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COLORED TVERBERG THEOREMS FOR NON-PRIME POWERS

LEANDRO V. MAURI1, RADE T. ŽIVALJEVIĆ2, DENISE DE MATTOS 1,
AND EDIVALDO L. DOS SANTOS 3

Abstract. We prove a relative of both the original and the optimal (Type B)
version of the Colored Tverberg theorem of Živaljević and Vrećica (Theorems 2.2
and 2.3), which modifies these results in two different ways.

(1) We extend the original theorems beyond the prime powers by showing that
the theorem is valid if the number of rainbow faces is q = pn − 1.

(2) The size of some rainbow simplices may be smaller than in the original
theorems. More precisely |Ci| ∈ {2q − 2, 2q + 1} while (for comparison) in the
original theorems it is |Ci| = 2q − 1.

The proof relies on equivariant index theory and a result of Volovikov [17] about
partial coincidences of maps f : X → Rd, from a G-space into the Euclidean space.

1. Introduction

Let K ⊂ 2[m] be a simplicial complex (with m vertices). A continuous map f :
K → Rd is called an almost r-embedding if f(∆1) ∩ · · · ∩ f(∆r) = ∅ for each collection
{∆i}r

i=1 of pairwise disjoint faces of K. If an almost r-embedding of K in Rd does not
exist we say that K is not almost r-embeddable in Rd. The general Tverberg problem
is to describe interesting classes of simplicial complexes which are or are not almost
r-embeddable in Rd. Historically the case of an N -dimensional simplex K = ∆N was
studied first. It is still one of the central research themes, side by side with the case
when K = R(C1,C2,...,Ck+1) := C1 ∗ · · · ∗ Ck+1 is the join of 0-dimensional complexes
(the Colored Tverberg problem).
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1.1. Almost r-embedding for non prime powers. It is known [7] that almost
r-embeddability (or non-embeddability) of a simplicial complex is critically dependent
on the arithmetical properties of r. More precisely r is assumed to be a prime power
r = pn in the majority of results of this type.

What if r is not a prime power? For example, if K = ∆N is an N -dimensional
simplex, then, as documented in the following results, the non-prime power case holds
only if we substantially increase the dimension of the simplex.

•1 ∆N is not almost r-embeddable in Rd if r = pν is a prime power, d ≥ 1, and
N = (r − 1)(d + 1) (I. Bárány, S. B. Shlosman, A. Szűcs 1981 [4]; M. Özaydin 1987
(unpublished); A. Y. Volovikov 1996 [15]; etc.).

•2 ∆r(d+1)−1 is not almost r-embeddable in Rd for all r ≥ 2 and d ≥ 1 (F. Frick
and P. Soberon 2020 in the preprint “The topological Tverberg problem beyond prime
powers” ).

•3 ∆(r−1)(d+1) is almost r-embeddable in Rd if r = pν is not a prime power and
d ≥ 2r + 1 ([2, 5, 7, 13,14]).

•4 ∆N is almost r-embeddable in Rd if r is not a prime power and N = (d + 1)r −
r

⌈
d+2
r+1

⌉
− 2 (S. Avvakumov, R. Karasev and A. Skopenkov [1]).

All these results are instances of the following general problem: Determine integers a
and d such that there exists (or there does not exist) an almost r-embedding ∆a → Rd.
All of them illustrate the fact that the case when r is not prime power is more subtle
and currently in the mainstream of research in this area.

In the same vein it is quite natural to explore the possibilities of extending the
Colored Tverberg problem [19] to non-prime powers. More explicitly, we want to study
the almost r-non embeddability of “rainbow complexes”

K = R(C1,C2,...,Ck+1) := C1 ∗ C2 ∗ · · · ∗ Ck+1,

if r is not a prime power.
Our Theorem 4.2 is an example of such an extension where:
(1) the number of intersecting rainbow faces is q = pn − 1;
(2) |C1| = |C2| = · · · = |Cm| = 2q + 1, |Cm+1| = · · · = |Ck+1−m| = 2q − 2, under

the condition

(1.1) m ≥ (d − k)(pn − 1) = (d − k)q.

If k = d the condition (1.1) disappears and we observe (Corollary 4.1) that the result
is valid if m = 0. This is a slight improvement over Theorem 2.2, where

|C1| = |C2| = · · · = |Cd+1| = 2r − 1.

