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APPROXIMATION RESULTS BY CERTAIN GENUINE
OPERATORS OF INTEGRAL TYPE

VIJAY GUPTA1 AND DEEPIKA AGRAWAL2

Abstract. In the present article we propose genuine Lupaş-Beta operators of
integral type. We establish quantitative asymptotic formula and a direct estimate in
terms of second order modulus of continuity. Finally we consider the Bézier variant
and obtain the rate of convergence for functions having derivatives of BV.

1. Introduction

Convergence estimates concerning linear positive operators is an active area of
research among researchers in the last few decades. It is easier to construct new
operators, but every time it is not straight forward to get their convergence estimates.
In the year 1977 Pethe and Jain [8] proposed a general family of linear positive
operators while generalizing Szász-Mirakjan operators. After three decades in the
year 2007, Abel and Ivan [1] studied these operators in slightly different form and
considered the following form of operators to establish complete asymptotic expansion.
For c = cn ≥ β, n = 0, 1, . . . , the operators discussed in [1] are defined as

M c
n(f, x) =

∞∑
k=0

lcn,k(x)f
(
k

n

)
, x ≥ 0,(1.1)

where lcn,k(x) is given by

lcn,k(x) =
(

c

1 + c

)ncx (ncx)k
k!.(1 + c)k ,
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where (a)k is the rising factorial given by (a)k = a(a+ 1)(a+ 2) · · · (a+ k− 1). These
operators are well-defined, for all sufficiently large n, since the infinite sum in above
form is convergent if n > A/ log(1 + c) (the case c = 1 provides the Lupas. operators
[9]) provided that |f(t)| ≤ KeAt(t ≥ 0), that is f ∈ E. These operators as such
can not be utilized to approximate integrable functions. In order to approximate
integrable functions several hybrid Durrmeyer type operators have been considered
in [3–7] with different weight function.

In the year 2008, Mihes.an [10] proposed another form of general operator, which
include some of the well known operators as special cases. The operators discussed
in [10] for x ∈ [0,∞) is defined as

Mα
n (f, x) =

∞∑
k=0

mn,k(x, α)f
(
k

n

)
,(1.2)

where

mn,k(x, α) = (α)k
k! .

(
nx
α

)k
(
1 + nx

α

)α+k .

We observe here that the forms of the operators (1.1) and (1.2) are same, if we put
c = α/nx in (1.1), we may get at once the operators Mα

n (f, x). We propose below the
integral modification of the operators (1.2), by taking weights of Beta basis functions
in the following way

(1.3) Mα
n (f, x) =

∞∑
k=1

mn,k(x, α)
∫ ∞

0
bn,k(t)f(t)dt+

(
α

α + nx

)α
f(0),

where mn,k(x, α) is given by (1.2) and

bn,k(t) = 1
B(n+ 1, k) ·

tk−1

(1 + t)k+n+1 ,

where B(m,n) being the Beta function. It is observed that these operators preserve
linear functions. For different values of α, one may get different special cases. Some
of the special cases are indicated as below.

(i) In case if α→∞, we obtain the Szász-Beta operators, which are defined by

M∞
n (f, x) =

∞∑
k=1

mn,k(x,∞)
∫ ∞

0
bn,k(t)f(t)dt+ e−nxf(0),

where

mn,k(x,∞) = e−nx
(nx)k
k! ,

and bn,k(t) is as defined in (1.3).
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(ii) When α = n, we obtain the Baskakov-Beta type operators, which for x ≥ 0
are defined by

Mn
n (f, x) =

∞∑
k=1

mn,k(x, n)
∫ ∞

0
bn,k(t)f(t)dt+ (1 + x)−nf(0),

where

mn,k(x, n) = (n)k
k! .

xk

(x+ 1)n+k =
(
n+ k − 1

k

)
xk

(x+ 1)n+k ,

and bn,k(t) is as defined in (1.3).
(iii) If we take α = nx, the operators (1.3) will reduce to the Lupaş-Beta operators,

defined as

Mnx
n (f, x) =

∞∑
k=1

mn,k(x, nx)
∫ ∞

0
bn,k(t)f(t)dt+ 2−nxf(0),

where
mn,k(x, nx) = 2−nx (nx)k

k!2k ,

and bn,k(t) is as defined in (1.3).

