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HYPERGROUPS DEFINED ON HYPERGRAPHS AND THEIR
REGULAR RELATIONS

MADELEINE AL-TAHAN1 AND BIJAN DAVVAZ2

Abstract. The notion of hypergraphs, introduced around 1960, is a generalization
of that of graphs and one of the initial concerns was to extend some classical results
of graph theory. In this paper, we present some connections between hypergraph
theory and hypergroup theory. In this regard, we construct two hypergroupoids by
defining two new hyperoperations on H, the set of all hypergraphs. We prove that
our defined hypergroupoids are commutative hypergroups and we define hyperrings
on H by using the two defined hyperoperations. Moreover, we study the fundamental
group, complete parts, automorphism group and strongly regular relations of one of
our hypergroups.

1. Introduction

Hypergraphs generalize standard graphs by defining edges between multiple vertices
instead of only two vertices. Hence some properties must be a generalization of graph
properties. Formally, a hypergraph is a pair Γ = (X,E), where X is a finite set of
vertices and E = {E1, . . . , En} is a set of hyperedges, which are non-empty subsets of
X. The term hypergraph was coined by Berge [2,4], following a remark by Jean-Marie
Pal who had used the word hyperedge in a seminar. In 1976, Berge enriched the field
once more with his lecture notes [5], also see [3]. The hyperstructure theory was born
in 1934, when Marty introduced the notion of a hypergroup [16]. Since then, many
papers and several books have been written on this topic (see, for instance [6,8–10,18]).
Algebraic hyperstructures are a suitable generalization of classical algebraic structures.
In a classical algebraic structure, the composition of two elements is an element, while
in an algebraic hyperstructure, the composition of two elements is a set. After that,
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many researchers in the field of hyperstructure theory tried to make connections
between hypergraphs and hyperstructures, for example see [7, 12–14]. Corsini in [7]
associated to every hypergraph Γ a commutative quasihypergroup HΓ and found a
necessary and sufficient condition on Γ so that HΓ is associative. In this paper we
continue the study between hypergraphs and algebraic hyperstructures.

Our paper is organized as follows. After an introduction, Section 2 presents some
basic definitions concerning hypergroups and hypergraphs that are used throughout
this paper. Section 3 defines a new hyperoperation (?) on H, the set of all hypergraphs
and proves some interesting results about (H, ?). Section 4 presents the fundamental
group of our defined hypergroup (H, ?) and studies its regular relations, complete
parts and its automorphism group. Section 5 defines another new hyperoperation (◦)
on H, studies homomorphisms between (H, ?) and (H, ◦) and defines hyperrings on
H.

2. Basic Definitions

In this section, we present some definitions related to hypergroups and hypergraphs
that are used throughout the paper.

Let H be a non-empty set. Then, a mapping ◦ : H × H → P∗(H) is called a
hyperoperation on H, where P∗(H) is the family of all non-empty subsets of H. The
couple (H, ◦) is called a hypergroupoid. In the above definition, if A and B are two
non-empty subsets of H and x ∈ H, then we define:

A ◦B = ⋃
a∈A
b∈B

a ◦ b, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.

An element e ∈ H is called an identity of (H, ◦) if x ∈ x ◦ e ∩ e ◦ x for all x ∈ H
and it is called a scalar identity of (H, ◦) if x ◦ e = e ◦ x = {x}, for all x ∈ H. If
e is a scalar identity of (H, ◦), then e is the unique identity of (H, ◦). An element
x ∈ H is called idempotent if x ◦ x = x. An element y ∈ H is said to be an inverse
of x ∈ H if e ∈ x ◦ y ∩ y ◦ x, where e is an identity in (H, ◦). The hypergroupoid
(H, ◦) is said to be commutative if x ◦ y = y ◦ x for all x, y ∈ H. A hypergroupoid
(H, ◦) is called a semihypergroup if it is associative, i.e., if for every x, y, z ∈ H, we
have x ◦ (y ◦ z) = (x ◦ y) ◦ z and is called a quasihypergroup if for every x ∈ H,
x ◦ H = H = H ◦ x. This condition is called the reproduction axiom. The couple
(H, ◦) is called a hypergroup if it is a semihypergroup and a quasihypergroup. A subset
S of a hypergroup (H, ◦) is called subhypergroup of H if it is a hypergroup under ◦.
A subhypergroup K of a hypergroup (H, ◦) is normal if a ◦K = K ◦ a for all a ∈ H.
A hypergroup (H, ◦) is called a regular hypergroup if it has at least one identity and
each of its elements admit at least one inverse. A subset I of H is called a hyperideal
of H if IH ⊆ H. A hypergroup H is said to be simple if H has no proper hyperideals.

