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ON DOUBLE q-LAPLACE TRANSFORM AND APPLICATIONS

P. NJIONOU SADJANG1 AND S. MBOUTNGAM2

Abstract. We introduce four q-analogues of the double Laplace transform and
prove some of their main properties. Next we show how they can be used to solve
some q-functional equations and partial q-differential equations.

1. Introduction

The classical Laplace transform of a function f is given by

(1.1) L{f(t)}(s) =
∫ +∞

0
e−stf(t)dt, s = a + ib ∈ C,

and plays a fundamental role in pure and applied analysis. Laplace transform has
been studied very extensively and has found to have a wide variety of applications in
mathematical, physical, statistical, and engineering sciences and also in other sciences.
There is a very extensive literature available of the Laplace transform of a function
f(t) of one variable t and its applications (see for example Churchill [9], Schiff [21],
Debnath and Bhatta [10] and the references therein).

The double Laplace transform of a function f(x, y) of two variables was first in-
troduced in 1939 by Berstein in his dissertation [5] (later pubished as an article [6])
as

(1.2) L2(f(x, y))(r, s) =
∫ +∞

0

∫ +∞

0
f(x, y)e−(rx+sy)dxdy,
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where x and y are two positive numbers, r and s are complex numbers. Very recently,
several interesting properties and applications of the double Laplace transform to
functional, integral and partial differential equations have been studied in [11].

The development of q-analysis started in the 1740s, when Euler initiated the theory
of partitions, also called additive analytic number theory. Euler always wrote in Latin
and his collected works were published only at the beginning of the 1800s, under the
legendary Jacobi. In 1829 Jacobi presented his triple product identity (sometimes
called the Gauss-Jacobi triple product identity), and his θ and elliptic functions, which
in principle are equivalent to q-analysis. The progress of q-calculus continued under
C. F. Gauss (1777–1855), who in 1812 invented the hypergeometric series and their
contiguity relations. Gauss would later invent the q-binomial coefficients and prove
an identity for them, which forms the basis for q-analysis.

The theory of q-analysis have been applied in recent past in many areas of mathemat-
ics and physics like ordinary fractional calculus, optimal control problems, quantum
calculus, q-transform analysis and in finding solutions of the q-difference and q-integral
equations. In 1910, Jackson [15] presented a precise definition of the so-called the
q-Jackson integral and developed q-calculus in a systematic way.

In order to deal with q-difference equations, q-versions of the classical Laplace
transform have been consecutively introduced in the literature. Studies of q-versions
of Laplace transform go back to Hahn [14]. Abdi [1–3] published also many results in
this domain. In a recent paper [8] two very interesting versions of q-Laplace transform
are introduced as follows

(1.3) Lq(f(t))(s) =
∫ +∞

0
Eq(−qst)f(t)dqt, s > 0,

for the first kind and

(1.4) Lq(f(t))(s) =
∫ +∞

0
eq(−st)f(t)dqt, s > 0,

for the second kind. Note that both (1.3) and (1.4) generalize (1.1). We will frequently
use some properties of (1.3) and (1.4) and will refer the reader to the paper [8] for
more details.

In this paper, we introduce four kinds of double q-Laplace transforms and prove
their main properties. Next, applications are done to solve some classical partial q-
differential equations that appear in the litterature. The double q-Laplace transform
introduced here are clearly generalization of the one given in [5].

2. Basic Definitions and Miscellaneous Results

2.1. q-number, q-factorial, q-binomial, q-power, q-addition. For any complex
number a, the basic or q-number is defined by

[a]q = 1 − qa

1 − q
, q ̸= 1.
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For any non negative integer n, the q-factorial is defined by

[n]q! = [n]q[n − 1]q · · · [1]q =
n∏

k=1
[k]q, n ∈ N, [0]q! = 1,

and the q-pochhammer is defined as

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1 − aqk), n ∈ N.

The limit, limn→+∞(a; q)n is denoted by (a; q)∞, provided that |q| < 1. Then,

(a; q)n = (a; q)∞

(aqn; q)∞
, n ∈ N0, |q| < 1,

and for any complex number α, this definition can be extended by

(a; q)α = (a; q)∞

(aqα; q)∞
, |q| < 1,

where the principal value of qα is taken.
The q-binomial coefficients are defined by[

n
k

]
q

= [n]q!
[k]q![n − k]q!

= (q; q)n

(q; q)k(q; q)n−k

, 0 ≤ k ≤ n.

It is worth noting that
[

n
k

]
q

=
[

n
n − k

]
q

.

The q-power basis is defined by

(x ⊖ y)n
q =

{
(x − y)(x − yq) · · · (x − yqn−1), n = 1, 2, . . . ,
1, n = 0.

In the same line we introduce the following notation

(x ⊕ y)n
q =

{
(x + y)(x + yq) · · · (x + yqn−1), n = 1, 2, . . . ,
1, n = 0.

It is not difficult to proved that (see [19])

(x ⊕ y)n
q =

n∑
k=0

[
n
k

]
q

q(n−k
2 )xkyn−k.

In [22], Schork has studied Ward’s ”Calculus of Sequences” and introduced a q-addition
x ⊕q y by

(x ⊕q y)n =
n∑

k=0

[
n
k

]
q

xkyn−k,

and although this q-addition was already known to Jackson, it was generalized later
on by Ward and Al-Salam. For more information about different q-additions, see e.g.
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[13]. Similarly the q-subtraction can be defined in the same way by [16]

(2.1) (x ⊖q y)n =
n∑

k=0

[
n
k

]
q

xk(−yn−k) = (x ⊕q (−y))n.

Al-Salam introduced in [4] the following q-coaddition

(x ⊞q y)n =
n∑

k=0

[
n
k

]
q

qk(k−n)xkyn−k.

We introduce the following q-cosubtraction [13, p. 233]

(x ⊟q y)n = (x ⊞q (−y))n =
n∑

k=0

[
n
k

]
q

qk(k−n)xk(−y)n−k.

2.2. The q-derivative and the q-integral. The q-derivative operator is defined by
[17,18]

Dqf(x) = f(x) − f(qx)
(1 − q)x , x ̸= 0,

satisfying the important product rule
Dq(f(x)g(x)) = f(x)Dqg(x) + g(qx)Dqf(x).