Remark 1.1. When α = −n, then the basis mn,k(x,−n) will reduce to the Bernstein
basis function defined as

mn,k(x,−n) =
(
n

k

)
xk(1− x)n−k.

As the operators (1.3) are defined on positive real axis, while the Bernstein basis
function takes the valves in the interval [0, 1]. So it is not often to consider such
hybrid operators as this case.

In the present article, we establish quantitative asymptotic formula in terms of
weighted modulus of continuity and a direct result in terms of second order modulus
of continuity. Finally we consider the Bézier variant and obtain the rate of convergence.

2. Moments

In this section we find moments using the concept of Hypergeometric functions.

Lemma 2.1. For the monomial Mα
n (er, x), er(t) = tr, r > 0, the r-th order moment

satisfy the following relation

Mα
n (er, x) = x.r!(n− r)!

(n− 1)! 2F1

(
α + 1, 1− r; 2;−nx

α

)
.

Proof. Obviously using Γ(r + k) = (r)k.Γr, we have

Mα
n (er, x) =

∞∑
k=1

(α)k
k! ·

(
nx
α

)k
(
1 + nx

α

)α+k ·
B(k + r, n− r + 1)

B(n+ 1, k)
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= (n− r)!
n! · Γr(

1 + nx
α

)α · ∞∑
k=1

(α)k(r)k
k!(k − 1)!

(
nx
α

)k
(
1 + nx

α

)k
= (n− r)!

n! · Γr(
1 + nx

α

)α · ∞∑
k=0

αr(α + 1)k(r + 1)k
k!(2)k

(
nx
α

)k+1

(
1 + nx

α

)k+1

= α.r!(n− r)!
n!
(
1 + nx

α

)α ( nx

α + nx

)
2F1

(
α + 1, r + 1; 2; nx

nx+ α

)
.

Using 2F1(a, b; c;x) = (1− x)−a2F1
(
a, c− b; c; x

x−1

)
, the result follows immediately.

This completes the proof of the lemma. �

Remark 2.1. By simple computation from Lemma 2.1, the first few moments are given
by

Mα
n (e0, x) =1,

Mα
n (e1, x) =x,

Mα
n (e2, x) =x[nx(α + 1) + 2α]

α(n− 1) ,

Mα
n (e3, x) = x

α2(n− 1)(n− 2)
[
n2x2(α + 1)(α + 2) + 6nαx(α + 1) + 6α2

]
,

Mα
n (e4, x) = 24x

α3(n− 1)(n− 2)(n− 3)
[
n3x3(α + 1)(α + 2)(α + 3)

+ 12n2x2α(α + 1)(α + 2) + 36nxα2(α + 1) + 24α3
]
,

Mα
n (e5, x) = x

α4(n− 1)(n− 2)(n− 3)(n− 4)
[
n4x4(α + 1)(α + 2)(α + 3)(α + 4)

+ 20n3x3α(α + 1)(α + 2)(α + 3) + 120n2x2α2(α + 1)(α + 2)

+ 240nxα3(α + 1) + 120α2
]

and

Mα
n (e6, x) = x

α5(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
[
n5x5(α + 1)(α + 2)

× (α + 3)(α + 4)(α + 5) + 30n4x4α(α + 1)(α + 2)(α + 3)(α + 4)
+ 300n3x3α2(α + 1)(α + 2)(α + 3)

+1200n2x2α3(α + 1)(α + 2) + 1800nxα4(α + 1) + 720α5
]
.

