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SOME RESULTS ON POST-WIDDER OPERATORS PRESERVING
TEST FUNCTION xr

VIJAY GUPTA1 AND GANCHO TACHEV2

Abstract. In the present paper, we consider Post-Widder operators and its modi-
fied form which preserve the test function xr, r ∈ N. We estimate direct results in
terms of modulus of continuity for the modified operators. Also, some estimates
for polynomially bounded functions and linear combinations are considered. Our
estimates improve in some sense the previous results for the original Post-Widder
operators.

1. Introduction

The Post-Widder operators for n ∈ N and x > 0 considered by Widder [18] is
defined by

Pn(f, x) = 1
n!

(
n

x

)n+1 ∞∫
0

tn e−
nt
x f(t) dt.(1.1)

These operators preserve constant functions only. The q analogue of these operators
was recently studied by Aydin et al. [3]. Earlier Rathore and Singh [15] (also for
related results see [9]) established an asymptotic formula, and deduced inverse and
saturation theorems in simultaneous approximation. They considered a parameter p
and defined the operators in following way

P p
n(f, x) = 1

(n+ p)!

(
n

x

)n+p+1 ∞∫
0

tn+p e−
nt
x f(t) dt.
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The special case p = 0 provides the operator (1.1) and for p = −1, these operators
reduce to the operators due to May [13], which preserve the linear functions and
considered earlier in the book of Ditizian and Totik [5], by Li and Wang in [12], also
in the papers of Draganov and Ivanov [6, 7]. Rempulska and Skorupka in [16] further
modified the Post-Widder operators of the form considered by May [13] in order to
preserve the test function e2, where er(x) = xr. It was observed in [16] that the
modified form provide better approximation results over the form of [13], but in that
case the modified form loses the preservation of test function e1. It may be observed
that at a time only two preservations can be made either constant and e1 or constant
and the function er, r > 1, r ∈ N. Here we deal with the modification of Post-Widder
operators which preserve constants and er, r ∈ N.

Following [16], the r-th order moment µPnr (x) = Pn(er, x), where er(t) = tr, r ∈
N ∪ {0} are given by

Pn(er, x) = 1
n!

(
n

x

)n+1 ∞∫
0

tne−
nt
x trdt = 1

n!

(
n

x

)n+1 ∞∫
0

tn+re−
nt
x dt.

Put nt/x = u implying (n/x)dt = du, thus

Pn(er, x) = 1
n!

(
n

x

)n+1 ∞∫
0

(
x

n

)n+r+1
un+re−udu

= 1
n!

(
x

n

)r
Γ(n+ r + 1)

= 1
n!

(
x

n

)r
(n+ r)!

=(n+ r)(n+ r − 1) · · · (n+ 1)n!
n! · x

r

nr
= (n+ 1)rxr

nr
,

where (n)r = n(n+ 1)(n+ 2) · · · (n+ r − 1).

µPnr (x) = (n+ 1)rxr
nr

,(1.2)

with (n)0 = 1. If the central moments are denoted by T Pnm (x) = Pn((t− x)m, x), then

T Pn1 (x) =x

n
,

T Pn2 (x) =(n+ 2)x2

n2 .

From the results given in [5, Ch. 9], denoting the space of all real valued continuous
and bounded functions on (0,∞) by CB(0,∞) for every f ∈ CB(0,∞) and δ > 0
there holds

|f(t)− f(x)| ≤ ω(f, δ)
(
|t− x|
δ

+ 1
)
,
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where ω(f, ·) is the first order modulus of continuity of f defined by
ω(f, δ) = sup

0<h≤δ,x≥0
|f(x+ h)− f(x)|.

Thus,

|Pn(f, x)− f(x)| ≤ 1
n!

(
n

x

)n+1 ∞∫
0

tne−
nt
x |f(t)− f(x)|dt

≤ 1
n!

(
n

x

)n+1 ∞∫
0

tn e−
nt
x ω(f, δ)

(
|t− x|
δ

+ 1
)
dt

≤ω(f, δ)

√
T Pn2 (x)
δ

+ 1
 .

Choosing δ =
√
T Pn2 (x), we immediately get

|Pn(f, x)− f(x)| ≤ 2ω
(
f,

√
n+ 2
n

x

)
.(1.3)

2. Modified Post-Widder Operators Preserving er

Let us consider that the Post-Widder operators preserve the test function xr, r ∈ N,
then we start with the following form

P̃n,r(f, x) = 1
n!

(
n

an,r(x)

)n+1 ∞∫
0

tne
− nt
an,r(x)f(t)dt.(2.1)

Here P̃n,r preserves constants for any positive function an,r(x). Then

xr = P̃n,r(er, x) = 1
n!

(
n

an,r(x)

)n+1 ∞∫
0

tn+re
− nt
an,r(x)dt

=(n+ r)!
n!