Cyclic semihypergroups have been studied by Desalvo and Freni [11], Vougiouklis
[19], Leoreanu [15]. Cyclic semihypergroups are important not only in the sphere of
finitely generated semihypergroups but also for interesting combinatorial implications.
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A hypergroup (H, ◦) is cyclic if there exists h ∈ H such that
H = h ∪ h2 ∪ · · · ∪ hi ∪ · · · .

If there exists s ∈ N such that H = h∪ h2 ∪ · · · ∪ hs then H is cyclic hypergroup with
finite period. Otherwise, H is called cyclic hypergroup with infinite period. Here,
hi = h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸

i times

. It is a single-power cyclic hypergroup if there exists h ∈ H such

that
H = h ∪ h2 ∪ · · · ∪ hi ∪ · · · and h ∪ h2 ∪ · · · ∪ hi−1 ⊂ hi, for all i ∈ N.

Let (H, ?) and (H ′, ?′) be two hypergroups. A function f : (H, ?) → (H ′, ?′) is said
to be a weak homomorphism if f(x1 ? x2) ∩ f(x1) ?′ f(x2) 6= ∅ for all x1, x2 ∈ H. It is
called homomorphism if f(x1 ? x2) ⊆ f(x1) ?′ f(x2) for all x1, x2 ∈ H. And it is called
a good homomorphism if f(x1 ? x2) = f(x1) ?′ f(x2) for all x1, x2 ∈ H.

Two hypergroups are said to be isomorphic if there exists a bijective good homomor-
phism between them. An isomorphism from (H, ?) to itself is called an automorphism.
The set of all automorphisms of (H, ?) is written as Aut(H, ?).

3. Hypergroup (H, ?) Associated to hypergraphs

In this section, we define a new hyperoperation (?) on the set of all hypergraphs
H and we study some properties of (H, ?).

A partial hypergraph is a hypergraph with some edges removed.
Definition 3.1. Let H be the set of all hypergraphs and define ? as follows. For all
H1, H2 ∈ H,

H1 ? H2 =
⋃
{K ∈ H : K is a partial hypergraph of H1 ∪H2}.

H1 ∪ H2 is the union of all hyperedges from H1 and H2. If the same hyperedge
corresponding to the same set of vertices occur in both H1 and H2 then we consider
it once in H1 ∪H2.
Example 3.1. We present an example on the union of two hypergraphs illustrated in
Figures 1, 2 and 3.
Proposition 3.1. Let H1, H2 ∈ H. Then {H1, H2} ⊆ H1 ? H2.
Proof. The proof results from having H1, H2 partial hypergraphs of H1 ∪H2. �

Proposition 3.2. Let H ∈ H. Then Hm = H2 for all m ≥ 2.
Proof. For m ≥ 2, we have that

Hm = {K ∈ H : K is a partial hypergraph of H ∪H · · · ∪H︸ ︷︷ ︸
m times

}

= {K ∈ H : K is a partial hypergraph of H}
= H2.

Therefore, Hm = H2 for all m ≥ 2. �
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Figure 1. Hypergraph H1

Figure 2. Hypergraph H2

Figure 3. Hypergraph H1 ∪H2

Theorem 3.1. (H, ?) is a commutative hypergroup.

Proof. Let H1, H2, H3 ∈ H. It is easy to see that H1 ? H2 = H2 ? H1 as H1 ∪ H2 =
H2 ∪H1. Thus, ? is a commutative hyperoperation.

It is clear that H1 ?H ⊆ H. We need to show now that H ⊆ H1 ?H. Let H2 ∈ H,
then H2 ∈ H1 ? H2 ⊆ H1 ?H by Proposition 3.1. Thus, (H, ?) is a quasihypergroup.
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We have that
H1 ? (H2 ? H3) =H1 ?