In this sense, note that when we deal with functions f(x1, x2, . . . , xn) of more than one
variable, we denote Dqf by Dq,xi

f or ∂q

∂qxi
f to make clear that the derivative is taken

with respect to the variable xi. For the case of two variables x and y for example, the
q-partial derivative with respect to x is given by [20]

Dq,xf(x, y) = f(x, y) − f(qx, y)
(1 − q)x , x ̸= 0,

and
Dq,xf(x, y)

∣∣∣
x=0

= lim
x→0

Dq,xf(x, y).

The q-integral operator is defined by [17,18]∫ z

0
f(z)dqt = z(1 − q)

+∞∑
k=0

qkf(zqk).

This definition can be established based on a simple geometric series.
Note that for a < b two real numbers, one has∫ b

a
f(x)dqx =

∫ b

0
f(x)dqx −

∫ a

0
f(x)dqx,

and the q-integration by part is∫ b

a
f(x)Dqg(x)dqx = f(b)g(b) − f(a)g(a) −

∫ b

a
g(qx)Dqf(x)dqx.

Note that in this q-integration by part, b = +∞ is allowed as well [17].
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2.3. The q-hypergeometric, the q-exponential and q-trigonometric functions.
The basic hypergeometric or q-hypergeometric function rϕs is defined by the series

rϕs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣ q; z

)
:=

+∞∑
k=0

(a1, . . . , ar; q)k

(b1, . . . , bs; q)k

(
(−1)kq(k

2)
)1+s−r zk

(q; q)k

.

where
(a1, . . . , ar)k := (a1; q)k · · · (ar; q)k,

The usual exponential function may have two different natural q-extensions, denoted
by eq(z) and Eq(z), which are defined, respectively, by

eq(z) := 1ϕ0

(
0
−

∣∣∣∣∣ q; (1 − q)z
)

=
+∞∑
n=0

zn

[n]q!
, 0 < |q| < 1, |z| < 1,

and

Eq(z) := 0ϕ0

(
−
−

∣∣∣∣∣ q, −(1 − q)z
)

=
+∞∑
n=0

q(n
2)

[n]q!
zn, 0 < |q| < 1.

It is worth noting that eq(z) and Eq(z) are linked by the well known relation

eq(z)Eq(−z) = 1.

They fulfil the q-defivative rules

Dqeq(λx) = λeq(λx),
DqEq(λx) = λEq(λqx).

It is not difficult to see that [4, 8, 13]

(2.2) eq(x)eq(t) = eq(x ⊕q y), for all x, y ∈ C,

and
Eq(x)Eq(t) = Eq(x ⊞q y), for all x, y ∈ C.

From these definitions of the q-exponential functions, we derive the following q-
trigonometric functions [8, 17]

cosq(z) = eq(iz) + eq(−iz)
2 =

+∞∑
n=0

(−1)nz2n

[2n]q!
,

sinq(z) = eq(iz) − eq(−iz)
2i

=
+∞∑
n=0

(−1)nz2n+1

[2n + 1]q!
,

Cosq(z) = Eq(iz) + Eq(−iz)
2 =

+∞∑
n=0

(−1)nq(2n
2 )

[2n]q!
z2n,

Sinq(z) = Eq(iz) − Eq(−iz)
2i

=
+∞∑
n=0

(−1)nq(2n+1
2 )

[2n + 1]q!
z2n+1,
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and the hyperbolic q-trigonometric functions

coshq(z) = eq(z) + eq(−z)
2 =

+∞∑
n=0

z2n

[2n]q!
,

sinhq(z) = eq(z) − eq(−z)
2 =

+∞∑
n=0

z2n+1

[2n + 1]q!
,

Coshq(z) = Eq(z) + Eq(−z)
2 =

+∞∑
n=0

q(2n
2 )

[2n]q!
z2n,

Sinhq(z) = Eq(z) − Eq(−z)
2 =

+∞∑
n=0

q(2n+1
2 )

[2n + 1]q!
z2n+1.

2.4. The q-Gamma functions. The q-Gamma function of the first kind [17] is
defined for 0 < q < 1 as

Γq(t) =
∫ +∞

0
xt−1Eq(−qx)dqx, t > 0.

It satisfies the fundamental relation
Γq(t + 1) = [t]qΓq(t), t > 0.

Since for any non-negative integer n

Γq(n + 1) = [n]q!,
it is clear that the q-Gamma function is a generalization of the q-factorial.

The q-Gamma function of the second kind [8, 12] is definded by

γq(t) =
∫ +∞

0
xt−1eq(−x)dqx, t > 0,

and satisfied
γq(1) = 1, γq(t + 1) = q−t[t]qγq(t), γq(n) = q−(n

2)Γq(n), n ∈ N.

3. Double q-Laplace Transform of the First Kind

Based on definitions (1.2) and (1.3) we define the double q-Laplace transform of
the first kind as

(3.1) L
(1)
2,q[f(x, y)](r, s) =

∫ +∞

0

∫ +∞

0
f(x, y)Eq(−qrx)Eq(−qsy)dqxdqy, r, s > 0.

Note that if f(x, y) = g(x)h(y), then

(3.2) L
(1)
2,q[f(x, y)](r, s) = Lq{g(x)}(r)Lq{h(y)}(s).

In particular, if h(y) = 1 or g(x) = 1, then (3.2) reads

(3.3) L
(1)
2,q[f(y)](r, s) = Lq{1}(r)Lq{f(y)}(s) = 1

r
Lq{f(y)}(s)
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and

(3.4) L
(1)
2,q[f(x)](r, s) = Lq{g(x)}(r)Lq{1}(s) = 1

s
Lq{g(x)}(r).

Proposition 3.1. For any two complex numbers α and β, we have

L
(1)
2,q {αf(x, y) + βg(x, y)} = αL

(1)
2,q{f(x, y)} + βL

(1)
2,q{g(x, y)}.

Proof. The proof follows from (3.1). □

In what follows, we give some examples. From (3.1), we note that:

L
(1)
2,q{1}(r, s) =

∫ +∞

0

∫ +∞

0
Eq(−qrx)Eq(−qsy)dqxdqy

=
(∫ +∞

0
Eq(−qrx)dqx

)(∫ +∞

0
Eq(−qsy)dqy

)
= 1

r
· 1

s
= 1

rs
.