(
an,r(x)
n

)r
= (n+ 1)r

(
an,r(x)
n

)r
,

implying

an,r(x) = nx

((n+ 1)r)1/r .(2.2)

Thus, our modified operators P̃n,r, r ∈ N, x ∈ (0,∞), take the following form

P̃n,r(f, x) =
∫ ∞

0
kn(x, t)f(t)dt,

where

kn(x, t) = 1
n!

((n+ 1)r)1/r

x

n+1

tne−
t
x

((n+1)r)1/r
,
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with P̃n,r(f, 0) = f(0) which preserve the function xr and the constant function.
Following (1.2), the m-th order moments are given by

P̃n,r(em, x) = (n+ 1)m(an,r(x))m
nm

= (n+ 1)m
((n+ 1)r)m/r

xm.

Lemma 2.1. The first few images of monomials are given by

P̃n,r(e0, x) =1,

P̃n,r(e1, x) = (n+ 1)
((n+ 1)r)1/rx,

P̃n,r(e2, x) =(n+ 1)(n+ 2)
((n+ 1)r)2/r x

2.

Remark 2.1. We may point out here that when r = 1, then the operator P̃n,1 preserves
constant as well as linear functions. When r = 2 these preserve constant and test
function x2.

Lemma 2.2. If we denote the central moment as T P̃n,rm (x) = P̃n,r((t− x)m, x), then
we have the following recurrence relation:

T
P̃n,r
m+1(x) = x2

((n+ 1)r)1/r [T P̃n,rm (x)]′ +
[

(n+ 1)
((n+ 1)r)1/r − 1

]
xT P̃n,rm (x) + mx2T

P̃n,r
m−1(x)

((n+ 1)r)1/r .

In particular

T
P̃n,r
1 (x) =

[
(n+ 1)

((n+ 1)r)1/r − 1
]
x,

T
P̃n,r
2 (x) =

[
(n+ 1)2

((n+ 1)r)2/r − 2 (n+ 1)
((n+ 1)r)1/r + 1

]
x2,

T
P̃n,r
4 (x) =

[
(n+ 1)4

((n+ 1)r)4/r − 4 (n+ 1)3

((n+ 1)r)3/r + 6 (n+ 1)2

((n+ 1)r)2/r − 4 (n+ 1)
((n+ 1)r)1/r + 1

]
x4,

T
P̃n,r
6 (x) =

[
(n+ 1)6

((n+ 1)r)6/r − 6 (n+ 1)5

((n+ 1)r)5/r + 15 (n+ 1)4

((n+ 1)r)4/r

− 20 (n+ 1)3

((n+ 1)r)3/r + 15 (n+ 1)2

((n+ 1)r)2/r − 6 (n+ 1)
((n+ 1)r)1/r + 1

]
x6.

For any r ∈ N we have T P̃n,rm (x) = O(n−[(m+1)/2]).

Proof. The kernel kn(x, t) of our modified operators P̃n,r, satisfy the following identity

x2 ∂

∂x
kn(x, t) = [(((n+ 1)r)1/r)t− (n+ 1)x]kn(x, t),
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we have

x2[T P̃n,rm (x)]′ =
∫ ∞

0
x2[kn(x, t)]′x(t− x)mdt−mx2T

P̃n,r
m−1(x)

=
∫ ∞

0

[
((n+ 1)r)1/rt− (n+ 1)x

]
kn(x, t)(t− x)mdt−mx2T

P̃n,r
m−1(x)

=((n+ 1)r)1/rT
P̃n,r
m+1(x) +

[
((n+ 1)r)1/r − (n+ 1)

]
xT P̃n,rm (x)

−mx2T
P̃n,r
m−1(x).

This completes the proof of recurrence relation. From recurrence relation by induction
on m, it is easy to verify that the magnitude of the central moments satisfy T P̃n,rm (x) =
O(n−[(m+1)/2]) for any r ∈ N. The other consequences follow from the recurrence
relation. �

We have the following observations for our modified operator, corresponding to the
estimate (1.3).

Let us suppose that the operators preserve the test functions e1, e2, e3, e4 respectively,
then, by Lemma 2.2 for every continuous and bounded function f on (0,∞), we have
the following estimates:

|P̃n,1(f, x)− f(x)| ≤ 2ω
(
f,

x√
n+ 1

)
,(2.3)

|P̃n,2(f, x)− f(x)| ≤ 2ω

f,√2

√√√√√
1−

√
n+ 1
n+ 2

x
 ,(2.4)

|P̃n,3(f, x)− f(x)|

≤2ω
f,

√√√√( [(n+ 1)(n+ 2)]1/3

(n+ 3)2/3 − 2 (n+ 1)2/3

[(n+ 2)(n+ 3)]1/3 + 1
)
x

 ,(2.5)

|P̃n,4(f, x)− f(x)|

≤2ω
f,

√√√√( [(n+ 1)(n+ 2)]1/2

[(n+ 3)(n+ 4)]1/2 − 2 (n+ 1)3/4

[(n+ 2)(n+ 3)(n+ 4)]1/4 + 1
)
x

 .(2.6)