Remark 2.2. If µαn,m(x) = Mα
n ((t − x)m, x), then by simple computation using Re-

mark 2.1, we have

µαn,1(x) =0,
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µαn,2(x) =x[x(n+ α) + 2α]
α(n− 1) ,

µαn,4(x) = 1
α3(n− 1)(n− 2)(n− 3)

[
3x4(α3(n+ 6) + 2α2n(n+ 1)

+ αn2(n+ 8) + 2n3) + 12αx3(α2(n+ 1) + αn(n+ 4) + 2n2)

+ 12α2x2(α(n+ 6) + 3n) + 24α3x
]

and

µαn,6(x) = 1
α5(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
×
[
x6[5α5(3n2 + 86n+ 120) + 15α4n(3n2 + 86n+ 120)

+ 5α3n2(9n2 + 284n+ 480) + 15α2n3(n2 + 46n+ 120)
+ 10αn4(13n+ 72) + 120n5] + x5[30α5(3n2 + 8n+ 120)
+ 60α4n(3n2 + 86n+ 120) + 30α3n2(3n2 + 112n+ 240)
+ 60α2n3(13n+ 60) + 720αn4] + x4[60α5(3n2 + 86n+ 120)
+ 180α4n(n2 + 33n+ 60) + 60α3n2(31n+ 120)
+ 1800α2n3] + x3[120α5(n2 + 33n+ 60) + 720α4n(3n+ 10)

+ 2400α3n2] + x2[360α5(3n+ 10) + 1800α4n] + 720α5x
]
.

3. Direct Estimates

Let Cx2 [0,∞) = C [0,∞)∩ Bx2 [0,∞), where Bx2 [0,∞) be the set of all functions
f defined on R+ satisfying the condition |f (x)| ≤ Mf (1 + x2) with some constant
Mf , depending only on f , but independent of x by Ck

x2 [0,∞), we denote subspace
of all continuous functions f ∈ Bx2 [0,∞) for which lim

x→∞
f(x)
1+x2 is finite. The weighted

modulus of continuity Ω (f, δ) defined on infinite interval R+ (see [2]) is defined as

Ω (f, δ) = sup
|h|<δ, x∈R+

|f (x+ h)− f (x)|
(1 + h2) (1 + x2) , for each f∈Cx2 [0,∞) .

Now, some elementary properties of Ω (f, δ) are collected in the following lemma.

Lemma 3.1. If f ∈ Ck
x2 [0,∞), then

(i) Ω (f, δ) is monotonically increasing function of δ, with δ ≥ 0;
(ii) for every f ∈ Ck

x2 [0,∞), lim
δ→0

Ω (f, δ) = 0;
(iii) for each λ > 0, we have Ω (f, λδ) ≤ 2 (1 + λ) (1 + δ2) Ω (f, δ).

We now estimate the following quantitative Voronovskaja-type asymptotic formula.
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Theorem 3.1. Let f ′′ ∈ Ck
x2 [0,∞) and x > 0 with the condition α = α(n)→∞ as

n→∞. Also with this condition, we have lim
n→∞

n
α(n) = l. Then, we have∣∣∣∣∣Mα

n (f, x)− f (x)−
(
x2n+ (x2 + 2x)α

α(n− 1)

)
f ′′ (x)

∣∣∣∣∣
≤C

(
1 + x2

)
Ω
(
f ′′, n−1/2

) [
µαn,2(x) + n2 µαn,6(x)

]
,

where µαn,2(x) and µαn,6(x) are given in Remark 2.2 and C is certain constant less
then 8.

Proof. By Taylor’s expansion, we have
Mα

n (f, x)− f(x) = Mα
n ((f(t)− f(x), x)

= Mα
n

(
(t− x)f ′ + (t− x)2

2 f ′′ + h (t, x) (t− x)2, x

)
,

where
h (t, x) := f ′′ (η)− f ′′ (x)

2 ,

and h is a continuous function which vanishes at 0 and η lies between x and t. Using
Remark 2.2, we get∣∣∣∣∣Mα

n (f, x)− f (x)− f ′′ (x)
2

(
x2n+ (x2 + 2x)α

α(n− 1)

)∣∣∣∣∣ ≤Mα
n

(
|h (t, x)| (t− x)2 , x

)
.

To estimate last inequality using Lemma 3.1 and the inequality |η − x| ≤ |t− x|, we
can write that

|h (t, x)| ≤
(
1 + (t− x)2

) (
1 + x2

)(
1 + |t− x|

δ

)(
1 + δ2

)
Ω (f ′′, δ) .