(Note however that neither Theorem 2.2 nor Theorem 2.3 is formal consequence of
Theorem 4.2.)

Examples 4.1 and 4.2 illustrate some special, low-dimensional cases of Theorem 4.2
which indicate that this result should be often close to the optimal in the case when
the number of rainbow simplices is pn − 1.
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2. An Overview of Topological Tverberg Type Results

The following result is known as the topological Tverberg theorem.

Theorem 2.1 (Topological Tverberg theorem, [4, 15] and M. Özaydin 1987 (unpub-
lished)). Let d ≥ 1, r ≥ 2, and N = (r − 1)(d + 1) be integers. If r is a prime
power, then for any continuous map f : ∆N → Rd there are r pairwise disjoint faces
σ1, . . . , σr of ∆N such that f(σ1) ∩ · · · ∩ f(σr) ̸= ∅.

Interesting problems and (conjectured) extensions and relatives of the Topological
Tverberg theorem have emerged over the years. In particular, motivated by questions
from discrete and computational geometry, Bárány and Larman [3] formulated in 1992
the colored Tverberg problem.

Definition 2.1 (Coloring). Let N ≥ 1 be an integer and let V (∆N) be the set
of vertices of the simplex ∆N . A coloring of vertices of V (∆N) by l colors is a
partition (C1, . . . , Cl) of V (∆N), that is V (∆N) = C1 ∪ · · · ∪ Cl, with Ci ∩ Cj = ∅, for
1 ≤ i < j ≤ l. The elements of the partition (C1, . . . , Cl) are called color classes.

Definition 2.2 (Rainbow face). Let (C1, . . . , Cl) be the coloring of V (∆N) by l colors.
A face σ of the simplex ∆N is a rainbow face if |σ ∩ Ci| ≤ 1, for all 1 ≤ i ≤ l.

Problem 2.1 (Bárány-Larman colored Tverberg problem). Let d ≥ 1 and r ≥ 2
be integers. Determine the smallest number n = n(d, r) such that for every map
f : ∆n−1 → Rd, and every coloring (C1, . . . , Cd+1) of the vertex set V (∆n−1) of the
simplex ∆n−1 by d + 1 colors, with each color of size at least r, there exist r pairwise
disjoint rainbow faces σ1, . . . , σr of ∆n−1 satisfying f(σ1) ∩ · · · ∩ f(σr) ̸= ∅.

A modified colored Tverberg problem was presented by Živaljević and Vrećica
in [20].

Problem 2.2 (Živaljević-Vrećica colored Tverberg problem). Let d ≥ 1 and r ≥ 2 be
integers. Determine the smallest number t = t(d, r) such that for every affine (or
continuous) map f : ∆ → Rd, and every coloring (C1, . . . , Cd+1) of the the vertex set
V (∆) by d + 1 colors, with each color of size at least t, there exist r pairwise disjoint
rainbow faces σ1, . . . , σr of ∆ satisfying f(σ1) ∩ · · · ∩ f(σr) ̸= ∅.

For r ≥ 2 a prime power, Živaljević and Vrećica proved that t(d, r) ≤ 2r − 1. This
result is known as the (original) Colored Tverberg theorem of Živaljević and Vrećica.

Theorem 2.2 (Colored Tverberg theorem of Živaljević and Vrećica [20]). Let d ≥ 1
be an integer, and let r = pn ≥ 2 be a prime power. For every continuous map
f : ∆ → Rd, and every coloring (C1, . . . , Cd+1) of the the vertex set V (∆) by d + 1
colors, with each color of size at least 2r − 1, there exist r pairwise disjoint rainbow
faces σ1, . . . , σr of ∆ satisfying f(σ1) ∩ · · · ∩ f(σr) ̸= ∅.

The following result is known as Optimal (Type B) Colored Tverberg theorem of
Živaljević and Vrećica, see [18,19].
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Theorem 2.3 (Optimal (Type B) Colored Tverberg theorem of Živaljević and Vrećica).
Assume that r = pν is a prime power, d ≥ 1, and let k be an integer such that
r−1

r
d ≤ k < d. Then, the complex

R(C0,C1,...,Ck) := C0 ∗ · · · ∗ Ck

is not almost r-embeddable in Rd, if |Ci| ≥ 2r − 1 for all i.

3. Topological Preliminaries

In this section we collect central definitions and results needed for the proof of our
main theorem.