⋃
{K : K is a partial hypergraph of H2 ∪H3}

=
⋃
{H1 ? K : K is a partial hypergraph of H2 ∪H3}

=
⋃
{M : M is partial hypergraph of H1 ∪K,

K is partial hypergraph of H2 ∪H3}
=

⋃
{M : M is a partial hypergraph of H1 ∪H2 ∪H3}

=partial hypergraphs of H1 ∪H2 ∪H3.

On the other hand, we have that
(H1 ? H2) ? H3 =

⋃
{K : K is a partial hypergraph of H1 ∪H2} ? H3

=
⋃
{K ? H3 : K is a partial hypergraph of H1 ∪H2}

=
⋃
{M : M is partial hypergraph of K ∪H3,

K is partial hypergraph of H1 ∪H2}
=

⋃
{M : M is a partial hypergraph of H1 ∪H2 ∪H3}

=partial hypergraphs of H1 ∪H2 ∪H3.

Therefore, (H, ?) is a commutative hypergroup. �

Proposition 3.3. The only idempotent elements in (H, ?) are hypergraphs with one
hyperedge.

Proof. A hypergraph with exactly one hyperedge has only one partial hypergraph
(which is itself) and hence it is idempotent.

If H is an idempotent in (H, ?), then
H ? H =

⋃
{K : K is a partial hypergraph of H} = H.

The latter implies thatH has only one partial hypergraph. Thus, H has one hyperedge.
�

Proposition 3.4. (H, ?) is a regular hypergroup.

Proof. Proposition 3.1 implies that every element in H is an identity as H1 ∈ H1 ?H2
for all H1, H2 ∈ H. Let I(H1) be the set of all inverses of H1 in H. It is clear that
I(H1) = H. �

Definition 3.2. A nonempty subset M of a hypergroup (H, ?) is linear if α ? β ⊆M
and α/β ⊆M for all α, β ∈M . Here, α/β = {x ∈ H | α ∈ x ? β}.

Proposition 3.5. (H, ?) has no proper linear subsets.

Proof. Let M be a linear subset of (H, ?) and H1 ∈M . Having M a linear subset of
(H, ?) implies that H1/H1 ⊆M . We have that

H1/H1 = {K ∈ H : H1 ∈ K ? H1}.
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The latter and Proposition 3.1 imply that H1/H1 = H ⊆M . �

Proposition 3.6. (H, ?) has no proper normal subhypergroups.

Proof. For contradiction, suppose that N is a proper normal subhypergroup of (H, ?).
Then there exists k ∈ H that is not in N . Having that k ∈ k ? N (by Proposition 3.1)
implies that N 6= k ? N . �

Proposition 3.7. (H, ?) is a single power cyclic hypergroup with one generator and
period two.

Proof. Let α = ⋃
Hi∈HHi ∈ H. It is clear that α is a generator of H of period two.

Moreover, α ∈ α2 = H. �

Proposition 3.8. Let M be any non-empty set of hypergraphs and

KM =
{
λ : λ is a partial hypergraph of

⋃
K∈M

K

}
.

Then (KM , ?) is a cyclic subhypergroup of (H, ?).

Proof. The proof is straightforward. �

Proposition 3.9. A subset A of H is a proper subhypergroup of (H, ?) if and only if
A = KM for some non-empty set M of hypergraphs.

Proof. Let A be a proper subhypergroup of (H, ?) and suppose, for contradiction, that
A 6= KM . Then there exists K, a partial hypergraph of ⋃

α∈A α that is not in A. The
latter implies that K is in the hyperproduct of all elements of A. �

Proposition 3.10. (H, ?) is a simple hypergroup.

Proof. Let I be a proper hyperideal of (H, ?). Then IH ⊆ I and there exists H ∈ H
such that H is not an element in I. Having H ∈ IH implies that H ∈ I which
contradicts our hypothesis that H is not in I. �

Corollary 3.1. The only subhypergroups of (H, ?) are (KM , ?) and they are cyclic.

Proof. The proof results from Propositions 3.8 and 3.9. �

4. Fundamental Relation, Automorphism Group and Complete Parts
of (H, ?)

In this section, we present some results related to fundamental relation, automor-
phism group, strongly regular relations and complete parts of (H, ?).

