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FEKETE-SZEGÖ TYPE COEFFICIENT INEQUALITIES FOR
CLASSES OF ANALYTIC FUNCTION ASSOCIATED WITH

(p, q)-DERIVATIVE OF SĂLĂGEAN OPERATOR AND HORADAM
POLYNOMIALS

RABHA M. EL-ASHWAH1 AND WAFAA Y. KOTA1

Abstract. Using the concept of subordination principle, we propose to make use of
the Horadam polynomials and (p, q)-analogue of Sălăgean differential operator. We
introduce and study new subclasses of analytic functions. The objective of this paper
is to obtain the Fekete-Szegö inequalities associated with k-th root transformations
[f(ςk)] 1

k for functions in the subclasses of analytic univalent functions Mn
p,q(ζ, σ, r),

Nn
p,q(ζ, σ, r) and Ln

p,q(ρ, r) defined by the generalized fractional derivative operator
Dn

p,q. Similar problems are investigated for ς
f(ς) , when f(ς) belongs to these classes.

1. Introduction

Quantum calculus is widely used in mathematical sciences because of its numerous
applications in combinatorics [15], number theory [34], fundamental hypergeometric
functions [14] and orthogonal polynomials [38]. The ideal basis for applying the q-
calculus within geometric function theory was provided by Srivastava’s 1989 book
chapter [30]. Jackson [22, 23] was the first to successfully build the q-integral and
q-derivative. The geometrical indicating of the q-analysis was subsequently discovered
as a result of quantum group investigations. In 1990, the q-calculus techniques
were implemented to define the notion of a q-starlike function in geometric function
theory [21].
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The development of this field of study was subsequently facilitated by the appear-
ance of numerous q-calculus operators that were employed in different investigations,
including the definition of new classes of analytic functions and the discovery of various
features for them, the most typical of these being geometric properties and coefficient
estimates, through techniques specific to geometric function theory. In an attempt to
modify the classical operators to the q-calculus features incorporated into geometric
function theory, Kanas and Răducanu [24] began the field of exploration by building
the q-analogue of the Ruscheweyh differential operator utilizing the concept of con-
volution. Srivastava [32] established operators for basic (or q-)calculus and fractional
q-calculus together with their applications in their study of geometric function theory
of complex analysis. In [37], new subclasses of bi-univalent functions are obtained by
applying a q-integral operator.

The general background information for the current research is created by the
collection of analytic functions in the unit disc D = {ς ∈ C : |ς| < 1}, which are
observed with the geometric position presented by the star-likeness qualities that some
analytic function classes display.

The normalized analytic family of functions f , designated by A, can be written as
follows:
(1.1) f(ς) = ς +

∑
κ≥2

aκςκ (ς ∈ D),

with f(0) = f ′(0) − 1 = 0.
Let

(1.2) Ψ(ς) = 1 + C1ς + C2ς
2 + C3ς

3 + · · ·
be an analytic function on D, with Ψ(0) = 1, Ψ′(0) > 0 and Re(Ψ(ς)) > 0, mapping
the unit disc D onto a starlike region with regards to 1 and being symmetric with
regards to the real axis.

Definition 1.1 ([9]). The formula f(ς) ≺ h(ς) indicates that two analytic functions
are subordinate to one another if there is a function ω that is analytic in D and
satisfies ω(0) = 0, |ω(ς)| < 1 for all ς ∈ D, such that f(ς) = h(ω(ς)), ς ∈ D.

More precisely, if h in D is univalent, we have:
f(ς) ≺ h(ς) if and only if f(0) = h(0) and f(D) ⊂ h(D).

It is possible to extend the q-calculus to quantum calculus, represented by the
(p, q)-calculus. The q-calculus can be created when p = 1 in the (p, q)-calculus (see
[18,28]). First, we define (p, q)-calculus, which is helpful in understanding the subject
of the present paper.

Definition 1.2 ([4, 33]). The (p, q)-derivative operator of a function f is defined by

Dp,qf(ς) = f(p ς) − f(qς)
(p − q)ς = 1 +

∑
κ≥2

[κ]p,qaκςκ−1 (ς ∈ D, ς ̸= 0),(1.3)
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where [κ]p,q is given by

[κ]p,q = pκ − qκ

p − q
(p ̸= q, 0 < q < p ≤ 1).

If p = 1 and q → 1−, then Dp,qf(ς) = f ′(ς) (see also [28]).

Note that, for p = 1, the (p, q)-derivative reduces to (see [22])

(1.4) Dqf(ς) = f(ς) − f(qς)
(1 − q)ς = 1 +

∑
κ≥0

[κ]qaκςκ−1 (ς ̸= 0).

For f(z) ∈ A, the (p, q)-analogue of Sălăgean differential operator Dn
p,q : A →

A (n ∈ N ∪ {0}, N = {1, 2, 3, . . . }) defined by Panigrahi and El-Ashwah [28] as:

D0
p,qf(ς) =f(ς),

D1
p,qf(ς) =ς(Dp,qf(ς)),

...