If we compare the above results, with the estimate (1.3), we find that the error
becomes smaller and monotonically decreasing for n ∈ N, x ∈ (0,∞), till the preser-
vation of the test function e3 as the following is true for second order moments:

√
n+ 2
n

≥ 1√
n+ 1

≥
√

2

√√√√√
1−

√
n+ 1
n+ 2


>

√√√√( [(n+ 1)(n+ 2)]1/3

(n+ 3)2/3 − 2 (n+ 1)2/3

[(n+ 2)(n+ 3)]1/3 + 1
)
,
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Table 1. Table for approximation

n
√
T
P̃n,1
2 (x)

√
T
P̃n,2
2 (x)

√
T
P̃n,3
2 (x)

√
T
P̃n,4
2 (x)

5 0.408248x 0.385175x 0.378018x 0.381509x
15 0.250000x 0.244367x 0.242538x 0.243903x
25 0.196116x 0.193356x 0.192451x 0.193203x
35 0.166667x 0.164961x 0.164399x 0.164890x
40 0.156174x 0.154767x 0.154303x 0.154716x
75 0.114708x 0.114147x 0.113961x 0.114135x

10000 0.0099995x 0.00999913x 0.0099990x 0.00999913x

but for higher order preservation of test function for example preservation of test
function e4, one can not have better approximation, which is also shown in the above
table. Although the convergence takes places in all the cases for n sufficiently large.

We prove below the direct estimate for the modified operators which preserve er.
Let πr denote the space of all algebraic polynomials of degree r and suppose CB(0,∞)
is the space of all continuous and bounded functions on (0,∞) endowed with the norm
‖f‖ = sup{|f(x)| : x ∈ (0,∞)}. Further let us consider the following K-functional:

K2(f, δ) = inf
g∈C2

B(0,∞)
{‖f − g‖+ δ‖g′′‖},

where δ > 0 and C2
B(0,∞) = {g ∈ CB(0,∞) : g′, g′′ ∈ CB(0,∞)}.

Theorem 2.1. Let f ∈ CB(0,∞), then for r ∈ N we have∣∣∣P̃n,r(f, x)− f(x)
∣∣∣ ≤ Cω2

(
f,
√
δn,r

)
+ ω

(
f,

∣∣∣∣∣ (n+ 1)
((n+ 1)r)1/r − 1

∣∣∣∣∣x
)
,

where C is a positive constant and δn,r is given as

δn,r =
[

(n+ 1)(2n+ 3)
((n+ 1)r)2/r −

4(n+ 1)
((n+ 1)r)1/r + 2

]
x2.

Proof. We introduce the auxiliary operators Pn,r : CB(0,∞)→ CB(0,∞) as follows

Pn,r(f, x) = P̃n,r(f, x)− f
(

(n+ 1)x
((n+ 1)r)1/r

)
+ f(x).(2.7)

These are linear operators and preserve linear functions. As by Lemma 2.1 and the
positivity of P̃n,r(t, x), we have

Pn,r(t, x) =P̃n,r(t, x)− (n+ 1)x
((n+ 1)r)1/r + x = (n+ 1)x

((n+ 1)r)1/r −
(n+ 1)x

((n+ 1)r)1/r + x = x.

Let g ∈ C2
B(0,∞) and x, t ∈ (0,∞). By Taylor’s formula, we have

g(t) = g(x) + (t− x)g′(x) +
∫ t

x
(t− u)g′′(u)du.
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Then using Lemma 2.2 and by positivity of P̃n,r, we have

|Pn,r(g, x)− g(x)| =
∣∣∣∣Pn,r (∫ t

x
(t− u)g′′(u)du, x

)∣∣∣∣
=
∣∣∣∣∣P̃n,r

(∫ t

x
(t− u)g′′(u)du, x

)

−
∫ (n+1)x

((n+1)r)1/r

x

(
(n+ 1)x

((n+ 1)r)1/r − u
)
g′′(u)du

∣∣∣∣∣
≤

T P̃n,r2 (x) +
(

(n+ 1)x
((n+ 1)r)1/r − x

)2
 ||g′′||

:=δn,r||g′′||.(2.8)

Next, by (2.7) and from Lemma 2.1, we have

|Pn,r(f, x)| ≤ P̃n,r(1, x)||f ||+ 2||f || ≤ 3||f ||.(2.9)

Using (2.7), (2.8) and (2.9), we have∣∣∣P̃n,r(f, x)− f(x)
∣∣∣ ≤ |Pn,r(f − g, x)− (f − g)(x)|+ |Pn,r(g, x)− g(x)|

+
∣∣∣∣∣f
(

(n+ 1)x
((n+ 1)r)1/r

)
− f(x)

∣∣∣∣∣
≤4||f − g||+ δn,r||g′′||+

∣∣∣∣∣f
(

(n+ 1)x
((n+ 1)r)1/r

)
− f(x)

∣∣∣∣∣
≤C {||f − g||+ δn,r||g′′||}+ ω

(
f,

∣∣∣∣∣ (n+ 1)x
((n+ 1)r)1/r − x

∣∣∣∣∣
)
.