Definition 4.1. Let (H, ◦) be a semihypergroup and R be an equivalence relation on
H. If A and B are non-empty subsets of H, then

(a) ARB means that for every a ∈ A there exists b ∈ B such that aRb and for
every b′ ∈ B there exists a′ ∈ A such that a′Rb′;

(b) ARB means that for every a ∈ A and b ∈ B, we have aRb.
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The equivalence relation R is called
(a) regular on the right (on the left) if for all x ∈ H, from aRb, it follows that

(a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b) respectively);
(b) strongly regular on the right (on the left) if for all x ∈ H, from aRb, it follows

that (a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b) respectively);
(c) regular (strongly regular) if it is regular (strongly regular) on the right and on

the left.

Theorem 4.1 ([9]). Let (H, ◦) be a hypergroup and R an equivalence relation on H.
Then R is strongly regular if and only if (H/R,⊗), the set of all equivalence classes,
is a group. Here, x⊗ y = {z : x ∈ x ◦ y} for all x, y ∈ H/R.

The fundamental relation has an important role in the study of semihypergroups
and especially of hypergroups.

Definition 4.2 ([9]). For all n ≥ 1, we define the relation βn on a semihypergroup
H, as follows: β1 is the diagonal relation and, if n > 1, then

aβnb⇔ ∃(x1, . . . , xn) ∈ Hn : {a, b} ⊆
n∏
i=1

xi,

β = ⋃
n≥1 βn and β? is the transitive closure of β.

β? is called the fundamental equivalence relation on H and H/β? is called the
fundamental group.
β? is the smallest strongly regular relation on H and if H is a hypergroup then

β = β?.

Proposition 4.1. (H, ?) has trivial fundamental group.

Proof. Let H1, H2 ∈ H. Proposition 3.1 asserts that {H1, H2} ⊂ H1 ? H2. The latter
implies that H1β2H2. We get now that H1βH2. Since (H, ?) is a hypergroup, it follows
that β = β?. Consequently, H/β? has only one equivalence class. �

Proposition 4.2. Let R be an equivalence relation on H. Then R is strongly regular
relation on H if and only if H/R is the trivial group.

Proof. Theorem 4.1 asserts that if H/R is the trivial group then R is strongly regular
relation on H.

Let R be a strongly regular relation on H. For all x ∈ H, if aRb then (a?x)R(b ?x).
The latter and having x ∈ b ? x, a ∈ a ? x imply that aRx. Thus, H/R contains only
one equivalence class. �

Definition 4.3. Let (H, ◦) be an Hv- group and A be a nonempty subset of H. A is a
complete part of H if for any natural number n and for all hyperproducts P ∈ HH(n),
the following implication holds:

A ∩ P 6= ∅ ⇒ P ⊆ A.
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Proposition 4.3. The complete part of (H, ?) is H.
Proof. Let A be a complete part of (H, ?) and a ∈ A. Proposition 3.1 asserts that
for all b ∈ H, a ∈ A ∩ (a ? b) 6= ∅. Having A a complete part of H implies that
b ∈ a ? b ⊆ A. �

Proposition 4.4. Let f ∈ Aut(H, ?) and α ∈ H. If λ is a partial hypergraph of α,
then f(λ) is a partial hypergraph of f(α). Moreover, α and f(α) have same number
of partial hypergraphs.
Proof. Let f ∈ Aut(H, ?) and α ∈ H. Having f(α ? α) = f(α) ? f(α) implies that
{f(λ) : λ is partial of α} = {δ : δ is partial of f(α)}. The latter implies that if λ is a
partial hypergraph of α then f(λ) is a partial hypergraph of f(α). Since f is bijective,
it follows that α and f(α) have same number of partial hypergraphs. �

Theorem 4.2. Let f be a bijective function. Then f ∈ Aut(H, ?) if and only if for
all α, β ∈ H the following conditions are satisfied:

1. if λ is a partial hypergraph of α then f(λ) is a partial hypergraph of f(α), and
2. f(α ? β) ⊆ f(α) ? f(β).

Proof. Let f ∈ Aut(H, ?) and α ∈ H. Then f(α ? β) = f(α) ? f(β). The latter and
Proposition 4.4 imply that conditions 1. and 2. are satisfied.

