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OSCILLATION CRITERIA FOR SECOND ORDER IMPULSIVE
DELAY DYNAMIC EQUATIONS ON TIME SCALE

GOKULA NANDA CHHATRIA1

Abstract. In this work, we study the oscillation of a kind of second order impulsive
delay dynamic equations on time scale by using impulsive inequality and Riccati
transformation technique. Some examples are given to illustrate our main results.

1. Introduction

Consider a class of second order impulsive nonlinear dynamic equations of the form:

(E)


[r(t)(x∆(t))γ]∆ + q(t)x(σ(t)− δ) = 0, t ∈ JT := [0,∞) ∩ T, t 6= τk, t ≥ t0,

x(τ+
k ) = Mk(x(τk)), x∆(τ+

k ) = Nk(x∆(τk)), k ∈ N,
x(t+0 ) = x0, x∆(t+0 ) = x∆

0 , t0 − δ ≤ t ≤ t0,

under the following hypotheses.
(A1) γ ≥ 1 is the quotient of odd positive integers, T is an unbouned above time

scale with 0 ∈ T and τk ∈ T satisfying the properties 0 ≤ t0 < τ1 < τ2 < · · · <
τk, limk→∞ τk =∞,

x(τ+
k ) = lim

h→0+
x(τk + h), x∆(τ+

k ) = lim
h→0+

x∆(τk + h),

which represent the right limit of x(t) at t = τk in the sense of time scale. If
τk is right scattered, then x(τ+

k ) = x(τk), x∆(τ+
k ) = x∆(τk). Similarly, we can

define x(τ−k ), x∆(τ−k ).
(A2) δ ∈ R+, σ(t)− δ ∈ T, r(t) > 0, q(t) ∈ Crd(T, [t0,∞)T).
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(A3) Mk, Nk : R→ R are continuous functions, Mk(0) = 0 = Nk(0) and there exist
numbers ak, a∗k, bk, b∗k such that a∗k ≤

Mk(u)
u
≤ ak, b∗k ≤

Nk(u)
u
≤ bk, u 6= 0,

k ∈ N.
In this work, our objective is to extend the work of [15] to the second order impulsive

delay dynamic equations (E). About the time scale concept and fundamentals of time
scale calculus we refer the monographs [6] and [7].

Oscillation theory of impulsive differential/difference equation has brought the
attention of many researchers, as it provides a more adequate mathematical model
for numerous process and phenomena studied in physics, biology, engineering and to
mention a few. In the literature, most of the results obtained for difference equations
is the continuous analogues of differential equations and vice versa. Hence it was an
immediate question to find a way for which one can unify the qualitative properties of
both equations. In 1988 Stefen Hilger introduced the concept of time scales calculus,
which unify the continuous and discrete calculus in his Ph.D. thesis [12]. The study of
impulsive dynamic equations on time scales has been initiated by Benchora et al. [4].

In [15], Huang has considered the second order impulsive dynamic equation of the
form

[r(t)(y∆(t))γ]∆ + f(t, yσ(t)) = 0, t ∈ JT := [0,∞) ∩ T, t 6= τk, t ≥ t0,

y(τ+
k ) = gk(y(τk)), y∆(τ+

k ) = hk(y∆(τk)), k ∈ N,
y(t+0 ) = y0, y∆(t+0 ) = y∆

0 ,

and improved the results of [13] and [14].
To the best of the author’s knowledge, there is no such results for the impulsive delay

dynamic equations on time scales. Hence, in this work an attempt is made to study
the impulsive dynamic equations (E) and from which we can find the corresponding
results for impulsive differential/difference equation. In this direction, we refer the
reader to some works ([2], [13]-[19]) and the references cited there in.
ACi={x : JT → R is i-times ∆-differentiable, whose ith delta derivative x∆(i) is

absolutely continuous}, PC = {x : JT → R is rd-continuous at the points τk, k ∈ N for
which x(τ−k ), x(τ+

k ), x∆(τ−k ) and x∆(τ+
k ) exist, with x(τ−k )=x(τk), x∆(τ−k )=x∆(τk)}.

Definition 1.1. A solution of x(t) of (E) is said to be regular if it is defined on some
half line [τx,∞)T ⊂ [t0,∞)T and sup{|x(t)| : t ≥ tx} > 0. A regular solution x(t) of
(E) is said to be eventually positive (eventually negative), if there exists t1 > 0 such
that x(t) > 0 (x(t) < 0) for t ≥ t1.