Finally, if we take the infimum over all g ∈ C2
B(0,∞), and using the inequality due

to Gonska [8], K2(f, δ) ≤ Cω2(f,
√
δ), δ > 0, we get at once the desired result. �

Corollary 2.1. Let f ∈ π1 + CB(0,∞). Then

∣∣∣P̃n,1(f, x)− f(x)
∣∣∣ ≤ Cω2

f, x√
(n+ 1)

 ,
where C is certain positive constant.

Let us consider

B2 (0,∞) :=
{
f : f ∈ C(0,∞)→ R and |f (x)| ≤ C(f)

(
1 + x2

)}
,

where C(f) is a positive constant depending only on f and we denote C2 (0,∞) =
C (0,∞)∩ B2 (0,∞) , by C∗2 (0,∞), we denote the subspace of all f ∈ C2 (0,∞) for
which lim

x→∞
f(x)
1+x2 <∞. The weighted modulus of continuity Ω (f, δ) defined on infinite
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interval R+ (see [11]) is defined as

Ω (f, δ) = sup
|h|<δ, x∈R+

|f (x+ h)− f (x)|
(1 + h2 + x2 + h2x2) , for each f∈C2 (0,∞) .

We now estimate the following quantitative Voronovskaja-type asymptotic formula.

Theorem 2.2. Let f ′′ ∈ C∗2 (0,∞) and r ∈ N. Then for x > 0, we have∣∣∣∣∣P̃n,r(f, x)− f (x)−
[

(n+ 1)
((n+ 1)r)1/r − 1

]
xf ′(x)

−
[

(n+ 1)2

((n+ 1)r)2/r − 2 (n+ 1)
((n+ 1)r)1/r + 1

]
x2

2 f
′′ (x)

∣∣∣∣∣
≤C

(
1 + x2

)
Ω
(
f ′′, n−1/2

) [
T
P̃n,r
2 (x) + n2 T

P̃n,r
6 (x)

]
,

where C is certain absolute constant.

Proof. By Taylor’s expansion,

f(t) =
2∑
i=0

(t− x)if
(i)(x)
i! + h (t, x) (t− x)2,

where
h (t, x) := f ′′ (η)− f ′′ (x)

2 ,

we have

P̃n,r(f, x)− f(x) =P̃n,r ((f(t)− f(x), x)

=T P̃n,r1 (x)f ′(x) + T
P̃n,r
2 (x)

2 f ′′(x) + P̃n,r
(
h (t, x) (t− x)2, x

)
,

and h is a continuous function which vanishes at 0 and η lies between x and t.
Proceeding along the lines of [1, Theorem 2], we have

P̃n,r
(
|h (t, x)| (t− x)2 , x

)
≤ C

(
1 + x2

)
Ω (f ′′, δ)

(
T
P̃n,r
2 (x) + 1

δ4 T
P̃n,r
6 (x)

)
.

Finally, using Lemma 2.2 and choosing δ = 1√
n
, we get the desired result. �

Corollary 2.2. Let f ′′ ∈ C∗2 (0,∞) , then for x > 0, we have∣∣∣∣∣P̃n,1(f, x)− f (x)− x2

2(n+ 1)f
′′ (x)

∣∣∣∣∣
≤C

(
1 + x2

)( x2

(n+ 1) + n2x6

(n+ 1)5 (5n2 + 160n+ 265)
)

Ω
(
f ′′, n−1/2

)
,

where C is certain absolute constant.
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3. Estimates for Polynomially Bounded Functions

In this section, we are going to extend our point wise estimates for unbounded
functions defined on (0,∞) and having polynomial growth of order greater than 2. In
recent years several authors in [2,4,17] and [14] have studied such problems. We recall
that in Section 4, we used Ω(f ; δ) appropriate for functions with polynomial growth
of order at most 2. To overcome this R. Pǎltǎnea introduced in [14] the weighted
modulus ωϕ(f ;h) defined as

ωϕ(f ;h) = sup
{
|f(x)− f(y)| : x ≥ 0, y ≥ 0, |x− y| ≤ hϕ

(
x+ y

2

)}
, h ≥ 0,

where ϕ(x) =
√
x

1+xm , x ∈ (0,∞), m ∈ N, m ≥ 2. We consider here those functions, for
which we have the property

lim
h→0

ωϕ(f ;h) = 0.