L
(1)
2,q{xy}(r, s) =

∫ +∞

0

∫ +∞

0
xyEq(−qrx)Eq(−qsy)dqxdqy

=
(∫ +∞

0
xEq(−qrx)dqx

)(∫ +∞

0
yEq(−qsy)dqy

)
= 1

r2 · 1
s2 = 1

(rs)2

and
L

(1)
2,q{1 + 4xy}(r, s) = L

(1)
2,q{1}(r, s) + 4L(1)

2,q{xy}(r, s) = 1
rs

+ 4
(rs)2 .

We recall the following important relation [17],

(3.5)
∫ +∞

0
f(αx)dqx = 1

α

∫ +∞

0
f(x)dqx,

where α is a non zero complex number and f is a one variable function.
Now we state the scaling theorem for L

(1)
2,q.

Theorem 3.1. Let a and b be two non zero complex numbers, f a two variable
function, then the following formula applies

(3.6) L
(1)
2,q{f(ax, by)}(r, s) = 1

ab
L

(1)
2,q{f(x, y)}

(
r

a
,
s

b

)
.

Proof. Using relation (3.5), we have

L
(1)
2,q{f(ax, by)}(r, s) =

∫ +∞

0

∫ +∞

0
f(ax, by)Eq(−qrx)Eq(−qsy)dqxdqy

=
∫ +∞

0

(∫ +∞

0
f(ax, by)Eq(−qrx)dqx

)
Eq(−qsy)dqy

= 1
a

∫ +∞

0

(∫ +∞

0
f(x, by)Eq

(
−qx

r

a

)
dqx

)
Eq(−qsy)dqy
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= 1
a

∫ +∞

0

(∫ +∞

0
f(x, by)Eq(−qsy)dqy

)
Eq

(
−qx

r

a

)
dqx

= 1
ab

∫ +∞

0

(∫ +∞

0
f(x, y)Eq

(
−qy

s

b

)
dqy

)
Eq

(
−qx

r

a

)
dqx

= 1
ab

∫ +∞

0

∫ +∞

0
f(x, y)Eq

(
−qx

r

a

)
Eq

(
−qy

s

b

)
dqxdqy,

and the proof of the theorem is completed. □

Theorem 3.2. For α > −1, β > −1, we have the following

L
(1)
2,q{xαyβ}(r, s) = Γq(α + 1)

rα+1 · Γq(β + 1)
sβ+1 .

In particular, for α = n ∈ N and β = m ∈ N, we get

L
(1)
2,q{xnym}(r, s) = [n]q![m]q!

rn+1sm+1 .

Proof. The proof follows from the relation Lq{tα}(s) = Γq(α+1)
sα+1 (see [8]) and the

obvious equation

L
(1)
2,q{xαyβ}(r, s) = Lq{xα}(r) × Lq{yβ}(s). □

Let us take for example α = −1
2 and β = 1

2 . Then we see that

L
(1)
2,q

(√
y

x

)
(r, s) = Lq{x− 1

2 }(r) × Lq{y
1
2 }(s) = Γq

(1
2

)
Γq

(3
2

) 1
s
√

rs
,

and for α = −1
2 and β = −1

2 we have

L
(1)
2,q

(
1

√
xy

)
(r, s) = Lq{x− 1

2 }(r) × Lq{y− 1
2 }(s) =

[
Γq

(1
2

)]2 1√
rs

.

Proposition 3.2. Let a and b be two real numbers. Then we have:

(3.7) L
(1)
2,q

{
(ax ⊕q by)n

}
(r, s) = [n]q!

br − as

(b

s

)n+1

−
(

a

r

)n+1
 .

Proof. Combining the scaling property (see equation (3.6)) and (2.2) we have

L
(1)
2,q

{
(ax ⊕q by)n

}
(r, s) =

n∑
k=0

[
n
k

]
q

L
(1)
2,q

{
(ax)k(by)n−k

}
(r, s)

= 1
ab

n∑
k=0

[
n
k

]
q

L
(1)
2,q

{
xkyn−k

}(r

a
,
s

b

)

= 1
ab

n∑
k=0

[
n
k

]
q

[k]q![n − k]q!
rk+1sn−k+1 ak+1bn−k+1

= [n]q!
ab

(
a

r

)(
b

s

)n+1 n∑
k=0

(
as

rb

)k



ON DOUBLE q-LAPLACE TRANSFORM AND APPLICATIONS 551

= [n]q!
br − as

(b

s

)n+1

−
(

a

r

)n+1
 .

This ends the proof of the proposition. □

Theorem 3.3. Let a and b be two complex numbers, then

L
(1)
2,q{eq(ax ⊕q by)}(r, s) = 1

(r − a)(s − b) , r > Re (a), s > Re (b).

Proof. Using the definition of the q-addition (2.1), and Proposition 3.2 we have

L
(1)
2,q{eq(ax ⊕q by)}(r, s) =

+∞∑
n=0

L
(1)
2,q

{
(ax ⊕q by)n

[n]q!

}
(r, s)

= 1
br − as

+∞∑
n=0

(b

s

)n+1

−
(

a

r

)n+1


= 1
br − as

(
s

s − b
− r

r − a

)
= 1

(r − a)(s − b) . □

Note also that this result can be obtained using equations (2.2), (3.2) and the fact
that (see [8]):

(3.8) Lq(eq(ax))(s) = 1
s − a

.

Proposition 3.3. The following formulas apply

L
(1)
2,q{cosq(ax ⊕q by)}(r, s) = rs − ab

(r2 + a2)(s2 + b2) ,(3.9)

L
(1)
2,q{sinq(ax ⊕q by)}(r, s) = as + br

(r2 + a2)(s2 + b2) .(3.10)

Proof. We indicate two proofs of these equations. First we can use the relations (see
[16])

cosq(x ⊕q y) = cosq(x) cosq(y) − sinq(x) sinq(y),
sinq(x ⊕q y) = sinq(x) cosq(y) + cosq(x) sinq(y),

together with the equations (3.2) and (3.8).
For the second proof, we remark first that for any complex number λ, we have

eq(λ(x ⊕q y)) = eq(λx ⊕q λy), to write

cosq(ax ⊕q by) = 1
2 (eq(i(ax ⊕q by)) + eq(−i(ax ⊕q by)))

= 1
2 (eq((aix ⊕q biy)) + eq((−aix ⊕q −biy))) ,
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sinq(ax ⊕q by) = 1
2i

(eq(i(ax ⊕q by)) − eq(−i(ax ⊕q by)))

= 1
2i

(eq((aix ⊕q biy)) − eq((−aix ⊕q −biy))) .