Let f be any bijective function satisfying conditions 1. and 2. and let α, β ∈ H.
Since α, β are partial hypergraphs of α ∪ β, it follows by condition 1. that f(α), f(β)
are partial hypergraphs of f(α ∪ β). The latter implies that f(α) ∪ f(β) is a partial
hypergraph of f(α∪β). Moreover, every partial hypergraph of f(α)∪f(β) is a partial
hypergraph of f(α ∪ β). We get now that

f(α) ? f(β) = {δ ∈ H : δ is partial hypergraph of f(α) ∪ f(β)}
⊆ {λ ∈ H : λ is partial hypergraph of f(α ∪ β)}.

Consequently, we get that f(α) ? f(β) ⊆ f(α ? β). Thus, f is a good homomorphism
by condition 2. �

Remark 4.1. It is easy to see that the identity function satisfies conditions 1. and 2.
of Theorem 4.2.
Example 4.1. Let H ∈ H, α be the hypergraph with vertex v1 having only one
hyperedge and β be the hypergraph with vertex v2 having only one hyperedge. We
define f : (H, ?)→ (H, ?) as follows:

f(H) =


H, if α ∪ β is a partial hypergraph of H;
H, if neither α nor β are partial hypergraphs of H;
β ∪ (H \ {α}), if α is a partial hypergraph of H;
α ∪ (H \ {β}), if β is a partial hypergraph of H.

Then f ∈ Aut(H, ?).
It is clear that f is a bijective function. Also, one can easily show that f satisfies

condition 1. and 2. of Theorem 4.2.
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5. Relation of (H, ?) to Another Hypergroup (H, ◦)

In this section, we define a new hyperoperation (◦) on H and find some relations
between (H, ?), defined in Section 3, and (H, ◦).
Definition 5.1. Let H be the set of all hypergraphs and define (H, ◦) as follows. For
all H1, H2 ∈ H

H1 ◦H2 = {H1, H2, H1 ∪H2}.
We present some results on (H, ◦) in which their proofs are easy.

Theorem 5.1. (H, ◦) is a regular commutative hypergroup.
Proposition 5.1. Every element in (H, ◦) is idempotent.
Proposition 5.2. (H, ◦) has no nontrivial cyclic subhypergroup.
Proof. Proposition 5.1 asserts that αk = α for all α ∈ H and k ∈ N. �

Definition 5.2. Let (H, ◦) and (H, ?) be two hypergroups. We say that ◦ ≤ ? if
there is f ∈ Aut(H, ?) such that α ◦ β ⊆ f(α) ? f(β) for all α, β ∈ H.
Proposition 5.3. ◦ ≤ ?.
Proof. Let i : (H, ?)→ (H, ?) be the identity map defined by: i(H) = H for all H ∈ H.
It is clear that i ∈ Aut(H, ?).

For all H1, H2 ∈ H, we have each element in H1◦H2 = {H1, H2, H1∪H2} is a partial
hypergraph of H1 ∪H2. On the other hand, we have that i(H1) ? i(H2) = H1 ? H2 is
the set of all partial hypergraphs of H1 ∪H2. Thus, H1 ◦H2 ⊆ i(H1) ? i(H2). �

Definition 5.3. Let R be a nonempty set with two hyperoperations (+ and ·). We
say that (R,+, ·) is a hyperring if (R,+) is a commutative hypergroup, (R, ·) is
a semihypergroup and the hyperoperation · is distributive with respect to +, i.e.,
x · (y + z) = x · y + x · z for all x, y, z ∈ R.

If the hyperoperation · is weak distributive with respect to +, i.e., x · (y + z) ⊆
x · y + x · z for all x, y, z ∈ R, we say (R,+, ·) that is a weak hyperring.
Proposition 5.4. (H, ?, ◦) is a weak commutative hyperring.
Proof. Propositions 3.1 and 5.1 imply that (H, ◦) and (H, ?) are commutative hyper-
groups. We need to prove that (H, ?, ◦) is weak distributive. For all α, β, γ ∈ H we
have

α ◦ (β ? γ) =
⋃
{α ◦ λ : λ is a partial hypergraph of β ∪ γ}

=
⋃
{α, λ, α ∪ λ : λ is a partial hypergraph of β ∪ γ}.