It is easy to verify that this property is fulfilled for f an algebraic polynomial of
degree less than or equal to m. This follows from Theorem 2 in [14], which states that
limh→0 ωϕ(f ;h) = 0 whenever the function f ◦ e2 is uniformly continuous on (0, 1] and
the function f ◦ ev, v = 2

2m+1 is uniformly continuous on [1,∞), where ev(x) = xv,
x ≥ 0. Let us denote by Wϕ(0,∞) the subspace of all real functions defined on (0,∞),
for which the two conditions mentioned above hold true. In [17] we studied positive
linear operators Ln : E → C(0,∞), where E is a subspace of C(0,∞), such that
Ck(0,∞) ⊂ E with k = max{m+ 3, 6, 2m} and

Ck(0,∞) = {f ∈ C(0,∞) exists M > 0 : |f(x)| ≤M(1 +xk) for all x > 0}, k ∈ N.

One of main results of [17] which we are going to apply for P̃n,r is the following
quantitative estimate in terms of weighted modulus ωϕ(f ;h) (see [17, Theorem 2.2]).

Theorem 3.1 (Theorem A). Let Ln : E → C(0,∞), Ck(0,∞) ⊂ E, k = max{m +
3, 6, 2m} be sequence of linear positive operators, preserving the linear functions. If
f ∈ C2(0,∞) ∩ E and f ′′ ∈ Wϕ(0,∞), then we have for x ∈ (0,∞) that∣∣∣∣Ln(f, x)− f(x)− 1

2f
′′(x)µLn,2(x)

∣∣∣∣
≤1

2

µLn,2(x) +
√

2

√√√√√Ln
[1 +

(
x+ |t− x|2

)m]2

;x

ωϕ

f ′′;(µLn,6
x

)1/2 .(3.1)

Here µLn,k(x) = Ln((t− x)k, x) is the k-th order central moment of Ln.

We point out here that the statement in Theorem A can be extended for positive
linear operators which don’t preserve linear functions what we need in this case is to
add the term µLn,1(x)f ′(x) in the left side of (3.1). As an application of Theorem A,
we have the following result for modified Post-Widder operators.
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Theorem 3.2. Let P̃n,r : E → C(0,∞), Ck(0,∞) ⊂ E, k = max{m + 3, 6, 2m},
be the sequence of linear positive operators, preserving the test function er. If f ∈
C2(0,∞) ∩ E and f ′′ ∈ Wϕ(0,∞), then we have for x ∈ (0,∞) that∣∣∣∣∣P̃n,r(f, x)− f(x)−

[
(n+ 1)

((n+ 1)r)1/r − 1
]
xf ′(x)(3.2)

− x2

2 f
′′(x)

[
(n+ 1)2

((n+ 1)r)2/r − 2 (n+ 1)
((n+ 1)r)1/r + 1

]∣∣∣∣∣
≤1

2

[(
(n+ 1)2

((n+ 1)r)2/r − 2 (n+ 1)
((n+ 1)r)1/r + 1

)
x2(3.3)

+
√

2

√√√√√P̃n,r
[1 +

(
x+ |t− x|2

)m]2

;x



× ωϕ
(
f ′′;

([
(n+ 1)6

((n+ 1)r)6/r − 6 (n+ 1)5

((n+ 1)r)5/r + 15 (n+ 1)4

((n+ 1)r)4/r

− 20 (n+ 1)3

((n+ 1)r)3/r + 15 (n+ 1)2

((n+ 1)r)2/r − 6 (n+ 1)
((n+ 1)r)1/r + 1

]
x5
)1/2)

.

We observe that the argument of ωϕ(f ′′; δ) in above theorem is of order δ = O(n−3/2),
n→∞.

Corollary 3.1. Under the assumption of above theorem, if the operators preserve test
function e1, then we have∣∣∣∣∣P̃n,1(f, x)− f(x)− x2

2(n+ 1)f
′′(x)

∣∣∣∣∣
≤1

2

 x2

n+ 1 +
√

2

√√√√√P̃n,1
[1 +

(
x+ |t− x|2

)m]2

;x



× ωϕ
(
f ′′;

([
(n+ 2)5

(n+ 1)5 − 6(n+ 2)4

(n+ 1)4 + 15(n+ 2)3

(n+ 1)3

− 20(n+ 2)2

(n+ 1)2 + 15(n+ 2)
(n+ 1) − 5

]
x5
)1/2)

.

We consider ML
n,k = Ln(|t − x|k, x) as the k-th order absolute moments of opera-

tors Ln.
The next main result of [17], which we are going to apply for the operators Pn,r is

the following quantitative variant of Voronovskaja theorem (see [17, Theorem 2.3]).