Also,

|h (t, x)| ≤

 2 (1 + x2) (1 + δ2)2 Ω (f ′′, δ) , |t− x| < δ,(
1 + (t− x)2

)
(1 + x2)

(
1 + |t−x|

δ

)
(1 + δ2) Ω (f ′′, δ) , |t− x| ≥ δ.

Now choosing δ < 1, we have

|h (t, x)| ≤ 2
(
1 + x2

)(
1 + (t− x)4

δ4

)(
1 + δ2

)2
Ω (f ′′, δ)

≤ 8
(
1 + x2

)(
1 + (t− x)4

δ4

)
Ω (f ′′, δ) .

Using Remark 2.2, we deduce that

Mα
n

(
|h (t, x)| (t− x)2 , x

)
= 8

(
1 + x2

)
Ω (f ′′, δ)

{
µαn,2(x) + 1

δ4µ
α
n,6(x)

}
.

Choosing δ = 1√
n
the result follows. �
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Our next direct result is in terms of modulus of continuity, we first define some
class. By CB[0,∞), we mean the class of all real valued continuous and bounded
functions f on [0,∞). We denote the norm ||f || = supx∈[0,∞) |f(x)|. For f ∈ CB[0,∞)
and δ > 0, the m-th order modulus of continuity is defined as

ωm(f, δ) = sup
0≤h≤δ

sup
x±hϕ(x)∈[0,∞)

|∆m
h f(x)|,

where ∆ is the forward difference. In case m = 1, we mean the usual modulus of
continuity denoted by ω(f, δ). The Peetre’s K-functional is defined as

K2(f, δ) = inf
g∈C2

B [0,∞)

{
||f − g||+ δ||g′′|| : g ∈ C2

B[0,∞)
}
,

where
C2
B[0,∞) = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)}.

Theorem 3.2. Let f ∈ CB[0,∞) and x ∈ [0,∞), then

|Mα
n (f, x)− f(x)| ≤ Cω2

f,
√√√√x[x(n+ α) + 2α]

α(n− 1)

,
where C is a positive constant.

Proof. Let g ∈ C2
B[0,∞) and x, t ∈ [0,∞). By Taylor’s formula, we have

g(t) = g(x) + (t− x)g′(x) +
∫ t

x
(t− u)g′′(u)du.

Hence,

|Mα
n (g, x)− g(x)| = Mα

n

(∣∣∣∣∫ t

x
(t− u)g′′(u)du

∣∣∣∣ , x)
≤Mα

n

(
(t− x)2, x

)
||g′′||

= x[x(n+ α) + 2α]
α(n− 1) ||g′′||.

Now using operator (1.3), we have

|Mα
n (f, x)| ≤

∞∑
k=1

mn,k(x, α)
∫ ∞

0
bn,k(t)|f(t)|dt+

(
α

α + nx

)α
|f(0)|

≤ ||f ||.
Therefore

|Mα
n (f, x)− f(x)| ≤ |Mα

n (f − g, x)− (f − g)(x)|+ |Mα
n (g, x)− g(x)|

≤ ||f − g||+ x[x(n+ α) + 2α]
α(n− 1) ||g′′||.

Lastly, taking infimum over all g ∈ C2
B[0,∞), and using the inequality K2(f, δ) ≤

Cω2(f,
√
δ), δ > 0, we get the desired result. �
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4. Rate of convergence of Bézier variant

For β ≥ 1 the Bézier variant of the operators (1.3) is defined by

Mα,β
n (f, x) =

∫ ∞
0

Kβ
n,k(x, t)f(t)dt,(4.1)

where the kernal Kβ
n,k(x, t) is given by

Kβ
n,k(x, t) =

∞∑
k=1

Q
(β)
n,k(x, α)bn,k(t) +Q

(β)
n,0(x, α)δ(t),

δ(t) being the Dirac-delta function and Q(β)
n,k(x, α) = [Jn,k(x, α)]β− [Jn,k+1(x, α)]β with

Jn,k(x, α) = ∑∞
j=kmn,k(x, α). Clearly if β = 1, then the operators Mα,β

n (f, x) reduce
to the operators Mα

n (f, x).
Let Dρ(R+), ρ ≥ 0, denote the class of all absolutely continuous functions f defined

on [0,∞), having a derivative f ′ equivalent with a function of bounded variation
on every finite sub-interval of [0,∞) and |f(t)| ≤ Mtρ. The functions f ∈ Dρ(R+)
possess a representation

f(x) =
∫ x

0
g(t)dt+ f(0),

where g ∈ BV [0,∞), i.e., g is a function of bounded variation on every finite sub-
interval of [0,∞).

