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SOLVING THE FRACTIONAL SCHRÖDINGER EQUATION WITH
SINGULAR POTENTIAL BY MEANS OF THE FOURIER

TRANSFORM

ABDELMJID BENMERROUS1, M’HAMED ELOMARI1, AND ALI EL MFADEL1

Abstract. The focus of this paper is on the study of fractional Schrödinger’s
equations with δ-like potential and initial data, which have both time-fractional
and space-fractional components. We employ the Fourier transform to prove the
existence-uniqueness theorems. Additionally, we give the association with the clas-
sical solution.

1. Introduction

The main focus of this paper is on the investigation of the fractional Schrödinger
equation that involves distributional potentials. Specifically, we consider the Cauchy
problem defined as follows:

(1.1)

i∂α
t u(t, x) + (−∆)su(t, x) + q(x)u(t, x) = 0, (x, t) ∈ Rd × (0, T ),

u(0, x) = u0(x).

Here, α lies in the interval (0, 1), ∂α
t represents the time-fractional Caputo derivative,

(−∆)s denotes the space-fractional Laplacian, and q(x) denotes the singular potential.
The value of s is assumed to be greater than 0.

Colombeau algebra, also known as generalized functions or nonlinear generalized
functions, is a mathematical concept developed by French mathematician Jean-
Francois Colombeau in the 1980’s [12]. The idea behind Colombeau algebra is to
create a space of functions that is larger than the space of distributions but still
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contains it as a subset. Initially, Colombeau introduced his algebra as a tool to
study the singularities of solutions to nonlinear partial differential equations. Later
on, the theory was extended to include global analysis and differential geometry.
Colombeau algebra has applications in a variety of fields, including mathematical
physics, theoretical mechanics, and fluid mechanics (see [14]). The development of
Colombeau algebra was motivated by the need to extend the theory of distributions,
introduced by Laurent Schwartz in the 1950’s [16], to include functions that are not
distributions but still have some properties of distributions. Colombeau’s approach
was to define generalized functions as equivalence classes of smooth functions that
are equal up to a set of measure zero. This allowed him to extend the algebraic and
topological properties of the space of smooth functions to the space of generalized
functions. Since its inception, Colombeau algebra has been the subject of extensive
research, leading to numerous generalizations and applications. One of the main
challenges in the development of the theory has been to find a suitable notion of
convergence for sequences of generalized functions. This led to the introduction of
the concept of the natural topology, which has been extensively studied and used in
applications. Overall, Colombeau algebra has become an important tool in the study
of singularities and nonlinear partial differential equations. It has also led to new
insights in the theory of distributions and has opened up new avenues for research
in other areas of mathematics. One of Stojanović’s notable contributions is her work
on extending the notion of Colombeau algebra of generalized functions to fractional
derivatives [17]. In [18] Stojanović studied the fractional Schrödinger equation was
first introduced by Laskin in quantum mechanics. Motivated by the previous paper,
and also [5, 13,19] and reference therein, we will studied the existence and uniquness
of fractional Schrödinger equation in a suitable spaces.

The paper is structured as follows. Section 2 provides a review of fundamental
spaces and their inclusion into Colombeau algebras type. The main result is presented
in Section 3. Finally, we conclude the paper by discussing the implications and offering
perspectives for future research.

2. Basic Spaces

In this section, we will discuss various concepts related to the Colombeau algebra
type and its properties.

2.1. Generalized Fractional Spaces. Let r > 0, the fractional Sobolev space Hr

is defined as:

Hr =
{
u ∈ L2(R) | ∥u∥r = ∥u∥L2 + ∥(−∆) r

2 ∥L2 < +∞
}
.

We denote by ∥ · ∥α the norm defined by

∥u∥α = ∥u(t, ·)∥L2 + ∥∂α
t u(t, ·)∥L2 + ∥(−∆) r

2 (t, ·)∥L2 .
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Let Ω be an open subset of Rn. We denote E(Ω) the set of all C∞ maps from Ω
into R. The set of moderate functions is defined as

Es(Ω) =
{
R ∈ E(Ω) | (∀D)(∃N)∥R∥Hr = Oϵ→0

(
ϵ−N

) }
.