Theorem 3.3 (Theorem B). Let Ln : E → C(0,∞), Ck(0,∞) ⊂ E, k = max{m +
3, 4}, be sequence of linear positive operators, preserving the linear functions. If
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f ∈ C2(0,∞) ∩ E and f ′′ ∈ Wϕ(0,∞), then we have for x ∈ (0,∞) that∣∣∣∣Ln(f, x)− f(x)− 1
2f
′′(x)µLn,2(x)

∣∣∣∣
≤1

2

[
µLn,2(x) +

√
2√
x
µLn,2(x)Cn,2,m(x)

]
ωϕ

f ′′;
√√√√µLn,4(x)
µLn,2(x)

 ,(3.4)

where

Cn,2,m(x) = 1 + 1
ML

n,3(x)

m∑
k=0

(
m

k

)
xm−k

ML
n,k+3(x)

2k .

We suppose for the operators Ln that

ML
n,k

ML
n,3
, 4 ≤ k ≤ m,

is a bounded ratio for fixed x and m, when n→∞.

Using Cauchy-Schwarz inequality, we have

P̃n,r(|t− x|k, x) ≤
√
P̃n,r((t− x)2k, x)

Applying Lemma 2.2, we have

P̃n,r(|t− x|k, x) = O(n−k/2), n→∞,

and so it is easy to observe that Cn,2,m(x) is a bounded term for fixed x and m when
n → ∞. Also as in Theorem A, we point out that the statement in Theorem B
can be extended in a similar way for positive linear operators, which don’t preserve
linear functions. As an application of Theorem B we obtain the following quantitative
asymptotic Voronovskaja theorem for P̃n,r.

Theorem 3.4. Let P̃n,r : E → C(0,∞), Ck(0,∞) ⊂ E, k = max{m + 3, 4}, be
sequence of linear positive operators, preserving the test function er. If f ∈ C2(0,∞)∩
E and f ′′ ∈ Wϕ(0,∞), then we have for x ∈ (0,∞) that∣∣∣∣∣∣P̃n,r(f, x)− f(x)− T P̃n,r1 (x)f ′(x)− T

P̃n,r
2 (x)

2 f ′′(x)

∣∣∣∣∣∣
≤T

P̃n,r
2 (x)

2

[
1 +
√

2√
x
Cn,2,m(x)

]
ωϕ

f ′′;x
√√√√√T

P̃n,r
4 (x)

T
P̃n,r
2 (x)

 ,
where

Cn,2,m(x) = 1 + 1

M
P̃n,r
n,3 (x)

m∑
k=0

(
m

k

)
xm−k

M
P̃n,r
n,k+3(x)

2k .
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Corollary 3.2. If f, f ′′ satisfy the same conditions as in the assumption of Theorem
3.4, then we have for x ∈ (0,∞) that

lim
n→∞

n[P̃n,r(f, x)− f(x)] = xf ′(x) + x2

2 f
′′(x).

Corollary 3.3. Under the assumption of above Theorem 3.4, if the operators preserve
test function e1, then we have∣∣∣∣∣P̃n,1(f, x)− f(x)− x2

2(n+ 1)f
′′(x)

∣∣∣∣∣
≤ x2

2(n+ 1)

[
1 +
√

2√
x
Cn,2,m(x)

]
ωϕ

f ′′;x
√

3(n+ 3)
n+ 1

 .
Our next goal in this section is to obtain estimates in terms of K-functional for

polynomially bounded functions. We recall some notations from [4].
If m ∈ N is fixed we consider the weight

ρ(x) = ρm(x) = (1 + x)−m, x ∈ I ≡ [0,∞).
The polynomials weighted space associated to ρ is defined by

Cρ(I) = {f ∈ C(I) : ||f ||ρ <∞},
where

||f ||ρ = sup
x≥0

ρ(x)|f(x)|.

In [4] it was used

φ(x) =
√

(1 + ax)(bx+ c), a ∈ N0, b > 0, c ≥ 0.
Here we set a = b = c = 1, i.e.,
(3.5) φ(x) = 1 + x.

For λ ∈ [0, 1], s = 1, 2, and f ∈ Cρ(I), we consider the K-functional

(3.6) Ks,φλ(f, t)ρ = inf{||f − g||ρ + ts||φλs · g(s)||ρ, g ∈ W∞
s,λ(φ)},

where W∞
s,λ(φ)} consists of all functions g ∈ Cρ(0,∞) such that g(s−1) is absolutely

continuous on every finite closed subinterval of (0,∞) and ||φλs · g(s)||ρ <∞.
One of the main results in [4] is Theorem 1 which we cite here as (see [4, page 1498]).