Definition 1.2. A function x(t) ∈ PC ∩AC2(JT \ {τ1, τ2, . . . },R) is called a solution
of (E) if:

(I) it satisfies (E) a.e. on JT \ {τk}, k ∈ N;
(II) for t = τk, k ∈ N, x(t) satisfies (E);
(III) for any t ∈ [t0 − δ, t0], x(t) = φ(t), x(t+0 ) = x0, x∆(t+0 ) = x∆

0 .
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Definition 1.3. A nontrivial solution x(t) of (E) is said to be nonoscillatory, if there
exists a point t0 ≥ 0 such that x(t) has a constant sign for t ≥ t0. Otherwise, the
solution x(t) is said to be oscillatory.

For completeness in the paper, we give the time scale concept and some fundamen-
tals of time scale calculus in Section 4.

2. Basic Lemmas

We need the time scale version of the following well known results for our use in
the sequel.
Lemma 2.1 ([1]). Let y, f ∈ Crd and p ∈ R. Then y∆(t) ≤ p(t)y(t) + f(t), implies
that for all t ∈ T

y(t) ≤ y(t0)ep(t, t0) +
∫ t

t0
ep(t, σ(s))f(s)∆s.

Lemma 2.2 ([15]). Assume that
(i) m ∈ PC ∩ AC1(JT \ {τk},R);

(ii) for k ∈ N and t ≥ t0, we have
m∆(t) ≤ p(t)m(t) + v(t), t ∈ JT = [0,∞) ∩ T, t 6= τk,

m(τ+
k ) ≤ dkm(τk) + ek.

Then the following inequality holds

m(t) ≤m(t0)
∏

t0<τk<t

dkep(t0, t) +
∫ t

t0

∏
s<τk<t

dkep(t, σ(s))v(s)∆s

+
∑

t0<τk<t

( ∏
τk<τj<t

djep(t, τk)
)
ek, t ≥ t0.

Lemma 2.3. Suppose that (A1)-(A3), ak, bk > 0, k ∈ N hold. Furthermore, assume
that there exists T ≥ t0 such that x(t) > 0 for t ≥ T and

(A4)
∫∞
T

1
r

1
γ (s)

∏
T<τk<s

b∗
k

ak
∆s =∞.

Then x∆(τ+
k ) ≥ 0 and x∆(t) ≥ 0 for t ∈ (τk, τk+1]T and τk ≥ T .

Proof. Let x(t) be an eventually positive solution of (E) for t ≥ t0. Without loss of
generality we assume that x(t) > 0 and x(t− δ) > 0 for t ≥ t1 > t0 + δ. From (E), we
get [r(t)(x∆(t))γ]∆ = −q(t)f(x(t− δ)) ≤ 0. Therefore, r(t)(x∆(t))γ is monotonically
decreasing on [t2,∞)T, t2 > t1 + δ. Assume that τk > t2 for k ∈ N. Consider the
interval (τk, τk+1]T, k ∈ N. We assert that x∆(τk) ≥ 0. If not, there exists τj ≥ t2
such that x∆(τj) < 0 and hence x∆(τ+

j ) = Nk(x∆(τk)) ≤ b∗kx
∆(τk) < 0. Let x∆(τ+

j ) =
−α, α > 0. Now for t ∈ (τj, τj+1]T, we have r(τj+1)(x∆(τj+1))γ ≤ r(τj)(x∆(τ+

j ))γ,
that is,

x∆(τj+1) ≤
(
r(τj)
r(τj+1)

) 1
γ

x∆(t+j ) = −b∗jα
(
r(τj)
r(τj+1)

) 1
γ

< 0.
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If t ∈ (τj+1, τj+2]T, then

x∆(τj+2) ≤
(
r(τj+1)
r(τj+2)

) 1
γ

x∆(τ+
j+1) =

(
r(τj+1)
r(τj+2)

) 1
γ

Nj+1(x∆(τj+1))

≤b∗j+1

(
r(τj+1)
r(τj+2)

) 1
γ

x∆(τj+1),

that is,

x∆(τj+2) ≤ −b∗jb∗j+1α

(
r(τj)
r(τj+2)

) 1
γ

< 0.