Hence, using the linearity of L(1)
2,q, and equation (3.3), it follows that

L
(1)
2,q{cosq(ax ⊕q by)}(r, s) = 1

2

{
1

(r − ai)(s − bi) + 1
(r + ai)(s + ib)

}

= rs − ab

(r2 + a2)(s2 + b2) .

This proves again (3.9). (3.10) follows in the same way. □

Proposition 3.4. The following equations apply
coshq(x ⊕q y) = coshq(x) coshq(y) + sinhq(x) sinhq(y),
sinhq(x ⊕q y) = coshq(x) sinhq(y) + sinhq(x) coshq(y).

Proof. The proof uses the definitions of the involved functions. □

Proposition 3.5. The following formulas apply

L
(1)
2,q{coshq(ax ⊕q by)}(r, s) = rs + ab

(r2 − a2)(s2 − b2) ,(3.11)

L
(1)
2,q{sinhq(ax ⊕q by)}(r, s) = as + br

(r2 − a2)(s2 − b2) .(3.12)

Proof. The proof follows from Proposition 3.4, equations (3.2) and (3.8). It can also
be done using the fact that

L
(1)
2,q {coshq(ax ⊕q by)} (r, s) = 1

2L
(1)
2,q {(eq(ax ⊕q by) + eq(−ax ⊕q −by))} (r, s)

= 1
2

{
1

(r − a)(s − b) + 1
(r + a)(s + b)

}

= rs + ab

(r2 − a2)(s2 − b2) ,

which proves (3.11). (3.12) can be obtained in a similar way. □

Theorem 3.4. Let f be a one variable function that has a q-Laplace transform.
Assume that f has the q-Taylor expansion

f(x) =
+∞∑
n=0

an
xn

[n]q!
,

then the following relation holds:

L
(1)
2,q [f(αx ⊕q βy)] (r, s) = 1

αs − βr

(
Lq

[
f(x)

] ( r

α

)
− Lq

[
f(x)

] ( s

β

))
,(3.13)

where α, β ̸= 0 and αs − βr ̸= 0.
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Proof. We have the following

f(αx ⊕q βy) =
+∞∑
n=0

an
(αx ⊕q βy)n

[n]q!
=

+∞∑
n=0

 n∑
k=0

[
n
k

]
q

(αx)k(βy)n−k

 an

[n]q!
.

Hence, it follows that

L
(1)
2,q [f(x ⊕q y)] (r, s) =

+∞∑
n=0

 n∑
k=0

[
n
k

]
q

αk[k]q!βn−k[n − k]q!
rk+1sn+1−k

 an

[n]q!

=
+∞∑
n=0

n∑
k=0

αkβn−kan

rk+1sn+1−k

= 1
αs − βr

+∞∑
n=0

an

(
α

r

)n+1
−

+∞∑
n=0

an

(
β

r

)n+1


= 1
αs − βr

(
Lq

[
f(x)

] ( r

α

)
− Lq

[
f(x)

] ( s

β

))
.

This ends the proof of the theorem. □

The next two theorems provide formulas for the double q-Laplace transform of the
partial q-derivative and the partial q-derivatives of the double q-Laplace transform.
These results are of great importance in the resolution of partial q-differential equations
as we will see in Section 5.
Theorem 3.5. The following equations hold true

L
(1)
2,q

[
∂qf

∂qx
(x, y)

]
(r, s) =rL

(1)
2,q [f(x, y)] (r, s) − Lq [f(0, y)] (s),

(3.14)

L
(1)
2,q

[
∂qf

∂qy
(x, y)

]
(r, s) =sL

(1)
2,q [f(x, y)] (r, s) − Lq [f(x, 0)] (r),

(3.15)

L
(1)
2,q

[
∂2

q f

∂qx∂qy
(x, y)

]
(r, s) =rsL

(1)
2,q [f(x, y)] (r, s) − rL

(1)
2,q [f(x, 0)] (r)

(3.16)

− sL
(1)
2,q [f(0, y)] (s) + f(0, 0),

L
(1)
2,q

[
∂2

q f

∂qx2 (x, y)
]

(r, s) =r2L
(1)
2,q [f(x, y)] (r, s) − rL

(1)
2,q [f(0, y)] (s) − Lq

[
∂qf

∂qx
(0, y)

]
(s),

L
(1)
2,q

[
∂2

q f

∂qy2 (x, y)
]

(r, s) =s2L
(1)
2,q [f(x, y)] (r, s) − sL

(1)
2,q [f(x, 0)] (r) − Lq

[
∂qf

∂qx
(x, 0)

]
(r).

Proof. From (3.1), and the formula of q-integration by parts, we have

L
(1)
2,q

[
∂qf

∂qx
(x, y)

]
(r, s) =

∫ +∞

0

∫ +∞

0

∂qf

∂qx
(x, y)Eq(−qrx)Eq(−qsy)dqxdqy
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=
∫ +∞

0

(∫ +∞

0

∂qf

∂qx
(x, y)Eq(−qrx)dqx

)
Eq(−qsy)dqy

=
∫ +∞

0

(
−f(0, y) + r

∫ +∞

0
f(x, y)Eq(−qrx)dqx

)
Eq(−qry)dqy

= −Lq [f(0, y)] (s) + rL
(1)
2,q [f(x, y)] (r, s).

Hence (3.14) is proved. The proof of (3.16) uses (3.14), (3.15) and the fact that (see
[16])

Lq

[
∂qf

∂qx
(x, 0)

]
(r) = rLq [f(x, 0)] (r) − f(0, 0).

The rest of the theorem in proved in the same way. □

The following theorem, which is obtained by induction from the previous one, is
now stated without proof.

Theorem 3.6 (Double Laplace transform of the Partial q-derivative). The following
equations are valid, where n is a non-negative integer,

L
(1)
2,q

[
∂n

q f

∂qxn
(x, y)

]
(r, s) = rnL

(1)
2,q [f(x, y)] (r, s) −

n−1∑
k=0

rn−1−kLq

[
∂k

q f

∂qxk
(0, y)

]
(s),

L
(1)
2,q

[
∂n

q f

∂qyn
(x, y)

]
(r, s) = snL

(1)
2,q [f(x, y)] (r, s) −

n−1∑
k=0

sn−1−kLq

[
∂k

q f

∂qyk
(x, 0)

]
(r).