Lemma 4.1. For a fixed x ∈ (0,∞) with the condition α = α(n) → ∞ as n → ∞
and lim

n→∞
n

α(n) = l, then for sufficiently large n, we have

(a) ξβn,α(x, y) =
∫ y

0 K
β
n,k(x, t)dt ≤

βx[x(l+1)+2]
(n−1)

1
(x−y)2 , 0 ≤ y < x,

(b) 1− ξβn,α(x, z) =
∫∞
z Kβ

n,k(x, t)dt ≤
βx[x(l+1)+2]

(n−1)
1

(z−x)2 , x < z <∞.

Using Remark 2.2, the result follows immediately.

Theorem 4.1. Let f ∈ Dρ(R+). Then, for every x ∈ (0,∞) under the conditions of
Lemma 4.1 for sufficiently large n, we have

|Mα,β
n (f, x)− f(x)|

≤ β3/2

β + 1 |f
′(x+)− f ′(x−)|

√
x[x(l + 1) + 2]

n− 1 + βx[x(l + 1) + 2]
n− 1

[
√
n]∑

k=1
V
x+x/k
x−x/k (f ′x)

+ x√
n
V
x+x/k
x−x/k (f ′x) + β[x(l + 1) + 2]

x(n− 1) |f(2x)− f(x)− xf ′(x+)|

+ |f ′(x+)|
√
βx[x(l + 1) + 2]

n− 1

+ βC(n, α, r, x)
nr

+ |f(x)|
x

β[x(l + 1) + 2]
n− 1 ,
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where V b
a f(x) denotes the total variation of f(x) on [a, b] and f ′x is defined by

f ′x(t) =


f ′(t)− f ′(x−), 0 ≤ t < x,
0, t = x,
f ′(t)− f ′(x+), x < t <∞.

(4.2)

Proof. Since Mα,β
n (1, x) = 1, using (4.1), for every x ∈ (0,∞) we get

Mα,β
n (f, x)− f(x) =

∫ ∞
0

Kβ
n,k(x, t)(f(t)− f(x))dt

=
∫ ∞

0
Kβ
n,k(x, t)

∫ t

x
f ′(u)dudt.(4.3)

For any f ∈ Dρ(R+), from (4.2) we may write

f ′(u) =f ′x(u) + f ′(x+) + βf ′(x−)
β + 1 + f ′(x+)− f ′(x−)

2

(
sgn(u− x) + β − 1

β + 1

)

+ δx(u)
[
f ′(u)− f ′(x+) + f ′(x−)

2

]
,

where

δx(u) =

1, u = x,

0, u 6= x.

From (4.3) and above expansion of f ′(u), we get

Mα,β
n (f, x)− f(x) =

∫ ∞
0

Kβ
n,k(x, t)

∫ t

x

[
f ′x(u) + f ′(x+) + βf ′(x−)

β + 1

+ f ′(x+)− f ′(x−)
2 .

(
sgn(u− x) + β − 1

β + 1

)

+ δx(u)
[
f ′(u)− f ′(x+) + f ′(x−)

2

]
du

]
dt

:=Aα,βn (f ′x, x) +Bα,β
n (f ′x, x) + A1 + A2 + A3,

where

Aα,βn (f ′x, x) =
∫ x

0

(∫ t

x
f ′x(u)du

)
Kβ
n,k(x, t)dt,

Bα,β
n (f ′x, x) =

∫ ∞
x

(∫ t

x
f ′x(u)du

)
Kβ
n,k(x, t)dt,

A1 =
∫ ∞

0

(∫ t

x

f ′(x+) + βf ′(x−)
β + 1 du

)
Kβ
n,k(x, t)dt,

A2 =
∫ ∞

0
Kβ
n,k(x, t)

(∫ t

x

f ′(x+)− f ′(x−)
2

(
sgn(u− x) + β − 1

β + 1

)
du

)
dt,

A3 =
∫ ∞

0

(∫ t

x

(
f ′(u)− f ′(x+) + f ′(x−)