On the other hand, we have that
(α ◦ β) ? (α ◦ γ) = {α, β, α ∪ β} ? {α, γ, α ∪ γ}

= partial hypergraphs of {α, α ∪ γ, β ∪ α, β ∪ α ∪ γ, β ∪ γ}
= partial hypergraphs of α ∪ β ∪ γ.
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It is easy to see that α ◦ (β ? γ) ⊆ (α ◦ β) ? (α ◦ γ). �

Proposition 5.5. (H, ◦, ?) is a commutative hyperring.

Proof. Propositions 3.1 and 5.1 imply that (H, ◦) and (H, ?) are commutative hy-
pergroups. We need to prove that (H, ◦, ?) is distributive. For all α, β, γ ∈ H we
have

α ? (β ◦ γ) = α ? {β, γ, β ∪ γ}
= partial hypergraphs of α ∪ β ∪ γ.

On the other hand, we have that
(α ? β) ◦ (α ? γ) =partial hypergraphs of α ∪ β◦ partial hypergraphs of α ∪ γ

=
⋃
{λ, λ?, λ ∪ λ? : λ and λ? are partial hypergraphs

of α ∪ β and α ∪ γ respectively}
=partial hypergraphs of α ∪ β ∪ γ.

Thus, α ? (β ◦ γ) = (α ? β) ◦ (α ? γ). �

Proposition 5.6. Let f : (H, ◦)→ (H, ?) be any function. Then f is a weak homo-
morphism.

Proof. Let α, β ∈ H. We have that f(α ◦ β) = {f(α), f(β), f(α ∪ β)}. Having f(α),
f(β) partial hypergraphs of f(α) ∪ f(β) implies that

{f(α), f(β)} ⊆ f(α ◦ β) ∩ f(α) ? f(β) 6= ∅.
�

Proposition 5.7. Let c : (H, ◦)→ (H, ?) be the constant function defined by: c(H) =
K, where K is the hypergraph defined on any set of vertices with one hyperedge. Then
c is a good homomorphism.

Proof. The proof is straightforward by Proposition 3.3. �

Proposition 5.8. Let f : (H, ◦) → (H, ?) be any function that is not equal to that
defined in Proposition 5.7. Then f is not a good homomorphism.

Proof. Let H be a hypergraph such that f(H) has more than two hyperedges (such
an element exists). We have that f(H ◦H) = f(H) and f(H) ? f(H) is the set of all
partial hypergraphs of f(H). Since f(H) has more than two hyperedges, it follows
that |f(H) ? f(H)| ≥ 2. Thus, f is not a good homomorphism. �

Proposition 5.9. Let f : (H, ?)→ (H, ◦) be any function. Then f is a weak homo-
morphism.

Proof. It is easy to see that {f(α), f(β)} ⊆ f(α ? β) ∩ f(α) ◦ f(β) 6= ∅. �

Proposition 5.10. Let k : (H, ?) → (H, ◦) be the function defined by k(α) = H for
all α ∈ H. Then f is a good homomorphism.
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Proof. The proof is straightforward using Proposition 5.1. �

Proposition 5.11. Let f : (H, ?) → (H, ◦) be any function other than that defined
in Proposition 5.10. Then f is not a homomorphism.

Proof. Since f is a function other than that defined in Proposition 5.10, it follows
that there exist α, β ∈ H such that f(α) 6= f(β). Let γ = α ∪ β ∈ H. We have that
f(γ) ◦ f(γ) = f(γ) and f(γ ? γ) = {f(λ) : λ is a partial hypergraph of γ}. Having
that α 6= β partial hypergraphs of γ and that f(α) 6= f(β) imply that |f(γ ? γ)| ≥ 2.
The latter implies that f(γ ? γ) is not a subset of f(γ) ◦ f(γ). �

6. Conclusion

Hypergraph theory, introduced by Berge, is a generalization of graph theory and
it has been considered an important topic in Mathematics due to its applications
to numerous fields of Science. Our paper studied a connection between hypergraph
theory and hypergroup theory. Here we defined hypergroups and hyperrings on the
set of all hypergraphs. Also, we studied the fundamental group and regular relations
of the defined hypergroups. Several results were obtained.

For future research, one may consider hyperfields associated to hypergraphs and
study their properties.
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