Dn
p,qf(ς) =D1

p,q

(
Dn−1

p,q f(ς)
)

(0 < q < p ≤ 1).(1.5)

It follows from (1.1) and (1.5) that

(1.6) Dn
p,qf(ς) = ς +

∑
κ≥2

[κ]np,qaκςκ (ς ∈ D).

Note that the following hold.
• For p = 1, Dn

p,qf(ς) = Dn
q f(ς) = ς +∑

κ≥2[κ]nq aκςκ, where Dn
q is defined in [17].

• For p = 1, limq→1− Dn
p,qf(ς) = Dnf(ς) = ς + ∑

κ≥2 κnaκςκ, where Dn defined
in [29].

Using the (p, q)-analogue of Sălăgean differential operator Dn
p,q, we introduce a new

classes of analytic functions as follows.

Definition 1.3. A function f ∈ M̃n
p,q(ζ, σ, Ψ) (0 < q < p ≤ 1, n ∈ N ∪ {0}, σ ≥

0, 0 ≤ ζ < 1) if

(1 − ζ)
(
Dn

p,qf(ς)
ς

)σ

+ ζDp,q

(
Dn

p,qf(ς)
)( ς

Dn
p,qf(ς)

)σ−1

≺ Ψ(ς) (f ∈ A, ς ∈ D),

where Ψ(ς) is defined in (1.2).

Remark 1.1. The following subclasses can be obtained by specializing the parameters
p, q, ζ, σ, n and Ψ in (1.2).

(i) For p = 1, the class M̃n
p,q(ζ, σ, Ψ) reduces to M̃n

q (ζ, σ, Ψ), which satisfied the
following condition:

(1 − ζ)
(
Dn

q f(ς)
ς

)σ

+ ζDq

(
Dn

q f(ς)
)( ς

Dn
q f(ς)

)σ−1

≺ Ψ(ς).
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(ii) For p = 1 and n = 0, the class M̃n
p,q(ζ, σ, Ψ) reduces to M̃q(ζ, σ, Ψ), which

satisfies the following condition:

(1 − ζ)
(

f(ς)
ς

)σ

+ ζDq (f(ς))
(

ς

f(ς)

)σ−1

≺ Ψ(ς).

(iii) For p = 1 and q → 1−, the class M̃n
p,q(ζ, σ, Ψ) reduces to M̃n(ζ, σ, Ψ), which

satisfies the following condition:

(1 − ζ)
(

Dnf(ς)
ς

)σ

+ ζ (Dnf(ς))′
(

ς

Dnf(ς)

)σ−1

≺ Ψ(ς).

(iv) For p = 1, q → 1− and n = 0, the class M̃n
p,q(ζ, σ, Ψ) reduces to Mζ,σ(Ψ) [7].

(v) For p = 1, q → 1−, σ = 1, n = 0 and Ψ = 1+(1−2β)ς
1−ς

(0 ≤ β < 1), the class
M̃n

p,q(ζ, σ, Ψ) reduces to Qζ(β) [8] (see also [10, with h(z) = z
1−z

]).
(vi) For p = 1, q → 1−, σ = 1, n = 0 and Ψ = 1+ς

1−ς
, the class M̃n

p,q(ζ, σ, Ψ) reduces
to Qζ [5].

(vii) For p = 1, q → 1−, σ = 1, n = 0, ζ = 1 and Ψ = 1+ς
1−ς

, the class M̃n
p,q(ζ, σ, Ψ)

reduces to Q [27].

Definition 1.4. A function f ∈ Ñn
p,q(ζ, σ, Ψ) (0 < q < p ≤ 1, n ∈ N, σ ≥ 0, 0 ≤ ζ <

1) if

(1 − ζ)
(
Dn

p,qf(ς)
ς

)σ

+ ζDp,q

(
Dn

p,qf(ς)
)(Dn

p,qf(ς)
ς

)σ−1

≺ Ψ(ς) (f ∈ A, ς ∈ D),

where Ψ(ς) is defined in (1.2).

Remark 1.2. By specializing the parameters p, q, ζ, σ, n and Ψ in (1.2), we obtain the
following subclasses as follows.

(i) For p = 1, the class Ñn
p,q(ζ, σ, Ψ) reduces to Ñn

q (ζ, σ, Ψ), which satisfies the
following condition:

(1 − ζ)
(
Dn

q f(ς)
ς

)σ

+ ζDq

(
Dn

q f(ς)
)(Dn

q f(ς)
ς

)σ−1

≺ Ψ(ς).

(ii) For p = 1 and n = 0, the class Ñn
p,q(ζ, σ, Ψ) reduces to Ñq(ζ, σ, Ψ), which

satisfies the following condition:

(1 − ζ)
(

f(ς)
ς

)σ

+ ζDq (f(ς))
(

f(ς)
ς

)σ−1

≺ Ψ(ς).

(iii) For p = 1 and q → 1−, the class Ñn
p,q(ζ, σ, Ψ) reduces to Ñn(ζ, σ, Ψ), which

satisfies the following condition:

(1 − ζ)
(

Dnf(ς)
ς

)σ

+ ζ (Dnf(ς))′
(

Dnf(ς)
ς

)σ−1

≺ Ψ(ς).
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(iv) For p = 1, q → 1− and n = 0, the class Ñn
p,q(ζ, σ, Ψ) reduces to Nζ,σ(Ψ) [7].