Theorem 3.5 (Theorem C). For a positive integer m, ρ(x) = (1 + x)−m and φ(x) =√
(1 + ax)(bx+ c), a ∈ N0, b > 0, c ≥ 0, and for positive linear operator Ln : Cρ(I)→

C(I), we suppose the following conditions:
(i) Ln(e0) = e0;
(ii) there exist a constant C1 and a sequence {αn}, αn → 0, n→∞, such that

Ln((t− x)2, x) ≤ C1αnφ
2(x);
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(iii) there exists a constant C2 = C2(m) such that for each m ∈ N

Ln((1 + t)m) ≤ C2(1 + x)m, x ≥ 0;
(iv) there exists a constant C3 = C3(m), such that for each m ∈ N

ρ(x)Ln((t− x)2/ρ(t);x) ≤ C3αnφ
2(x), x ≥ 0.

Then for λ ∈ [0, 1] there exists a constant C4 = C4(m,λ) such that for any f ∈ Cρ(I),
x ∈ I, n ∈ N, one has

(3.7) ρ(x) |f(x)− Ln(f ;x)| ≤ C4K1,φλ
(
f ;√αnφ1−λ(x)

)
ρ
, x ≥ 0,

where K1,φλ (f ; t)ρ is defined in (3.6) for s = 1.
If in addition Ln(e1) = e1, then there exists a constant C5 = C5(m,λ) such that

(3.8) ρ(x) |f(x)− Ln(f ;x)| ≤ C5K2,φλ
(
f ;√αnφ1−λ(x)

)
ρ
,

where K2,φλ(f ; t)ρ is the K-functional defined in (3.6) for s = 2.

We apply Theorem C for the modified Post-Widder operators P̃n,r. The condition (i)
is trivial. The condition (ii) follows from the representation of second central moment
T
P̃n,r
2 (x) in Lemma 2.2, with αn = 1

n
. The condition (iii) follows from representation

of P̃n,r(tk;x) = (n+1)k
((n+1)r)k/rx

k obtained in previous section. To verify condition (iv) we
apply Cauchy-Schwarz inequality and, by Lemma 2.2,

(1 + x)−mP̃n,r
(
(t− x)2(1 + t)m;x

)
≤(1 + x)−m

√
P̃n,r ((t− x)4;x)

√
P̃n,r ((1 + t)2m;x)

≤(1 + x)−mC(r)T P̃n,r2 (x)
√
C2(m)(1 + x)2m

≤C(r)
√
C2(m)T P̃n,r2 (x)

≤C3αnφ
2(x), x ≥ 0,

where we have used condition (iii) and representation of T P̃n,r2 in Lemma 2.2. Therefore,
as a consequence from Theorem C, we obtain the following.

Theorem 3.6. Let ρ(x) = (1 + x)−m, m ∈ N, f ∈ Cρ(I), φ(x) = 1 + x, r ∈ N, r ≥ 2,
α = 1

n
. Then for λ ∈ [0, 1] we have

(3.9) ρ(x)
∣∣∣P̃n,r(f ;x)− f(x)

∣∣∣ ≤ C(m,λ)K1,φλ
(
f ;√αnφ1−λ(x)

)
ρ
.

For r = 1 we have
(3.10) ρ(x)

∣∣∣P̃n,1(f ;x)− f(x)
∣∣∣ ≤ C(m,λ)K2,φλ

(
f ;√αnφ1−λ(x)

)
ρ
.

Remark 3.1. It is known (see [5]) that the K-functional Ks,φλ(f ; t)ρ is equivalent
to Ditzian-Totik moduli ωsφλ(f ; t)ρ. In the most important cases λ = 0 (point-wise
Becker-type estimate) and λ = 1 (estimate in norm) we can formulate (3.9) and
(3.10) in terms of ωsφλ(f ; t)ρ. If we denote by Cρ,∞ the set of all continuous functions
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on (0,∞) such that ρ(x)f(x) has finite limit as x → ∞, then it can be proved that
limt→0+ ωsφλ(f ; t)ρ = 0 whenever f ∈ Cρ,∞(0,∞). For λ = 0 we get from here estimates
(1.3) and (2.3)–(2.6) with some constant C independent of f and n in place of 2.

4. Linear Combinations of Modified Post-Widder Operators

From Corollary 2.1 and Corollary 3.2 we see that bounded continuous functions
f ∈ CB(0,∞) and also polynomially bounded functions can be approximated by
P̃n,r with order of approximation not greater than O(n−1). To increase the order of
approximation we consider the linear combinations Ln,r of P̃n,r. For more general
settings and recent results for approximation by positive linear operators we refer
the readers to the monograph [9]. Following the idea from [9] we will consider the
following linear combinations

(4.1) Ln,r =
r∑
i=0

αi(n)P̃ni,r,

where ni, i = 0, 1, . . . , are different positive numbers, r ∈ N. Determine αi(n) such
that Ln,rp = p for all p ∈ πr the set of algebraic polynomials of degree less than
or equal to r. This seems to be natural as the operators P̃n,r don’t preserve linear
functions if r ≥ 2. The requirement that each polynomial of degree at most r should
be reproduced leads to the linear system

(4.2) Ln,r(tk, x) = xk, 0 ≤ k ≤ r.