The set of negligible functions is defined by

Ns(Ω) =
{
R ∈ Es(Ω) | (∀D)(∀q ∈ N)∥R∥Hr = Oϵ→0 (ϵq)

}
.

Then, our space GHr(Ω) = Es(Ω)/Ns(Ω) of simplified generalized functions on Ω is
the quotient algebra. In the same we define the algebra type Colombeau GL∞ as a
factor algebra given by the quotient E∞/N∞, where

E∞ =
{

(Rϵ) | (∀D)(∃N) sup
x∈Ω

∥DRϵ(x)∥L∞ = Oϵ→0
(
ϵ−N

) }
and

N∞ =
{

(Rϵ) | (∀D)(∀q) sup
x∈Ω

∥DRϵ(x)∥L∞ = Oϵ→0(ϵq)
}
.

Now, let DL∞ (Ω) the set of all C∞ functions on Ω, globally bounded on Ω as well
as all its derivatives, then to f associate fϵ = f . This given the following inclusion
DL∞ ⊂ G∞. Let f be a function in the space L∞(Rd), then to f associate fϵ = f ∗ ρϵ

with a chosen ρϵ(t) = ϵ−dρ
(

t
ϵ

)
, where ρ ∈ D(Rd) and

∫
ρ = 1. For any given mollifier

ρ this gives an inclusion L∞(Rd) ⊂ G∞. More generally let T be a distribution in
D′

L∞ , i.e., T is a finite sum of derivatives of functions in L∞(Rd). To T associate
Tϵ = T ∗ ρϵ as above. For given ρ as above this gives an inclusion of D′

L∞ ⊂ GHr .
Similarly, one has an inclusion of E′ space of all distributions with compact support
into GHr .

2.2. Regularized Laplace-fractional operator. In this section, we regularize the
fractional Laplace operator as described in reference [1], but this time we use a scaling
function. The Laplace-Fractional operator is given by

(−△) r
2f(x) =

−Γ[ r−1
2 ]

π
2−r

2 22−rΓ[2−r
2 ]

∫ △f(ξ)
|x− ξ|r−1dξ.

Note that
(−△) r

2f(x) = η

tr−1 ∗ ∆f(t),

where η = −Γ[(r−1)/2)]
π(2−r)/222−rΓ[(2−r)/2] . Now using the following regularization

˜(−∆) r
2f(t) = η

tr−1 ∗ ∆f(t) ∗ ρh(ϵ)(t),

where h : [0, 1] → [0, 1] is a scaling function, for more information see [11].

Proposition 2.1. For each (uϵ) ∈ Es,
( ˜(−∆) r

2uϵ

)
∈ Es.
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Proof. Through the beginning of the section, for all derivative D we have

D
( ˜(−∆) r

2uϵ

)
= η

tr−1 ∗ ∆f(t) ∗Dρh(ϵ)(t),

which proves the result. □

Proposition 2.2. We have the following result
˜(−∆) r

2f ≈L2 (−∆) r
2f.

Proof. Since ρh(ϵ) → δ, by applying The dominated convergence theorem, we have

sup
x∈R

∣∣∣∣ ˜(−△)
r
2fϵ(x) − (−△) r

2fϵ(x)
∣∣∣∣ = η

∣∣∣∣ ˜(−△)
r
2fϵ(x) − (−△) r

2fϵ(x)
∣∣∣∣

= η sup
x∈R

∫ +∞

−∞
△fϵ(x)t1−r|ρh(ϵ)(t) − δ(t)| → 0,

but, fϵ is a function with compact support, then∥∥∥△fϵ(x)t1−r
(
ρh(ϵ)(t) − δ(t)

)∥∥∥
L2

→ 0. □

We regularize the Caputo fractional derivative in the same way, we put
D̃αuϵ(t) = Dαuϵ ∗ ρh(ϵ)(t).

In the same we can prove that D̃αuϵ ≈ Dαuϵ.
In what remains we note Dα and (−△)r in the place of D̃α and △̃α.

3. Main Results

The objective of this section is to establish the existence, uniqueness, and continuity
of the problem (1.1). We begin by formulating our problem for each representative
solution u of equation (1.1).

Now let’s consider the approximate problem.

(3.1)

i∂α
t uϵ(t, x) + (−∆)s

ϵuϵ(t, x) + qϵ(x)uϵ(t, x) = 0, (x, t) ∈ Rd × (0, T ),
uϵ(0, x) = u0ϵ(x).

