almost contact structure from Example
5.2. Then, we have

X1 = ∂

∂x1
+ cos(u2 + v2) ∂

∂x2
+ sin(u2 + v2) ∂

∂x3
+ cos(u2 − v2) ∂

∂x5

+ sin(u2 − v2) ∂

∂x6
+ ∂

∂y1
,

X2 =− ∂

∂x1
+ ∂

∂y1
+ cos(u2 + v2) ∂

∂y2
+ sin(u2 + v2) ∂

∂y3
+ cos(u2 − v2) ∂

∂y5

+ sin(u2 − v2) ∂

∂y6
,

X3 =− u1 sin(u2 + v2) ∂

∂x2
+ u1 cos(u2 + v2) ∂

∂x3
− u1 sin(u2 − v2) ∂

∂x5

+ u1 cos(u2 − v2) ∂

∂x6
− v1 sin(u2 + v2) ∂

∂y2
, +v1 cos(u2 + v2) ∂

∂y3

+ ∂

∂y4
− v1 sin(u2 − v2) ∂

∂y5
+ v1 cos(u2 − v2) ∂

∂y6
,

X4 =− u1 sin(u2 + v2) ∂

∂x2
+ u1 cos(u2 + v2) ∂

∂x3
+ ∂

∂x4
+ u1 sin(u2 − v2) ∂

∂x5

− u1 cos(u2 − v2) ∂

∂x6
− v1 sin(u2 + v2) ∂

∂y2
, +v1 cos(u2 + v2) ∂

∂y3

+ v1 sin(u2 − v2) ∂

∂y5
− v1 cos(u2 − v2) ∂

∂y6
,

X5 = ∂

∂t
.

By easy and direct computations we find that D = Span{X1, X2} is an invariant
distribution and Dθ = Span{X3, X4} is a pointwise slant distribution with slant
function θ = cos−1

(
1

1+2u2
1+2v2

1

)
. Hence, M is a pointwise semi-slant submanifold of

R13. It is easy to observe that both the distributions are integrable. If we denote the
integral manifolds of D and Dθ by MT and Mθ, respectively, then the product metric
structure of M is given by

g = 4(du2
1 + dv2

1) + (1 + 2u2
1 + 2v2

1)(du2
2 + dv2

2) = gMT
+ f 2gMθ

.
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Hence, M = MT ×fMθ is a warped product submanifold in R13 with warping function
f =

√
1 + 2u2

1 + 2v2
1.
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