3.1. Configuration spaces. Deleted joins and deleted products are the standard
configuration spaces used, in the framework of the configuration space/test map scheme
[8, 10, 19], in applications of topological methods to problems of combinatorics and
discrete and computational geometry.

Definition 3.1 (Deleted join). Let K be a simplicial complex, let n ≥ 2, k ≥ 2 be
integers, and let [n] = {1, . . . , n}. The n-fold k-wise deleted join of the simplicial
complex K is the simplicial complex:

K∗n
∆(k) =

{
λ1x1 + · · · + λnxn ∈ σ1 ∗ · · · ∗ σn ⊂ K∗n | (∀I ⊂ [n])|I| ≥ k ⇒

⋂
i∈I

σi = ∅
}

,

where σ1, . . . , σn are faces of K, including the empty face. The symmetric group
Gn = Sym(n) acts on K∗n

∆(k) by:

π · (λ1x1 + · · · + λnxn) = λπ−1(1)xπ−1(1) + · · · + λπ−1(n)xπ−1(n),

for π ∈ Gn and λ1x1 + · · · + λnxn ∈ K∗n
∆(k).

Definition 3.2 (Deleted product). Let K be a simplicial complex, let n ≥ 2, k ≥ 2 be
integers, and let [n] = {1, . . . , n}. The n-fold k-wise deleted product of the simplicial
complex K is the cell complex:

K×n
∆(k) =

{
(x1, . . . , xn) ∈ σ1 × · · · × σn ⊂ K×n | (∀I ⊂ [n])|I| ≥ k ⇒

⋂
i∈I

σi = ∅
}

,

where σ1, . . . , σn are non-empty faces of K. The symmetric group Gn = Sym(n) acts
on K×n

∆(k) by:
π · (x1, . . . , xn) = (xπ−1(1), . . . , xπ−1(n)),

for π ∈ Gn and (x1, . . . , xn) ∈ K×n
∆(k).

Definition 3.3 (Chessboard complex). The m × n chessboard complex ∆m,n is the
simplicial complex whose vertex set is [m] × [n], and the simplexes of ∆m,n are the
subsets {(i0, j0), . . . , (ik, jk)} ⊂ [m] × [n], where is ̸= is′ , 1 ≤ s < s′ ≤ k, and jt ̸= jt′ ,
1 ≤ t < t′ ≤ k.
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Definition 3.4 (Rainbow subcomplex). Let ∆ be a simplex with a coloring C =
(C1, . . . , Cd+1) by (d + 1) colors. We define the rainbow subcomplex R(C1,...,Cd+1) ⊂ ∆
as follows:

R(C1,...,Cd+1) ∼= C1 ∗ · · · ∗ Cd+1,

where Ci is a discrete set of points, for every i ∈ [d + 1].
3.2. Volovikov index. The following fundamental result of cohomology theory is
used in the definition the Volovikov index of a G-space X.
Theorem 3.1 (The cohomology Leray-Serre Spectral sequence [12, Theorem 5.2]).
Let R be a commutative ring with the unity. Given a fibration F ↪→ E

p→ B, where B
is a path-wise connected space, there is a first quadrant spectral sequence of algebras
{E∗,∗

r , dr}, with
Ep,q

2
∼= Hp(B;Hq(F ; R)),

the cohomology of B, with local coefficients in the cohomology of F , the fiber of p, and
converging to H∗(E; R) as an algebra. Furthermore, this spectral sequence is natural
with the respect to fiber-preserving maps of fibrations.

We continue with the definition of the Volovikov index [16]. It is defined as a
function on G-spaces (where G is a compact Lie group) whose values are either
positive integers or ∞. For our application it is sufficient to assume that G is a
p-torus G = (Zp)n, where p a prime number.
Definition 3.5 (Volovikov index). Let G be a compact Lie group and let X be a
Hausdorff paracompact G-space. The definition of the Volovikov index of X, denoted
by i(X), uses the spectral sequence of the bundle pX : XG → BG, with fibre X (the
Borel construction), given in Theorem 3.1. This spectral sequence converges to the
equivariant cohomology H∗(XG;Zp). Let Λ∗ be the equivariant cohomology algebra
of a point H∗(ptG;Zp) = H∗(BG;Zp). Suppose that X is path connected. Then
E∗,0

2 = Λ∗. Assume that E∗,0
2 = · · · = E∗,0

s ̸= E∗,0
s+1. Then, by definition, i(X) = s. If

E∗,0
2 = · · · = E∗,0

∞ then, by definition, i(X) = ∞. Let i′(X) be the least number r
such that the kernel of the natural homomorphism Λ∗ → E∗,0

r+1 contains an element
which is not a zero divisor in Λ∗.