3.1. Existence and uniqueness. We provide the following definition for the concept
of a generalized solution.

Definition 3.1. A solution (3.2) to the problem is a generalized function u which
belongs to the GHr such that for each representant uϵ of u satisfy the problem (1.1).

Proposition 3.1 ([14]). A moderate function (uϵ), is negligible if and only if the
following condition is satisfied:

∥uϵ∥L∞ = Oϵ→0 (ϵm) , for all n ∈ N.

The main results are presented in the following theorem.

Theorem 3.1. If u0 ∈ GHr and q ∈ GL∞, then for all T > 0 the problem (1.1) has a
unique solution in G ([0, T ] ×Hr).
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Proof. Existence. We have

i∂α
t uϵ(t, x) + ˜(−∆ϵ)ruϵ(t, x) + qϵ(x)uϵ(t, x) = 0.

After application of the Fourier transformation in this equation we get

i∂tûϵ(t, ξ) + |ξ|2rûϵ(t, ξ) = f̂ϵ(t, ξ),

uϵ and fϵ with respect to the spatial variable x and fϵ(t, x) = −pϵ(x)uϵ(t, x), where
ûϵ, f̂ϵ, denote the Fourier transforms.

Now using Duhamel’s principle, we get the following representation of the solution
to the Cauchy problem

(3.2)
ûϵ(t, ξ) =û0ϵe

−i|ξ|2re
iαπ

2 tei|ξ|2rt1−α

+ 1
Γ(α)

∫ t

0
(t− s)α−1ei|ξ|2re

iαπ
2 (t−s)ei|ξ|2r(t−s)1−α

f̂ϵ(s)ds.

Further, we can find two numbers a and b such that

∥(−∆)ruϵ∥L2 ≤ a∥uϵ∥L2 and ∥∂αuϵ∥L2 ≤ b∥uϵ∥L2 ,

which implies the estimate
∥ûϵ∥L2 = Oϵ→0

(
ϵ−N

)
,

for some N ∈ N.
Using the Plancherel-Parseval formula, we can write

∥uϵ∥L2 = Oϵ→0
(
ϵ−N

)
.

Then,
∥uϵ∥ = Oϵ→0

(
ϵ−N

)
.

As we know the Fractional Laplace (−∆)s can be written as a convolution of

−Γ[(r − 1)/2)]
∗d−2+2sπ(2−r)/222−rΓ[(2 − r)/2]

and ∆u(t, ·), which is permutable with any integer derivative D. Thus,

i∂tD̂uϵ(t, ξ) + |ξ|2rD̂uϵ(t, ξ) = D̂fϵ(t, ξ).

By the same method, we can prove that for each derivative D

∥Duϵ∥ = Oϵ→0
(
ϵ−N

)
.

Then, for some N ∈ N, that is (uϵ) is moderate, it follows that the classe u is a
solution of the problem.

Uniqueness. Let u and v be two solutions of the problem (1.1). Put U = u− v,
it is clear that u0 = v0.
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Let’s go to the Fourier transform,

Ûϵ =
(
Û0ϵ

)
e−i|ξ|2re

iαπ
2 ei|ξ|2rt1−α

(3.3)

+ 1
Γ(α)

∫ t

0
(t− s)α−1ei|ξ|2re

iαπ
2 (t−s)ei|ξ|2r(t−s)1−α ˆqϵUϵ(s)ds,

which implies that

∥Ûϵ∥L2 ≤ ∥Û0ϵ∥L2 + 1
Γ(α)

∫ t

0
(t− s)α−1∥qϵ∥L∞∥Ûϵ∥L2ds.

Gronwall’s lemma and Plancherel-Parseval ensure that Uϵ has bound negligible func-
tions. We use [14, (1.2.3) page 11], and we find that (Uϵ) ∈ Ns ([0, T ] ×Hr) . □

3.2. Association. In this section we will prove the association with the classical
solution to the problem (1.1). First, we will define the meaning of association.
Definition 3.2. A function f ∈ G(R) is considered to have an ”associated distribu-
tion“, denoted as f ≈ u, if for every representative f(φϵ, y) of f and ψ(y) ∈ D(R),
there exists a natural number q such that for any φ(y) ∈ Aq(R), we have:

lim
ϵ→0+

∫
R
f(φϵ, y)ψ(y)dy = ⟨u, ψ⟩.