Remark 3.1. Note that the expression

Lq

[
∂n

q f

∂qxn
(0, y)

]
(s) = snLq [f(0, y)] (s) −

n−1∑
k=0

sn−1−k ∂k
q f

∂qxk
(0, 0)

is given in [16].

Theorem 3.7 (Partial q-derivative of the double Laplace transform). The following
relation is valid
(3.17)

L
(1)
2,q

[
xmynf(x, y)

]
(r, s) = (−1)m+nq(m

2 )+(n
2) ∂m+n

q

∂qsn∂qrm
L

(1)
2,q

[
f(x, y)

] (
q−mr, q−ns

)
.

Proof. We recall the relation (see [16, Theorem 2.4])

Lq [xnf(x)] (s) = (−1)nq(n
2) ∂n

q

∂qsn
Lq[f(x)]

(
q−ns

)
,

from which we have:
L

(1)
2,q

[
xmynf(x, y)

]
(r, s)

=
∫ +∞

0

∫ +∞

0
xmynf(x, y)Eq(−rqx)Eq(−sqy)dqxdqy

=
∫ +∞

0
yn
(∫ +∞

0
xmf(x, y)Eq(−rqx)dqx

)
Eq(−sqy)dqy



ON DOUBLE q-LAPLACE TRANSFORM AND APPLICATIONS 555

=
∫ +∞

0
yn

(
(−1)mq(m

2 ) ∂m
q

∂qrm

∫ +∞

0
f(x, y)Eq(−q−mrqx)dqx

)
Eq(−sqy)dqy

=(−1)mq(m
2 ) ∂m

q

∂qrm

∫ +∞

0

(
(−1)nq(n

2) ∂n
q

∂qsn

∫ +∞

0
f(x, y)Eq(−q−nsqy)dqy

)
Eq(−q−mrqx)dqx

=(−1)m+nq(m
2 )+(n

2) ∂m+n
q

∂qsn∂qrm

∫ +∞

0

∫ +∞

0
f(x, y)Eq(−q−nrqx)Eq(−q−nsqy)dqxdqy

=(−1)m+nq(m
2 )+(n

2) ∂m+n
q

∂qsn∂qrm
L

(1)
2,q

[
f(x, y)

] (
q−mr, q−ns

)
.

This proves the theorem. □

We summarize the previous results in Table 1.

Table 1. Some Laplace of the First Kind.

Originals Transforms

xαyβ (α, β > −1) Γq(α + 1)
rα+1 · Γq(β + 1)

sβ+1

(ax ⊕q by)n [n]q!
br − as

(b

s

)n+1

−
(

a

r

)n+1


eq(ax ⊕q by) 1
(r − a)(s − b) , r > Re (a), s > Re (b)

cosq(ax ⊕q by) rs − ab

(r2 + a2)(s2 + b2)
sinq(ax ⊕q by) as + br

(r2 + a2)(s2 + b2)
coshq(ax ⊕q by) rs + ab

(r2 − a2)(s2 − b2)
sinhq(ax ⊕q by) as + br

(r2 − a2)(s2 − b2)

4. Double q-Laplace Transform of the Second Kind

The double q-Laplace transform of the second kind is defined as

(4.1) L
(2)
2,q[f(x, y)](r, s) =

∫ +∞

0

∫ +∞

0
f(x, y)eq(−rx)eq(−sy)dqxdqy, r, s > 0.

Note that if f(x, y) = g(x)h(y), then

(4.2) L
(2)
2,q[f(x, y)](r, s) = Lq{g(x)}(r)Lq{h(y)}(s).
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In particular, if h(y) = 1, or g(x) = 1, then (3.2) reads

(4.3) L
(2)
2,q[f(y)](r, s) = Lq{1}(r)Lq{f(y)}(s) = 1

r
Lq{f(y)}(s)

and

(4.4) L
(2)
2,q[f(x)](r, s) = Lq{g(x)}(r)Lq{1}(s) = 1

s
Lq{g(x)}(r).

Proposition 4.1. For any two complex numbers α and β, we have

L
(2)
2,q {αf(x, y) + βg(x, y)} = αL

(2)
2,q{f(x, y)} + βL

(2)
2,q{g(x, y)}.

Proof. The proof follows from (4.1). □

Theorem 4.1. Let a and b be two non zero complex numbers, f a two variable
function, then the following formula applies

L
(2)
2,q{f(ax, by)}(r, s) = 1

ab
L

(2)
2,q{f(x, y)}

(
r

a
,
s

b

)
.

Proof. Using relation (3.5), we have

L
(2)
2,q{f(ax, by)}(r, s) =

∫ +∞

0

∫ +∞

0
f(ax, by)eq(−rx)eq(−sy)dqxdqy

=
∫ +∞

0

(∫ +∞

0
f(ax, by)eq(−rx)dqx

)
eq(−sy)dqy

= 1
a

∫ +∞

0

(∫ +∞

0
f(x, by)eq

(
−x

r

a

)
dqx

)
eq(−sy)dqy

= 1
a

∫ +∞

0

(∫ +∞

0
f(x, by)eq(−sy)dqy

)
eq

(
−x

r

a

)
dqx

= 1
ab

∫ +∞

0

(∫ +∞

0
f(x, y)eq

(
−y

s

b

)
dqy

)
eq

(
−x

r

a

)
dqx

= 1
ab

∫ +∞

0

∫ +∞

0
f(x, y)eq

(
−x

r

a

)
eq

(
−y

s

b

)
dqxdqy,

and the proof of the theorem is completed. □

Theorem 4.2. For α > −1, β > −1, we have the following

L
(2)
2,q{xαyβ}(r, s) = γq(α + 1)

rα+1 · γq(β + 1)
sβ+1 .

In particular, for α = n ∈ N and β = m ∈ N, we get

L
(2)
2,q{xnym}(r, s) = [n]q!

q(n+1
2 )rn+1

· [m]q!
q(m+1

2 )sm+1
.

Proof. The proof follows from the relation Lq{tα}(s) = γq(α+1)
sα+1 (see [8]) and the

obvious equation
L

(2)
2,q{xαyβ}(r, s) = Lq{xα}(r) × Lq{yβ}(s). □
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Theorem 4.3. Let a and b be two complex numbers, then the following relation holds

L
(2)
2,q {(ax ⊞q by)n} (r, s) = q−(n+1

2 )[n]q!
br − as

(b

s

)n+1

−
(

a

r

)n+1
 .