The following theorem describes some of the most important properties of the
Volovikov index.
Theorem 3.2 ([16]). (1) If there exists an equivariant map of G-spaces X → Y , then
i(X) ≤ i(Y ) and i′(X) ≤ i′(Y ).

(2) If X is a compact or finite-dimensional cohomological sphere (over the the
field Zp), i.e., H∗(X) = H∗(Sn), and if G acts with no fixed points on X, then
i(X) = i′(X) = n + 1.

(3) If H̃j(X;Zp) = 0, for all j < n, then i(X) ≥ n + 1.
(4) If X = A ∪ B, where A and B are closed (or open) G-invariant subespaces,

i(X) ≤ i′(A) + i(B). In particular, i(X ∗ Y ) ≤ i′(X) + i(Y ).
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3.3. Connectedness. Here we review the definition and some basic properties of
the connectedness of topological spaces, including a key result which relates the
connectedness to the Volovikov index.

Definition 3.6 ([10], Definition 4.3.2)). Let n ≥ −1 be an integer. A topological
space X is n-connected if any continuous map f : Sk → X, where −1 ≤ k ≤ n, can
be continuously extended to a continuous map g : Bk+1 → X, that is g|∂Bk+1=Sk = f
(here Bk+1 denotes a (k + 1)-dimensional closed ball whose boundary is the sphere
Sk). A topological space is (−1)-connected if it is non-empty. If the space X is
n-connected, but not (n + 1)-connected, we write conn(X) = n.

Theorem 3.3 ([8], p. 332). Let X and Y be topological spaces. Then,
conn(X ∗ Y ) ≥ conn(X) + conn(Y ) + 2.

Theorem 3.4 ([10], Theorem 4.4.1). Let X be a nonempty topological space and
let k ≥ 1. Then X is k-connected if and only if it is simply connected (i.e., the
fundamental group π1(X) is trivial) and H̃i(X) = 0, for all i = 0, 1, . . . , k.

Theorem 3.5. Let X topological space. Then, i(X) ≥ conn(X) + 2.

Proof. It is a consequence of Theorem 3.4 and Theorem 3.2 (3).
□

Theorem 3.6 ([6]). Let m, n ≥ 1 be integers. Then,

conn(∆m,n) = min
{

m, n,
⌊

m + n + 1
3

⌋}
− 2.

4. Colored Tverberg Theorem with pn − 1 faces

In this section we prove the main result of the paper (Theorem 4.2). First, we state
and prove two lemmas that are needed for the proof.

Definition 4.1 ([17]). Let X be a G-space, where G is a finite group, and let
f : X → Y be a continuous map. For 2 ≤ y ≤ |G|, we set

A(f, y) = {x ∈ X | f(g1x) = · · · = f(gyx), for some distinct gi ∈ G}.

Lemma 4.1. Let r = pn ≥ 2 be a prime power and let d ≥ 1, 1 ≤ k ≤ d, 2 ≤ q ≤ r
be integers. For every continuous map f : ∆ → Rd and every coloring (C1, . . . , Ck+1)
of the vertex set V (∆) by (k + 1) colors, define the continuous map as follows:

h : (R(C1,...,Ck+1))×pn

∆(2) → Rd, where h(x1, . . . , xpn) = f(x1).
If A(h, q) ̸= ∅, then there exists q pairwise disjoint rainbow faces σ1, . . . , σq of ∆

such that f(σ1) ∩ · · · ∩ f(σq) ̸= ∅.

Proof. Choose (x1, . . . , xpn) ∈ A(h, q) ̸= ∅.
Then, there exist distincts elements g1, . . . , gq ∈ (Zp)n such that

h(g1(x1, . . . , xpn)) = · · · = h(gq(x1, . . . , xpn)).
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Therefore, there exist q elements xi1 , . . . , xiq ∈ {x1, . . . , xpn} such that f(xi1) =
· · · = f(xiq), where xi1 ∈ σi1 , . . . , xiq ∈ σiq (σim is a support of xim , for every m ∈ [q]).