2

)
δx(u)du

)
Kβ
n,k(x, t)dt.
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Using Remark 2.2, we get

A1 = f ′(x+) + βf ′(x−)
β + 1

∫ ∞
0

(t− x)Kβ
n,k(x, t)dt

= f ′(x+) + βf ′(x−)
β + 1 .Mα,β

n ((t− x), x) = 0.

Also using Remark 2.2, for sufficiently large n, we get

A2 =
∫ ∞

0
Kβ
n,k(x, t)

(∫ t

x

f ′(x+)− f ′(x−)
2

(
sgn(u− x) + β − 1

β + 1

)
du

)
dt

=f
′(x+)− f ′(x−)

2

[
−
∫ x

0

(∫ x

t

(
sgn(u− x) + β − 1

β + 1

)
du

)
Kβ
n,k(x, t)dt

+
∫ ∞
x

(∫ t

x

(
sgn(u− x) + β − 1

β + 1

)
du

)
Kβ
n,k(x, t)dt

]

≤ β

β + 1 |f
′(x+)− f ′(x−)|

∫ ∞
0
|t− x|Kβ

n,k(x, t)dt

= β

β + 1 |f
′(x+)− f ′(x−)|Mα,β

n (|t− x|, x)

= β3/2

β + 1 |f
′(x+)− f ′(x−)|

√
x[x(l + 1) + 2]

n− 1 .

Obviously, A3 = 0. Thus our problem is reduced to calculate the estimates of the
terms Aα,βn (f ′x, x) and Bα,β

n (f ′x, x). Since
∫ b
a dtξ

β
n,k(x, t) ≤ 1 for all [a, b] ⊆ [0,∞), using

integration by parts and applying Lemma 4.1 with y = x− x/
√
n, we have

|Aα,βn (f ′x, x)| =
∣∣∣∣∣
∫ x

0

(∫ t

x
f ′x(u)du

)
dtξ

β
n,k(x, t)

∣∣∣∣∣ =
∣∣∣∣∣
∫ x

0
ξβn,k(x, t)f ′x(t)dt

∣∣∣∣∣
≤
∫ y

0
|f ′x(t)||ξ

β
n,k(x, t)|dt+

∫ x

y
|f ′x(t)||ξ

β
n,k(x, t)|dt

≤ βx[x(l + 1) + 2]
n− 1

∫ y

0
V x
t (f ′x)(x− t)−2dt+

∫ x

y
V x
t (f ′x)dt

≤ βx[x(l + 1) + 2]
n− 1

∫ y

0
V x
t (f ′x)(x− t)−2dt+ x√

n
V x
x−x/

√
n(f ′x)

= βx[x(l + 1) + 2]
n− 1

∫ x−x/
√
n

0
V x
t (f ′x)(x− t)−2dt+ x√

n
V x
x−x/

√
n(f ′x)

≤ βx[x(l + 1) + 2]
n− 1

[
√
n]∑

k=1
V x
x−x/k(f ′x) + x√

n
V x
x−x/

√
n(f ′x).
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Finally, using integration by parts in Bα,β
n (f ′x, x) and applying Lemma 4.1 and Cauchy-

Schwarz inequality, we have

|Bα,β
n (f ′x, x)| ≤M

∣∣∣∣∣
∫ ∞

2x

(∫ t

x
f ′x(u)du

)
dtKβ

n,k(x, t)
∣∣∣∣∣

+
∣∣∣∣∣
∫ 2x

x

(∫ t

x
f ′x(u)du

)
dt(1− ξβn,α(x, t))