Hence, by the method of induction

x∆(τj+n) ≤ −b∗jb∗j+1b
∗
j+2 · · · b∗j+n−1α

(
r(τj)
r(τj+n)

) 1
γ

= −
(
r(τj)
r(τj+n)

) 1
γ
(
n−1∏
i=1

b∗j+i

)
α < 0,

for t ∈ (τj+n−1, τj+n]T.
Now, we consider the following impulsive dynamic inequalities

(E1)

[r(t)(x∆(t))γ]∆ ≤ 0, t > τj, t 6= τk, k = j + 1, j + 2, . . . ,
x∆(τ+

k ) ≤ b∗kx
∆(τk), k = j + 1, j + 2, . . .

Let m(t) = r(t)(x∆(t))γ, then (E1) becomesm∆(t) ≤ 0, t > τj, t 6= τk, k = j + 1, j + 2, . . . ,
m(τ+

k ) ≤ (b∗k)γm(τk), k = j + 1, j + 2, . . . ,
and, by Lemma 2.2, it follows that

m(t) ≤ m(τ+
j )

∏
τj<τk<t

(b∗k)γ,

that is,

x∆(t) ≤
(
r(τj)
r(t)

) 1
γ

x∆(τ+
j )

∏
τj<τk<t

b∗k = −α
(
r(τj)
r(t)

) 1
γ ∏
τj<τk<t

b∗k.(2.1)

For k = j + 1, j + 2, . . . , we also have x(τ+
k ) ≤ akx(τk). By (2.1) and since x(τ+

k ) ≤
akx(τk), k = j + 1, j + 2, . . . , it follows from Lemma 2.2 that

x(t) ≤ x(τ+
j )

∏
τj<τk<t

ak −
∫ t

τj

∏
s<τk<t

ak

α(r(τj)
r(t)

) 1
γ ∏
τj<τk<s

b∗k

∆s

≤
∏

τj<τk<t

ak

x(τ+
j )− α (r(τj))

1
γ

∫ t

τj

(
1
r(s)

) 1
γ ∏
τj<τk<s

b∗k
ak

∆s

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→ −∞ as t→∞.
Due to (A4), a contradiction to the fact that x(t) > 0 eventually. Hence, our as-
sertation holds, that is, x∆(τk) ≥ 0 for τk ≥ T and hence x∆(t) > x∆(τ+

k ). Since
[r(t)(x∆(t))γ]∆ ≤ 0 for any t ∈ (τk, τk+1]T, τk ≥ T , then

x∆(t) ≥
(
r(τk+1)
r(t)

) 1
γ

x∆(τk+1) ≥ 0, t ∈ (τk, τk+1]T.

Therefore, x∆(τ+
k ) > 0 and x∆(t) > 0 for t ∈ (τk, τk+i)]T, t ≥ t2, and the lemma is

proved. �

Remark 2.1. If x(t) is an eventually negative solution of (E). Then, using (A1)-(A3),
it is easy to prove that x∆(τ+

k ) ≤ 0 and x∆(t) ≤ 0, for t ∈ (τk, τk+1]T and τk ≥ T ≥ t0.

3. Sufficient Conditions for Oscillation

Theorem 3.1. Let all conditions of Lemma 2.3 hold. Furthermore, assume that
(A5)

∫∞
t0

∏
t0<τk<s

1
bγ
k
q(s)∆s =∞.

Then every solution of (E) oscillates.

Proof. Suppose on the contrary that x(t) is a nonoscillatory solution of (E). Without
loss of generality, assume that x(t) > 0, x(σ(t)− δ) > 0 for t ≥ t1. Hence, by Lemma
2.3, there exists t2 > t1 such that x∆(t) > 0 for t ∈ (τk, τk+1]T, k ∈ N and τk ≥ t2.
Indeed, x∆(t− δ) > 0 for t ≥ t3 ≥ t2 + δ. Let

w(t) = r(t)(x∆(t))γ
x(t− δ) .(3.1)

Then w(τ+
k ) ≥ 0 and w(t) ≥ 0 for τk ≥ t3. From (3.1), for t 6= τk we have

w∆(t) = [r(t)(x∆(t))γ]∆x(t− δ)− r(σ(t))(x∆(σ(t)))γx∆(t− δ)
x(t− δ)x(σ(t)− δ)

≤ [r(t)(x∆(t))γ]∆
x(σ(t)− δ) − r(σ(t))(x∆(σ(t)))γx∆(t− δ)

x(t− δ)x(σ(t)− δ)
≤ −q(t),

that is,
w∆(t) ≤ −q(t), t 6= τk.(3.2)

We note that

w(τ+
k ) = r(τ+

k )(x∆(τ+
k ))γ

x(τ+
k − δ)

≤ bγkr(τk)(x∆(τk))γ
x(τk − δ)

= bγkw(τk).