By the definition of the configuration space (R(C1,...,Ck+1))×pn

∆(2), there exist q pairwise
disjoint, non-empty rainbow faces σi1 , . . . , σiq such that f(σi1) ∩ · · · ∩ f(σiq) ̸= ∅. □

Lemma 4.2. Let d ≥ 1, 1 ≤ k ≤ d, 0 ≤ m ≤ k + 1 be integers and let r = pn ≥ 2
be a prime power. Let (C1, . . . , Ck+1) be a coloring of the vertex set V (∆) by (k + 1)
colors, where we have |Ci| ≥ 2r − 1, for all i = 1, . . . , m, |Ci| ≥ 2r − 4, for all
i = m + 1, . . . , k + 1 and m ≥ (d − k)(r − 1). Then,

i((R(C1,...,Ck+1))×pn

∆(2)) ≥ d(pn − 1).

Proof. Note that
(R(C1,...,Ck+1))∗pn

∆(2) = A ∪ B,
where

A =
{

λ1x1 + · · · + λpnxpn ∈ (R(C1,...,Ck+1))∗pn

∆(2) | (∃i ∈ [pn]) λi ̸= 1
pn

}
,

B =
{

λ1x1 + · · · + λpnxpn ∈ (R(C1,...,Ck+1))∗pn

∆(2) | λ1 = · · · = λpn = 1
pn

}
.

It is not difficult to see that B is isomorphic to (R(C1,...,Ck+1))×pn

∆(2). It follows from
Theorem 3.2 (4) that

i((R(C1,...,Ck+1))∗pn

∆(2)) ≤ i′(A) + i(B) = i′(A) + i((R(C1,...,Ck+1))×pn

∆(2)).

We want to estimate the indices i((R(C1,...,Ck+1))∗pn

∆(2)) and i′(A). In light of the
isomorphism

(R(C1,...,Ck+1))∗r
∆(2)

∼= ∆|C1|,r ∗ · · · ∗ ∆|Cm|,r ∗ ∆|Cm+1|,r ∗ · · · ∗ ∆|Ck+1|,r,

we obtain, as a consequence of Theorem 3.3 and Theorem 3.6,
conn((R(C1,...,Ck+1))∗r

∆(2)) ≥ m(r − 2) + (k + 1 − m)(r − 3) + 2k.

It follows from Theorem 3.5 that
i((R(C1,...,Ck+1))∗r

∆(2))) ≥ [m(r − 2) + (k + 1 − m)(r − 3) + 2k] + 2 = (k + 1)(r − 1) + m.

Since m ≥ (d − k)(r − 1), we have
i((R(C1,...,Ck+1))∗r

∆(2)) ≥ (d + 1)(r − 1).

In order to find a bound for i′(A) let us consider the following (Zp)n-equivariant map
ϕ : A → Rpn \ ∆(Rpn), ϕ(λ1x1 + · · · + λpnxpn) = (λ1, . . . , λpn),

and
Π : Rpn \ ∆(Rpn) → (∆(Rpn))⊥ \ {0} → S((∆(Rpn))⊥),

where Π is a composition of the projection and deformation retraction.
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Here ∆(Rpn) = {(x1, . . . , xpn) ∈ Rpn | x1 = · · · = xpn} is the diagonal subspace of
Rpn , while S(V ) is the unit sphere in the real vector space V .

It follows that the composition

Π ◦ ϕ : A → S((∆(Rpn))⊥) ∼= Spn−2,

is a (Zp)n-equivariant map. By Theorem 3.2 ((1) and (2)) we conclude that

i′(A) ≤ i′(Spn−2) = pn − 1,

and as an immediate consequence, i((R(C1,...,Ck+1))×pn

∆(2)) ≥ d(pn − 1). □

Theorem 4.1 ([17], Theorem 4)). Let X be a connected G-space, where G = (Zp)n is
a p-torus and 2 ≤ y ≤ pn, y ̸= 3. Assume the inequality i(X) ≥ (m − 1)(pn − 1) + y.
Then, A(f, y) ̸= ∅ for any continuous map f : X → Rm.

Remark 4.1. Theorem 4.1 is also true for y = 3 and r = 3, 4, 5.