Proof. From the definitions of the q-coaddition and the double q-Laplace transform
of second kind, we have

L
(2)
2,q {(ax ⊞q by)n} (r, s) =

n∑
k=0

[
n
k

]
q

qk(k−n)L
(2)
2,q

(
(ax)k(by)n−k

)
(r, s)

=
n∑

k=0

[
n
k

]
q

qk(k−n) ak[k]q!
q(k+1

2 )rk+1
· bn−k[n − k]q!

q(n−k+1
2 )sn−k+1

= q−(n+1
2 )[n]q!bn

rsn+1

n∑
k=0

(
as

br

)k

= q−(n+1
2 )[n]q!bn

rsn+1(br)n
· (br)n+1 − (as)n+1

br − as

= q−(n+1
2 )[n]q!

br − as

(b

s

)n+1

−
(

a

r

)n+1
 .

The theorem is then proved. □

Theorem 4.4. Let a and b be two complex numbers, then the following relation holds

L
(2)
2,q {Eq(ax ⊞q by)} (r, s) = q2

(qr − a)(qs − b) , |r| >

∣∣∣∣∣aq
∣∣∣∣∣ , |s| >

∣∣∣∣∣ bq
∣∣∣∣∣ .

Proof. From Theorem 4.3 and the definition of the big q-exponential function, we
have

L
(2)
2,q {Eq(ax ⊞q by)} (r, s) =

+∞∑
n=0

q(n
2)

[n]q!
L

(2)
2,q{(ax ⊞q by)n}(r, s)

= 1
br − as

[
b

s

+∞∑
n=0

(
b

qs

)n

− a

r

+∞∑
n=0

(
a

qr

)n]

= 1
br − as

[
b

s
· qs

qs − b
− a

r
· qr

qr − a

]

= q2

(qr − a)(qs − b) .

Note that this result can be also proved using the fact that
Eq(ax ⊞q by) = Eq(ax)Eq(by)

and the relation (see [8]) Lq(Eq(ax))(r) = q

qr − a
. □
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Proposition 4.2. The following transforms hold

L
(2)
2,q {Cosq(ax ⊞q by)} (r, s) = q2(q2rs − ab)

((qr)2 + a2)((qs)2 + b2) ,(4.5)

L
(2)
2,q {Sinq(ax ⊞q by)} (r, s) = q3(as + br)

((qr)2 + a2)((qs)2 + b2) ,(4.6)

L
(2)
2,q {Coshq(ax ⊞q by)} (r, s) = q2(q2rs + ab)

((qr)2 − a2)((qs)2 − b2) ,(4.7)

L
(2)
2,q {Sinhq(ax ⊞q by)} (r, s) = q3(as + br)

((qr)2 − a2)((qs)2 − b2) .(4.8)

Proof. We have

L
(2)
2,q {Cosq(ax ⊞q by)} (r, s) = 1

2L
(2)
2,q [Eq(iax ⊞q iby) + Eq(−iax ⊞q −iby)] (r, s)

= q2

(qr − ia)(qs − ib) + q2

(qr + ia)(qs + ib)

= q2(q2rs − ab)
((qr)2 + a2)((qs)2 + b2) .

So, (4.5) is proved. (4.6), (4.7) and (4.8) are proved in the same way. □

Theorem 4.5. Let f be a one variable function that has a q-Laplace transform.
Assume that f has the q-Taylor expansion

f(x) =
+∞∑
n=0

anq(n
2) xn

[n]q!
,

then the following relation holds

L
(2)
2,q [f(αx ⊞q βy)] (r, s) = 1

αs − βr

(
Lq

[
f(x)

] ( r

α

)
− Lq

[
f(x)

] ( s

β

))
.(4.9)

Proof. Assume that f has the expansion as f(x) = ∑+∞
n=0 anq(n

2) xn

[n]q ! . Then,

L
(2)
2,q [f(αx ⊞q βy)] (r, s) =

+∞∑
n=0

an
q(n

2)
[n]q!

L
(2)
2,q {(αx ⊞q βy)n} (r, s)

=
+∞∑
n=0

an
q(n

2)
[n]q!

· q−(n+1
2 )[n]q!

βr − αs

(β

s

)n+1

−
(

α

r

)n+1


= 1
βr − αs

(
β

s

+∞∑
n=0

an

(
β

qs

)n

− α

r

+∞∑
n=0

an

(
α

qr

)n)

= 1
αs − βr

(
Lq

[
f(x)

] ( r

α

)
− Lq

[
f(x)

] ( s

β

))
.

So, the theorem is proved. □
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Theorem 4.6. The following equations hold true

L
(2)
2,q

[
∂qf

∂qx
(x, y)

]
(r, s) =rq−1L

(2)
2,q [f(x, y)] (rq−1, s) − Lq [f(0, y)] (s),(4.10)

L
(2)
2,q

[
∂qf

∂qy
(x, y)

]
(r, s) =sq−1L

(2)
2,q [f(x, y)] (r, sq−1) − Lq [f(x, 0)] (r),(4.11)

L
(2)
2,q

[
∂2

q f

∂qx∂qy
(x, y)

]
(r, s) =rsq−2L

(2)
2,q [f(x, y)] (rq−1, sq−1) − rq−1Lq [f(x, 0)] (rq−1)

− sq−1Lq

[
f(0, yq−1)

]
(sq−1) + f(0, 0),(4.12)

L
(2)
2,q

[
∂2

q f

∂qx2 (x, y)
]

(r, s) =r2q−3L
(2)
2,q [f(x, y)] (rq−2, s) − rq−1L

(1)
2,q [f(0, y)] (s)

− sq−1Lq [f(0, y)] (sq−1) + f(0, 0),

L
(2)
2,q

[
∂2

q f

∂qy2 (x, y)
]

(r, s) =s2q−3L
(2)
2,q [f(x, y)] (r, sq−2) − rq−1L

(1)
2,q [f(x, 0)] (rq−1)

− rq−1Lq [f(x, 0)] (r) + f(0, 0),

Proof. From (3.1), and the formula of q-integration by parts, we have

L
(2)
2,q

[
∂qf

∂qx
(x, y)

]
(r, s) =

∫ +∞

0

∫ +∞

0

∂qf

∂qx
(x, y)eq(−rx)eq(−sy)dqxdqy

=
∫ +∞

0

(∫ +∞

0

∂qf

∂qx
(x, y)eq(−rx)dqx

)
eq(−sy)dqy

=
∫ +∞

0

(
−f(0, y) + r

∫ +∞

0
f(qx, y)eq(−rx)dqx

)
eq(−sy)dqy

= −Lq [f(0, y)] (s) + rq−1L
(2)
2,q [f(x, y)] (rq−1, s).