Then, we give the following result.
Theorem 3.2. Let q ∈ L∞(Rd). Assume that u0 ∈ Hr(Rd) the Cauchy problem

(3.4)

i∂αut(t, x) + (−∆)ru(t, x) + q(x)u(t, x) = 0, (t, x) ∈ (0, T ) × Rd,

u(0, x) = u0(x),

has a unique solution u ∈ C1
(
[0, T ] : L2(Rd)

)
∩ C

(
[0, T ] : Hr(Rd)

)
.

Proof. To prove the existence and uniqueness of a solution, we can use the theory of
linear evolution equations.

We consider the operator L defined by
(3.5) Lu = −(−∆)ru− q(x)u.
The fractional Sobolev space Hr(Rd) is the natural domain of the operator (−∆)r. It
is a reflexive Banach space, and we can prove that L is a closed operator from Hr(Rd)
to L2(Rd). By applying theorem of Lumer-Phillips [15], the operator L generates
a strongly continuous semigroup on L2(Rd). Moreover, the semigroup satisfies the
properties of positivity, contractivity and boundedness. This means that for each
t ≥ 0, there exists a linear operator S(t) such that

∫ ∞
0 S(

(
tα

θα

)
t)u0dθ is the unique

solution of the Cauchy problem

(3.6)


∂α

∂tαu(t, x) = Lu(t, x),
u(0, x) = u0(x),

for the argument see [21]. □
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Theorem 3.3. The classical solution given by Theorem 3.2 is associated with the
solution of the problem (3.1).

Proof. Let u be the classical solution to{
i∂αut(t, x) + (−∆)ru(t, x) + q(x)u(t, x) = 0, (t, x) ∈ (0, T ) × Rd,
u(0, x) = u0(x).

We have u(t, ·) ∈ Hr(Rd) for all t ∈ [0, T ], and let [(uϵ)ϵ] be the solution of (3.2).
It satisfies{

i∂αuϵ(t, x) + (−∆)ruϵ(t, x) + qϵ(x)uϵ(t, x) = 0, (t, x) ∈ (0, T ) × Rd,
uϵ(0, x) = u0,ϵ(x).

Let us denote by Uϵ(t, x) := u(t, x) − uϵ(t, x). It solves{
i∂αUϵ(t, x) + (−∆)rUϵ(t, x) + qϵ(x)Uϵ(t, x) = pϵ(t, x), (t, x) ∈ (0, T ) × Rd,
Uϵ(0, x) = (u0 − u0,ϵ)(x),

where pϵ(t, x) = (qϵ(x) − q(x))u(t, x).
Using Duhamel’s principle and similar arguments as in Theorem 3.2, we get the

estimate
∥Uϵ(t, ·)∥L2 ≤ ∥u0 − u0,ϵ∥L2 + 1

γ(α)

∫ T

0
Tα−1∥gϵ(s, ·)∥L2ds,

where gϵ = pϵ − qϵu, which implies that

∥Uϵ(t, ·)∥L2 ≤ ∥u0 − u0,ϵ∥L2 + Tα

Γ(α + 1)∥pϵ∥L∞ + Tα

Γ(α)

∫ T

0
∥Uϵ(s, ·)∥L2ds.

Now, use the Gronwal’s lemma, we obtain

∥Uϵ(t, ·)∥L2 ≤
(

∥U0,ϵ∥L2 + Tα

Γ(α + 1)∥pϵ∥L∞

)
exp T

α+1

Γ(α) .

When ϵ → 0, the right hand side of the last inequality tends to 0, since ∥pϵ∥L∞ → 0
and ∥U0,ϵ∥L2 → 0. Hence, U ≈ 0. □

4. Conclusion

In this paper, we utilize the Fourier transform on an arbitrary representative to
establish the existence and uniqueness of a generalized fractional Schrödinger equation.
The utilization of Gronwall’s lemma and the Plancherel-Parseval formula plays a
crucial role in achieving this objective. In the future, we plan to further investigate
this type of equation through numerical simulations.

Acknowledgements. The authors thank the referees for the valuable suggestions to
improve the paper.
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