Theorem 4.2. Let d ≥ 1, 1 ≤ k ≤ d, 0 ≤ m ≤ k + 1 be integers, and let r = pn ≥ 2
be a prime power. For every continuous map f : ∆ → Rd, and every coloring
(C1, . . . , Ck+1) of the vertex set V (∆) by (k + 1) colors, such that |Ci| ≥ 2r − 1, for
all i = 1, . . . , m, |Ci| ≥ 2r − 4, for all i = m + 1, . . . , k + 1 and m ≥ (d − k)(r − 1),
there exist q = r − 1 = pn − 1 pairwise disjoint rainbow faces σ1, . . . , σq such that
f(σ1) ∩ · · · ∩ f(σq) ̸= ∅ .

Proof. It follows from Lemma 4.1 that if A(h, q) is non-empty then there exist q
pairwise disjoint, rainbow, non-empty faces σ1, . . . , σq such that f(σ1)∩· · ·∩f(σq) ̸= ∅.

Therefore, it remains to be shown that A(h, q) ̸= ∅.
On the other hand this is an immediate consequence of Theorem 4.1, applied to the

G-space X = (R(C1,...,Ck+1))×pn

∆(2) and the map h : (R(C1,...,Ck+1))×pn

∆(2) → Rd (as in Lemma
4.1), where y = q. Indeed, (R(C1,...,Ck+1))×pn

∆(2) is connected and i((R(C1,...,Ck+1))×pn

∆(2)) ≥
d(pn − 1) = (m − 1)(pn − 1) + y (by Lemma 4.2). This observation completes the
proof of the theorem. □

Corollary 4.1. Let d ≥ 1 be an integer, and let r = pn ≥ 2 be a prime power. For
every continuous map f : ∆ → Rd, and every coloring (C1, . . . , Cd+1) of the vertex set
V (∆) by (d+1) colors, with each color of size at least 2r−4, there exist q = r−1 = pn−1
pairwise disjoint rainbow faces σ1, . . . , σq such that f(σ1) ∩ · · · ∩ f(σq) ̸= ∅.

Proof. Apply Theorem 4.2 to the case k = d and m = 0. □

Remark 4.2. Note that if m > (d − k)(r − 1). Then,

i((R(C1,...,Ck+1))∗r
∆(2)) ≥ (d + 1)(r − 1) + 1,

and there exist r pairwise disjoint rainbow faces σ1, . . . , σr such that f(σ1) ∩ · · · ∩
f(σr) ̸= ∅. This means that the interesting case of Theorem 4.2 is when m =
(d − k)(r − 1).
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Example 4.1. Let r = 7, d = 8, k = 7 and m = 6. Then we have k + 1 = 8 colors
C1, . . . , C8 where |Ci| ≥ 2r−1 = 13, for i = 1, . . . , 6 and |C7|, |C8| ≥ 2r−4 = 10. Note
that the condition m ≥ (d − k)(r − 1) follows (more especifically we have an equality).
Then, there exist q = r − 1 = 6 pairwise disjoint rainbow faces σ1, σ2, σ3, σ4, σ5 and
σ6 such that f(σ1) ∩ f(σ2) ∩ f(σ3) ∩ f(σ4) ∩ f(σ5) ∩ f(σ6) ̸= ∅.

The following example illustrates the Corollary 4.1.

Example 4.2. Let d = 2, r = 7 and C = (C1, C2, C3) be a coloring of vertex set V (∆),
with |C1| = |C2| = |C3| = 2r − 4 = 10. Let f : ∆ → R2 be a continuous map.

By Corollary 4.1, there exist 6 pairwise disjoint rainbow faces σ1, σ2, σ3, σ4, σ5 and
σ6 such that f(σ1) ∩ f(σ2) ∩ f(σ3) ∩ f(σ4) ∩ f(σ5) ∩ f(σ6) ̸= ∅.

5. Concluding Remarks

We used throughout the paper versions of Volovikov’s index (Section 3.2). A more
elementary and less technical alternative is to used “elementary equivariant index
theory” (G-genus), as presented in [9].

The methods used in the paper are cohomological. Typically, they allow us to
conclude that the zero-set of some (equivariant) test map is non-empty, which is
sufficient for many applications.

However, the cohomological approach may sometimes lead to a conclusion that the
zero-set is “big” in some stronger sense, for example it may support a non-trivial
(co)homology class, it may have a high genus (Lusternik-Schnirelmann category), etc.

This point of view is vividly illustrated by “parameterized index theory”, see [11]
for examples and a guide to the literature.

We believe that cohomological methods have a great potential for new applications
in discrete geometry and combinatorics, including the Tverberg type problems and
their relatives.
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