∣∣∣∣∣
≤
∣∣∣∣∣
∫ ∞

2x
(f(t)− f(x))Kβ

n,k(x, t)
∣∣∣∣∣

+ |f ′(x+)|
∣∣∣∣∣
∫ ∞

2x
(t− x)Kβ

n,k(x, t)dt
∣∣∣∣∣

+
∣∣∣∣∣
∫ 2x

x
f ′x(u)du

∣∣∣∣∣|1− ξβn,α(x, 2x)|

+
∣∣∣∣∣
∫ 2x

x
f ′x(t)(1− ξβn,α(x, t))dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ ∞

2x
f(t)Kβ

n,k(x, t)
∣∣∣∣∣+ |f(x)|

∣∣∣∣∣
∫ ∞

2x
Kβ
n,k(x, t)

∣∣∣∣∣
+ |f ′(x+)|

(∫ ∞
2x

(t− x)2Kβ
n,k(x, t)dt

)1/2

+ βx[x(l + 1) + 2]
n− 1

∣∣∣∣∣
∫ 2x

x
((f ′(u))− f ′(x+))du

∣∣∣∣∣
+
∣∣∣∣∣
∫ x+x/

√
n

x
f ′x(t)dt

∣∣∣∣∣
+ βx[x(l + 1) + 2]

n− 1

∣∣∣∣∣
∫ 2x

x+x/
√
n
(t− x)−2f ′x(t)dt

∣∣∣∣∣.
We see that there exists an integer r, 2r ≥ ρ, such that f(t) = O(t2r), as t → ∞.
Now proceeding in a manner similar to the estimate of Aα,βn (f ′x, x), on substituting
t = x+ x

u
and in the last step using the Remark 2.2 and Lemma 4.1, we get

|Bα,β
n (f ′x, x)| ≤M

∣∣∣∣∫ ∞
2x

t2rKβ
n,k(x, t)dt

∣∣∣∣+ |f(x)|
∫ ∞

2x
Kβ
n,k(x, t)dt

+ |f ′(x+)|
√
βx[x(l + 1) + 2]

n− 1

+ β[x(l + 1) + 2]
x(n− 1) |f(2x)− f(x)− xf ′(x+)|

+ x√
n
V x+x/

√
n

x (f ′x)
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+ βx[x(l + 1) + 2]
n− 1

[
√
n]∑

k=1
V x+x/

√
n

x (f ′x)

≤βC(n, α, r, x)
nr

+ |f(x)|
x

β[x(l + 1) + 2]
(n− 1)

+ |f ′(x+)|
√
βx[x(l + 1) + 2]

n− 1

+ β[x(l + 1) + 2]
x(n− 1) |f(2x)− f(x)− xf ′(x+)|

+ x√
n
V x+x/

√
n

x (f ′x)

+ βx[x(l + 1) + 2]
n− 1

[
√
n]∑

k=1
V x+x/k
x (f ′x).

Collecting the estimates A1 −A3 and Aα,βn (f ′x, x) and Bα,β
n (f ′x, x), we get the required

result. This completes the proof. �

5. Graphical Representation

The convergence of the operators Mα
n (f, x) for the functions f(x) = x2 + 2x + 7

(Figure 1 and Figure 2) and f(x) = x3 + 4x2 + 3x + 8 (Figure 3 and Figure 4) are
indicated below.
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25000

Figure 1. Convergence of the operators Mα
n (f, x) for the functions

f(x) = x2 + 2x+ 7, α = 1, n = 5

From the above figures, we conclude that for large values of α and n, Mα
n (f, x)

converges more rapidly to the function f(x).



APPROXIMATION RESULTS BY CERTAIN GENUINE OPERATORS OF INTEGRAL TYPE347
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Figure 2. Convergence of the operators Mα
n (f, x) for the functions

f(x) = x2 + 2x+ 7, α = 100, n = 1000
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Figure 3. Convergence of the operators Mα
n (f, x) for the functions

f(x) = x3 + 4x2 + 3x+ 8, α = 1, n = 5
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Figure 4. Convergence of the operators Mα
n (f, x) for the functions

f(x) = x3 + 4x2 + 3x+ 8, α = 100, n = 1000
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