Now, we have the following impulsive dynamics inequalities
w∆(t) ≤− q(t), t 6= τk

w(τ+
k ) ≤bγkw(τk), k ∈ N,
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and, by Lemma 2.2, it follows that

w(t) ≤ w(t3)
∏

t3<τk<t

bγk −
∫ t

t3

∏
s<τk<t

bγkq(s)∆s

≤
∏

t3<τk<t

bγk

w(t3)−
∫ t

t3

∏
t3<τk<s

1
bγk
q(s)∆s


→ −∞ as t→∞.

Due to (A5), a contradiction to the fact that w(t) > 0 for t ∈ (τk, τk+1]T, k ∈ N. This
completes the proof of the theorem. �

Theorem 3.2. Let all conditions of Lemma 2.3 hold. Furthermore, assume that
τk+1 − τk = δ and

(A6)
∫∞
t0

∏
t0<τk<s

1
dk
q(s)∆s =∞,

where

dk =


bγ1 , if k = 1,

d
bγk
a∗k−1

, if k = 2, 3, . . . ,

hold. Then every solution of (E) oscillates.

Proof. Proceed as in the proof Theorem 3.1 to obtain that x∆(t) > 0 and x∆(τ+
k ) > 0

for t ∈ (τk, τk+1]T, k ∈ N, t ≥ t2. Indeed, x∆(t − δ) > 0 for t ≥ t3 ≥ t2 + δ. Define
w(t) as in (3.1), we get (3.2) holds for τk ≥ t3 and t 6= τk. Now, if k = 1 we have

w(τ+
1 ) = r(τ+

1 )(x∆(τ+
1 ))γ

x(τ+
1 − δ)

≤ bγ1r(τ1)(x∆(τ1))γ
x(τ1 − δ)

= d1w(τ1).

If k = 2, 3, . . . , then

w(τ+
k ) = r(τ+

k )(x∆(τ+
k ))γ

x(τ+
k − δ)

≤ bγkr(τk)(x∆(τk))γ
x(τ+

k−1 − δ)
≤ bγkr(τk)(x∆(τk))γ

a∗k−1x(τk−1 − δ)

≤ bγkr(τk)(x∆(τk))γ
a∗k−1x(τk − δ)

= dkw(τk).

Consider the following impulsive dynamic inequalityw∆(t) ≤ −q(t), t 6= τk, t ≥ t3

w(τ+
k ) ≤ dkw(τk), k ∈ N.

Therefore, by Lemma 2.2, we get

w(t) ≤ w(t3)
∏

t3<τk<t

dk −
∫ t

t3

∏
u<τk<t

dkq(u)∆u.

Then proceeding as in the proof of Theorem 3.1 and using (A6), we get a contradiction
to the fact that w(t) > 0 for t ∈ (τk, τk+1]T, k ∈ N. This completes the proof of the
theorem. �
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Corollary 3.1. Let all conditions of Lemma 2.3 hold. Assume that there exists a
positive integer k0 such that a∗k ≥ 1, bk ≤ 1 for k ≥ k0. Furthermore, assume that

(A7)
∫∞
t0
q(s)∆s =∞

holds, then every solution of (E) oscillates.

Proof. Without loss of generality, we assume that k0 = 1. Since bk ≤ 1, then 1
bγ
k
≥ 1.

Therefore, ∫ t

t0

∏
t0≤τk<s

1
bγk
q(s)∆s ≥

∫ t

t0
q(s)∆s.

Letting t→∞ and in view of Theorem 3.1, We get every solution of (E) is oscillatory.
This completes the proof. �

Corollary 3.2. Let all conditions of Lemma 2.3 hold. Assume that there exists a
positive integer k0 and a positive constant α such that a∗k ≥ 1 and 1

bk
≥
(
τk+1
τk

)α
for

k ≥ k0. Furthermore, assume that
(A8)

∫∞
t0
sαq(s)∆s =∞

holds, then every solution of (E) oscillates.

Proof. Without loss of generality, we assume that k0 = 1. Now∫ t

t0

∏
t0<τk<s

1
bγk
q(s)∆s =

n∑
i=1

∏
t0<τk<τi+1

1
bγk

∫ τi+1

τi
q(s)∆s

≥ 1
τα1

n∑
i=1

ταi+1

∫ τi+1

τi
q(s)∆s

≥ 1
τα1

n∑
i=1

∫ τi+1

τi
sαq(s)∆s

= 1
τα1

∫ τn+1

τ1
sαq(s)∆s.