Hence, (4.10) is proved. The proof of (4.12) uses (4.10), (4.11) and the fact that (see
[16])

Lq

[
∂qf

∂qx
(x, 0)

]
(r) = rq−1Lq [f(x, 0)] (rq−1) − f(0, 0).

The rest of the theorem in proved in the same way. □

Theorem 4.7 (Partial q-derivative of the double q-Laplace transform). The following
relation is valid

(4.13) L
(2)
2,q

[
xmynf(x, y)

]
(r, s) = (−1)m+n ∂m+n

q

∂qsn∂qrm
L

(2)
2,q

[
f(x, y)

]
(r, s) .

Proof. We recall the relation (see [16, Theorem 3.5.])

Lq [xnf(x)] (s) = (−1)n ∂n
q

∂qsn
Lq[f(x)](s),
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from which we have:
L

(2)
2,q

[
xmynf(x, y)

]
(r, s)

=
∫ +∞

0

∫ +∞

0
xmynf(x, y)eq(−rx)eq(−sy)dqxdqy

=
∫ +∞

0
yn
(∫ +∞

0
xmf(x, y)eq(−rx)dqx

)
eq(−sy)dqy

=
∫ +∞

0
yn

(
(−1)m ∂m

q

∂qrm

∫ +∞

0
f(x, y)eq(−rx)dqx

)
Eq(−sqy)dqy

=(−1)m ∂m
q

∂qrm

∫ +∞

0

(
(−1)n ∂n

q

∂qsn

∫ +∞

0
f(x, y)eq(−sy)dqy

)
eq(−rx)dqx

=(−1)m+n ∂m+n
q

∂qsn∂qrm

∫ +∞

0

∫ +∞

0
f(x, y)eq(−rx)eq(−sy)dqxdqy

=(−1)m+n ∂m+n
q

∂qsn∂qrm
L

(2)
2,q

[
f(x, y)

]
(r, s) .

This proves the theorem. □

We summarize the previous results in the following Table 2.

Table 2. Some Laplace of the Second Kind.

Originals Transforms

xαyβ (α, β > −1) γq(α + 1)
rα+1 · γq(β + 1)

sβ+1

(ax ⊞q by)n q−(n+1
2 )[n]q!

br − as

(b

s

)n+1

−
(

a

r

)n+1


Eq(ax ⊞q by) q2

(qr − a)(qs − b) , |r| >

∣∣∣∣∣aq
∣∣∣∣∣ , |s| >

∣∣∣∣∣ bq
∣∣∣∣∣

Cosq(ax ⊞q by) q2(q2rs − ab)
((qr)2 + a2)((qs)2 + b2)

Sinq(ax ⊞q by) q3(as + br)
((qr)2 + a2)((qs)2 + b2)

coshq(ax ⊞q by) q2(q2rs + ab)
((qr)2 − a2)((qs)2 − b2)

Sinhq(ax ⊞q by) q3(as + br)
((qr)2 − a2)((qs)2 − b2)

5. Some Applications

5.1. Application to some q-Functional Equations.
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5.1.1. The first q-Cauchy’s functional equation. We consider the following q-Cauchy’s
functional equation
(5.1) f(x ⊕q y) = f(x) + f(y),
where f is an unknown function.

We apply the double q-Laplace transform L
(1)
2,q to (5.1) combined with (3.13), (3.3)

and (3.4), to get
1

s − r
[Lq[f(x)](r) − Lq[f(y)](s)] = 1

s
Lq[f(x)](r) + 1

r
Lq[f(y)](s),

that is
Lq[f(x)](r)

[ 1
s − r

− 1
s

]
= Lq[f(y)](s)

[ 1
s − r

+ 1
r

]
.

Simplifying this equation, we obtain
r2Lq[f(x)](r) = q2Lq[f(y)](s),

where the left hand side is a function of r alone and the right hand side is a function
of s alone. This equation is true provided each side is equal to an arbitrary constant
k so that

r2Lq[f(x)](r) = k or Lq[f(x)](r) = k

r2 .

The inverse transform gives the solution of the q-Cauchy functional equation (5.1) as
f(x) = kx, where k is an arbitrary constant.

5.1.2. The second q-Cauchy’s functional equation. We consider the following q-Cau-
chy’s functional equation
(5.2) f(x ⊞q y) = f(x) + f(y),
where f is an unknown function.

We apply the double q-Laplace transform L
(2)
2,q to (5.2) combined with (4.9), (4.3)

and (4.4), to get
1

s − r
[Lq[f(x)](r) − Lq[f(y)](s)] = 1

s
Lq[f(x)](r) + 1

r
Lq[f(y)](s),

that is
Lq[f(x)](r)

[ 1
s − r

− 1
s

]
= Lq[f(y)](s)

[ 1
s − r

+ 1
r

]
.

Simplifying this equation, we obtain
r2Lq[f(x)](r) = q2Lq[f(y)](s),

where the left hand side is a function of r alone and the right hand side is a function
of s alone. This equation is true provided each side is equal to an arbitrary constant
k so that

r2Lq[f(x)](r) = k or Lq[f(x)](r) = k

r2 .
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The inverse transform gives the solution of the q-Cauchy functional equation (5.2) as
f(x) = kqx, where k is an arbitrary constant.

5.1.3. The first q-Cauchy-Abel’s functional equation. We consider the following q-
Cauchy-Abel’s functional equation
(5.3) f(x ⊕q y) = f(x)f(y),
where f is an unknown function.