From the nice representation of the images of monomials obtained in Section 2,
P̃n,r(tm, x) = (n+1)m

((n+1)r)m/rx
m and (4.1), we obtain the system

(4.3)


α0(n) + α1(n) + α2(n) + · · ·+ αr(n) = 1,
r∑
i=0

αi(n) (ni + 1)m
((ni + 1)r)m/r

= 1, 1 ≤ m ≤ r.

We observe that if m = r in (4.3), the last equation coincides with the first one. So to
have a unique solution for the coefficients αi(n), we may impose additional condition

(4.4) Ln,r(tr+1, x) = xr+1.

Then the system (4.3) will have the form

(4.5)



α0(n) + α1(n) + α2(n) + · · ·+ αr(n) = 1,
r∑
i=0

αi(n) (ni + 1)m
((ni + 1)r)m/r

= 1, 1 ≤ m ≤ r − 1,
r∑
i=0

αi(n) (ni + 1)r+1

((ni + 1)r)(r+1)/r = 1.

Then from (4.5), we observe that all the polynomials of degree up to r + 1 will be
preserved by the combinations Ln,r from (4.1). To obtain the direct estimate for
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approximation by linear combinations Ln,r, one need two additional conditions
(4.6) n = n0 < n1 < n2 < · · · < nr ≤ An, A = A(r),

(4.7)
r∑
i=0
|αi(n)| ≤ C.

The condition (4.6) guarantees that
(4.8) Ln,r(|t− x|r+2, x) = O(n−(r+2)/2), n→∞
The fact that all polynomials of degree less or equal to r + 1 are preserved allow us
to consider approximating functions f from much larger class than CB(0,∞), namely
we consider f ∈ πr+1 + CB(0,∞), where πr+1 is the set of all algebraic polynomials
of degree ≤ r + 1. Then following the same method applied by the authors in [10,
Theorem 4] we arrive at the proof of following theorem.

Theorem 4.1. Let f ∈ πr+1 + CB(0,∞). Then for every x ∈ (0,∞) and for C > 0,
n > r and if the coefficients αi(n) and numbers ni, 0 ≤ i ≤ r, satisfy the conditions
(4.5), (4.6) and (4.7), we have
(4.9) |Ln,r(f, x)− f(x)| ≤ Cωr+2(f, n−1/2).

Corollary 4.1. If f ∈ πr+1 + CB(0,∞) and f (r+2) ∈ CB(0,∞), then
(4.10) |Ln,r(f, x)− f(x)| ≤ Cn−(r+2)/2||f (r+2)||CB(0,∞).

Let us consider the case r = 1. In this case, to determine the coefficients α0(n) and
α1(n) from (4.5), we get

α0(n) + α1(n) = 1,

α0(n)(n0 + 1)2

(n0 + 1)2 + α0(n)(n1 + 1)2

(n1 + 1)2 = 1.

The solution of this system is

(4.11) α0(n) = − n0 + 1
n1 − n0

, α1(n) = n1 + 1
n1 − n0

.

Obviously α1(n) > 0, α0(n) < 0. According to the conditions (4.6), (4.7), we must
be careful with the choice of α0(n), α1(n). For example, if n0 = n, n1 = 2n, then
(4.11) implies

α0(n) = −1− 1
n
, α1(n) = 2 + 1

n
,

and (4.7) is satisfied. But if n0 = n and n1 = n + 1, then α0(n) = −(n + 1),
α1(n) = n+ 2 and (4.7) is not fulfilled although (4.6) is true.

We observe that linear combinations Ln,1 preserve e0, e1, e2. Therefore, if π2 denotes
the space of all algebraic polynomials of degree 2, we may consider the approximating
functions f to be every f ∈ π2 + CB(0,∞), which means that we consider f = g + h,
where g ∈ π2 is an arbitrary algebraic polynomial of degree less than or equal to 2
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and g ∈ CB(0,∞) is an arbitrary bounded continuous function. With α0, α1 defined
in (4.11) we have

Theorem 4.2. Let f ∈ π2 + CB(0,∞). Then for every C > 0, n > 1, we have the
following:
(4.12) |Ln,1(f, x)− f(x)| ≤ Cω3(f, n−1/2).
If f ′′′ ∈ CB(0,∞), then
(4.13) |Ln,1(f, x)− f(x)| ≤ Cn−3/2||f ′′′||CB(0,∞).

Remark 4.1. We observe that the estimates with linear combinations Ln,r from The-
orem 4.1 and Corollary 4.1 are better than the previous estimates [16, (1.3)], also
from [10]. The reason for this effect is that our modified Post-Widder operators Pn,r
preserve e0 and er.
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