Letting t→∞ and in view of Theorem 3.1, we get every solution of (E) is oscillatory.
This completes the proof. �

Corollary 3.3. Let all conditions of Lemma 2.3 hold. Assume that there exists a
positive integer k0 and a positive constant α such that a∗k ≥ 1 and 1

dk
≥
(
τk+1
τk

)α
for

k ≥ k0. If (A8) hold, then every solution of (E) oscillates.

Proof. The proof of the corollary can be be follows from Corollary 3.2 and Theorem 3.2.
Hence, details are omitted. �

Next, we present some new oscillation criteria for (E), by using an integral averaging
condition of Kamenev type.

Theorem 3.3. Let all the conditions of Lemma 2.3 and bk ≥ 1 hold. Furthermore,
assume that
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(A9) lim supk→∞ 1
tm

∫ τk+1
t0 (t− s)mq(s)∆s =∞,

then every solution of (E) oscillates.

Proof. Proceeding as in the proof of Theorem 3.1, we get
w∆(t) ≤ −q(t), for t 6= τk.

Multiplying (t− s)m to both side of the preceding inequality and integrating from τk
to τk+1, we get ∫ τk+1

τk

(t− s)mw∆(s)ds ≤ −
∫ τk+1

τk

(t− s)mq(s)∆s.

Indeed, ∫ τk+1

τk

(t− s)mw∆(s)∆s

=(t− s)mu(s)|τk+1
τk
−
∫ τk+1

τk

((t− s)m)∆sw(s)∆s

=
∫ τk+1

τk

m(t− s)m−1w(s)∆s+ (t− τk+1)mw(τk+1)− (t− τk)mw(τ+
k ),

because ((t− s)m)∆s = −m(t− s)m−1. As a result,∫ τk+1

τk

(t− s)mw∆(s)∆s ≥ −(t− τk)mw(τ+
k ).

Therefore, ∫ τk+1

τk

(t− s)mq(s)∆s ≤ −
∫ τk+1

τk

(t− s)mw∆(s)∆s

≤ (t− τk)mw(τ+
k )

≤ bk(t− τk)mw(τk),
that is,

1
tm

∫ τk+1

τk

(t− s)mq(s)∆s ≤ bk

(
t− τk
t

)m
w(τk),

and hence,

lim sup
k→∞

1
tm

∫ τk+1

τk

(t− s)mq(s)∆s <∞,

a contradiction to (A9). This completes the proof of the theorem. �

4. Appendix: Time Scale Preliminaries

We will briefly recall some basic definitions and facts from the time scale calculus
that we will use in the sequel. For more details see [2,3,19]. On any time scale T, we
define the forward and backward jump operators by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : V s < t},
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where inf φ = supT, supφ = inf T, and φ denotes the empty set. A nonmaximal
element t ∈ T is called right-dense if σ(t) = t and right-scattered if σ(t) > t. A
nonminimal element t ∈ T is said to be left-dense if ρ(t) = t and left-scattered if
ρ(t) > t. The graininess µ of the time scale T is defined by µ(t) = σ(t)− t.

A mapping f : T→ X is said to be differentiable at t ∈ T, if there exists f∆(t) ∈ X
such that for any ε > 0, there exists a neighborhood U of t satisfying

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|,
for all s ∈ U . We say that f is delta differentiable (or in short: differentiable) on T
provided f∆(t) exists for all t ∈ T.

A function f : T→ R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set of
rd-continuous functions f : T→ R will be denoted by Crd(T,R).

The derivative and forward jump operator σ are related by the formula
f(σ(t)) = f(t) + µ(t)f∆(t).

Let f be a differentiable function on [a, b]T. Then f is increasing, decreasing, non-
decreasing and nonincreasing on [a, b]T if f∆ > t, f∆ < t, f∆ ≥ t, f∆ ≤ t for all
t ∈ [a, b)T, respectively. We will make use of the following product fg and quotient f

g

rules for the derivative of two differentiable functions f and g
(fg)∆ =f∆g + fσg∆ = fg∆ + f∆gσ,(
f

g

)∆
=f

∆g − fg∆

ggσ
,

where fσ = foσ, ggσ 6= 0. The integration by parts formula reads∫ b

a
f∆(t)g(t) = f(t)g(t)|ba −

∫ b

a
fσ(t)g∆(t)∆t.