We apply the double q-Laplace transform L
(1)
2,q to (5.3) combined with (3.13) and

(3.2) to get
1

s − r
[Lq[f(x)](r) − Lq[f(y)](s)] = Lq[f(x)](r)Lq[f(y)](s),

that is
1 − rLq[f(x)](r)

Lq[f(x)](r) = 1 − sLq[f(y)](s)
Lq[f(y)](s) ,

where the left hand side is a function of r alone and the right hand side is a function
of s alone. This equation is true provided each side is equal to an arbitrary constant
k so that

1 − rLq[f(x)](r)
Lq[f(x)](r) = k or Lq[f(x)](r) = 1

r + k
.

The inverse transform gives the solution of the q-Cauchy-Abel’s functional equation
(5.3) as f(x) = eq(−kx), where k is an arbritrary constant.

5.1.4. The second q-Cauchy-Abel’s functional equation. We consider the following
q-Cauchy-Abel’s functional equation
(5.4) f(x ⊞q y) = f(x)f(y),
where f is an unknown function.

We apply the double q-Laplace transform L
(2)
2,q to (5.4) combined with (4.9) and

(4.2) to get
1

s − r
[Lq[f(x)](r) − Lq[f(y)](s)] = Lq[f(x)](r)Lq[f(y)](s),

that is
1 − rLq[f(x)](r)

Lq[f(x)](r) = 1 − sLq[f(y)](s)
Lq[f(y)](s) ,

where the left hand side is a function of r alone and the right hand side is a function
of s alone. This equation is true provided each side is equal to an arbitrary constant
k so that

1 − rLq[f(x)](r)
Lq[f(x)](r) = k or Lq[f(x)](r) = 1

r + k
= q

qr + qk
.

The inverse transform gives the solution of the q-Cauchy-Abel’s functional equation
(5.4) as f(x) = Eq(−qkx), where k is an arbritrary constant.
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5.2. Application to some partial q-differential equations.

5.2.1. The q-transport equation. We introduce the following q-transport equation

(5.5) ∂qu

∂qt
(x, t) + c

∂qu

∂qx
(x, t) = 0,

with
(5.6) u(x, 0) = f(x), x > 0, and u(0, t) = g(t), t > 0.

Applying the double q-Laplace transform L
(1)
2,q to (5.5) combinded with (3.14), (3.15)

and (5.6), we get

sL
(1)
2,q[u(x, t)](r, s) − Lq[f(x)](r) + c

[
rL

(1)
2,q[u(x, t)](r, s) − Lq[g(t)](s)

]
= 0,

that is
L

(1)
2,q[u(x, t)](r, s) = cLq[g(t)](s) + Lq[f(x)](r)

s + cr
.

Hence,

u(x, t) =
(
L

(1)
2,q

)−1
[

cLq[g(t)](s) + Lq[f(x)](r)
s + cr

]
.

In particular,
• if u(x, 0) = f(x) = 1 and u(0, t) = g(t) = 1, then

u(x, t) =
(
L

(1)
2,q

)−1
[

cLq[g(t)](s) + Lq[f(x)](r)
s + cr

]
(x, t)

=
(
L

(1)
2,q

)−1
[

c/s + 1/r

s + cr

]
(x, t) =

(
L

(1)
2,q

)−1
[ 1
sr

]
(x, t) = 1;

• if c = −1, u(x, 0) = f(x) = xn and u(0, t) = g(t) = tn with n ∈ N, then

u(x, t) =
(
L

(1)
2,q

)−1
[

−Lq[tn](s) + Lq[xn](r)
s − r

]
(x, t)

=
(
L

(1)
2,q

)−1
[

−[n]q!/sn+1 + [n]q!/rn+1

s − r

]
(x, t) = (x ⊕q t)n,

where (3.7) has been used.

5.2.2. The non-homogenous space-time q-telegraph equation. We consider the non-
homogenous space-time q-telegraph equation
(5.7)

c2 ∂2
q u

∂qx2 (x, t)−
∂2

q u

∂qt2 (x, t)−(α+β)∂qu

∂qt
(x, t)−αβu(x, t) = [c2 −(α+1)(β +1)]eq(x⊕q t),

with the conditions
u(0, t) = eq(t, )
u(x, 0) = eq(x),
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∂qu

∂qx
(0, t) = eq(t),

∂qu

∂qt
(x, 0) = eq(x).

Applying L
(1)
2,q to (5.7), we obtain

c2
{

r2L
(1)
2,q[u(x, t)](r, s) − rLq[u(0, t)](s) − Lq

[
∂qu

∂qx
(0, t)

]
(s)
}

−
{

s2L
(1)
2,q[u(x, t)](r, s) − sLq[u(x, 0)](r) − Lq

[
∂qu

∂qx
(x, 0)

]
(r)
}

− (α + β)
{
sL

(1)
2,q[u(x, t)](r, s) − Lq[u(x, 0)](r)

}
− αβL

(1)
2,q[u(x, t)](r, s)

=[c2 − (α + 1)(β + 1)]L(1)
2,q[eq(x ⊕q t)](r, s).

Using the conditions and simplifying the result we obtain

L
(1)
2,q[u(x, t)](r, s) = 1

(r − 1)(s − 1) ,

and hence we have u(x, t) = eq(x ⊕q t).

5.2.3. The q-wave equation. We consider the following q-wave equation in a quarter
plane

∂2
q u

∂qt2 (x, t) − c2 ∂2
q u

∂qx2 (x, t) = 0,

with the initial condition

u(x, 0) = f(x) and ∂qu

∂qt
(x, 0) = g(x), x > 0,

u(0, t) = 0 and ∂qu

∂qx
(0, t) = 0.

We apply the double q-Laplace transform L
(1)
2,q to have

s2L
(1)
2,q [u(x, t)] (r, s) − sLq[u(x, 0)](r) − Lq

[
∂qu

∂qt
(x, 0)

]
(r)

× c2
{

r2L
(1)
2,q [u(x, t)] (r, s) − rLq[u(0, t)](s) − Lq

[
∂qu

∂qx
(0, t)

]
(s)
}

= 0.

That is
L

(1)
2,q [u(x, t)] (r, s) = sLq[f(x)](r) + Lq[g(x)](r)

s2 − c2r2 .

Hence,

u(x, t) =
(
L

(1)
2,q

)−1
[

sLq[f(x)](r) + Lq[g(x)](r)
s2 − c2r2

]
(x, t).
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Remark 5.1. Note that in [7], another q-wave equation is given combining the q-
derivative with respect to t and the classical derivative with respect to x as

∂2
q u

∂qy2 (x, y) − ∂2u

∂x2 (x, t) = 0.
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