Chain Rule. Assume g : T → R is ∆− differentiable on T and f : R → R is
continuously differentiable. Then fog : T→ R is ∆− differentiable and satisfies

(fog)∆(t) =
{ ∫ 1

0
f ′(g(t) + hµ(t)g∆(t))dh

}
g∆(t).

Regressive. A function p : T→ R is said to be regressive if for all t ∈ T, 1+µ(t)p(t) 6=
0.

The set of all function p : T → R, which are regressive and rd-continuous will be
denoted by R. We define the set R+ of all positively regressive elements of R by

R+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.
Exponential Function. If p ∈ R, then general exponential function ep on T is
defined as

ep(t, s) = exp
( ∫ t

s

1
µ(z) log(1 + µ(z)p(z))∆z

)
,

with µ(z) 6= 0 and s, t ∈ T.
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5. Examples

Example 5.1. Consider the impulsive dynamic equation
x∆∆(t) + 1

t
x(t− 1

2) = 0, t >
1
2 , t 6= τk,

x(τ+
k ) = k + 1

k
x(τk), x∆(τ+

k ) = x∆(τk), k ∈ N,
(5.1)

where γ = 1, r(t) = 1, δ = 1
2 , q(t) = 1

t
≥ 0, a∗k = ak = k+1

k
, b∗k = bk = 1, τk = 3k,

τk+1 − τk = 3 > 2, k ∈ N. Then, from (A4)∫ ∞
T

∏
T<τk<s

b∗k
ak

∆s

=
∫ ∞

2

∏
2<τk<s

k

k + 1ds

=
∫ τ1

2

∏
2<τk<s

k

k + 1∆s+
∫ τ2

τ+
1

∏
2<τk<s

k

k + 1∆s+
∫ τ3

τ+
2

∏
2<τk<s

k

k + 1∆s+ · · ·

=1
2(τ1 − 2) + 1

2 ×
2
3(τ2 − τ1) + 1

2 ×
2
3 ×

3
4(τ3 − τ2) + · · ·

=1
2 × 2 + 1

3 × 3 + 1
4 × 3 + 1

5 × 3 + · · ·

≥1
2 + 1

3 + 1
4 + 1

5 + · · · =
∞∑
i=2

1
i

=∞,

and from (A5) ∫ ∞
2

∏
1
2<τk<s

1
bγk

1
s

∆s =
∫ ∞

2

1
s

∆s→∞.

Therefore, all conditions of Theorem 3.1 are satisfied and hence (5.1) has an oscillatory
solution.

Example 5.2. Consider the impulsive dynamic equation

x∆∆(t) + 1
t3
x(t− 1) = 0, t > 1, t 6= τk,

x(τ+
k ) = k − 1

k
x(τk), k ∈ N, k > k0,

x∆(τ+
k ) = 1

k
x∆(τk), k ∈ N, k > k0,

(5.2)

where γ = 1, δ = 1, r(t) = 1, q(t) = 1
t3
≥ 0, a∗k = ak = k−1

k
, b∗k = bk = 1

k
, τk = 3k,

τk+1 − τk = 3 > 1, k ∈ N, k > k0 = 1. Clearly, from (A4) we have∫ ∞
T

∏
T<τk<s

b∗k
ak

∆s
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=
∫ ∞

1

∏
1<τk<s

1
k − 1∆s

=
∫ τ2

1

∏
1<τk<s

1
k − 1∆s+

∫ τ3

τ+
2

∏
1<τk<s

1
k − 1∆s+

∫ τ4

τ+
3

∏
1<τk<s

1
k − 1∆s+ · · ·

=(τ2 − 1) + 1
2 × (τ3 − τ2) + 1

2 ×
1
3 × (τ4 − τ3) + · · ·

=2 + 1
2 × 22 + 1

2 ×
1
3 × 23 + 1

2 ×
1
3 ×

1
4 × 24 + · · ·

≥1 + 1
2 + 1

3 + 1
4 + · · · = 1 +

∞∑
i=2

1
i

=∞.

Let α = 1. Then
1
bk

= k ≥
(
τk+1

τk

)α
= k + 1

k
.

Also, from (A8) we have∫ ∞
1

sαq(s)∆s =
∫ ∞

1
s3 1
s3 ∆s =

∫ ∞
1

∆s =∞.

All conditions of Corollary 3.2 are satisfied for (5.2) and hence, (5.2) has an oscillatory
solution.
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