(v) For p = 1, q → 1−, σ = n = 0 and ζ = 1, the class Ñn
p,q(ζ, σ, Ψ) reduces to

S∗(Ψ) [26].
(vi) For p = 1, q → 1−, n = 0, ζ = 1 and Ψ = 1+ς

1−ς
, the class Ñn

p,q(ζ, σ, Ψ) reduces
to Nσ [11].

(vii) For p = 1, q → 1−, n = 0, ζ = 1, σ = 1
2 and Ψ = 1+ς

1−ς
, the class Ñn

p,q(ζ, σ, Ψ)
reduces to N [12].

(viii) For p = 1, q → 1−, n = 0, ζ = 1, σ = 0 and Ψ = 1+ς
1−ς

, the class Ñn
p,q(ζ, σ, Ψ)

reduces to S∗ [16].

Horadam polynomials sequence ℏı(r, s, t; c, d) or ℏı(s) is defined by (see [19,20])

ℏı(r) = srℏı−1(r) + tℏı−2(r) (c, d, r, s, t ∈ R, ı ∈ N\{1, 2}),(1.7)

with

(1.8) ℏ1(r) = c, ℏ2(r) = dr and ℏ3(r) = sdr2 + cd.

The generating function of the Horadam polynomial sequence can be established by

(1.9) ℵ(ς, r) =
∑
ı≥1

ℏı(r)ς ı−1 = −c + (d − cs)rς

tς2 + srς − 1 .

Remark 1.3. The following are specific instances of the polynomials ℏm(s) that we
present (see [19, 20]).

• The Fibonacci polynomials Fı(r), if we take c = d = 1 = t = s.
• The Lucas polynomials Lı(r), if we take d = s = t = 1 and c = 2.
• The Pell polynomials Pı(r), if we take d = s = 2 and c = t = 1.
• The Pell-Lucas polynomials Qı(r), if we take t = 1 and c = s = d = 2.
• The Chebyshev polynomials Uı(r) of the second kind, if we take t = −1, c = 1

and s = d = 2.

Definition 1.5. A function f ∈ Mn
p,q(ζ, σ, r) (0 < q < p ≤ 1, n ∈ N∪{0}, σ ≥ 0, 0 ≤

ζ < 1, c, d, r, s, t ∈ R, ı ∈ N\{1, 2}) if

(1.10) (1 − ζ)
(
Dn

p,qf(ς)
ς

)σ

+ ζDp,q

(
Dn

p,qf(ς)
)( ς

Dn
p,qf(ς)

)σ−1

≺ ℵ(ς, r) + 1 − c,

where ℵ(ς, r) is defined in (1.9).

Definition 1.6. A function f ∈ Nn
p,q(ζ, σ, r) (0 < q < p ≤ 1, n ∈ N, σ ≥ 0, 0 ≤ ζ <

1, c, d, r, s, t ∈ R, ı ∈ N\{1, 2}) if

(1.11) (1 − ζ)
(
Dn

p,qf(ς)
ς

)σ

+ ζDp,q

(
Dn

p,qf(ς)
)(Dn

p,qf(ς)
ς

)σ−1

≺ ℵ(ς, r) + 1 − c,

where ℵ(ς, r) is defined in (1.9).
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Definition 1.7. A function f ∈ Ln
p,q(ρ, r) (0 < q < p ≤ 1, n ∈ N, ρ ≥ 0) if

(1.12) (1 + eiρ)
ςDp,q

(
Dn

p,qf(ς)
)

Dn
p,qf(ς)

− eiρ ≺ ℵ(ς, r) + 1 − c,

where ℵ(ς, r) is defined in (1.9).

The following publications offer an interesting summary of the development and
applications of Fekete-Szegö inequalities and bi-univalent functions. El-Ashwah and
Hassan [13] derived Fekete-Szegö inequalities for functions within a specific subclass
of analytic functions by applying the Sălăgean operator. Srivastava established and
examined the first Maclaurin coefficient restrictions for new subclasses of analytic
and m-fold symmetric bi-univalent functions produced by a linear combination [31].
In their study of fractional q-calculus, Srivastava et al. [36] also connected p-valent
q-convex functions of complex order and p-valent q-starlike functions to the Fekete-
Szegö problem. For reference, one can see [1, 3, 6, 35]. Using Horadam polynomials
and (p, q)-analogue of the Sălăgean differential operator, we introduce and study new
subclasses of analytic functions. The objective of this paper is to obtain the Fekete-
Szegö inequalities associated with k-th root transformations [f(ςk)] 1

k for functions in
the subclasses of analytic univalent functions Mn

p,q(ζ, σ, r), Nn
p,q(ζ, σ, r) and Ln

p,q(ρ, r)
defined by the generalized fractional derivative operator Dn

p,q. Similar problems are
investigated for ς

f(ς) when f(ς) belonging to these classes. Our main conclusions will
be presented using the following lemmas.

Lemma 1.1. ([2, Lemma 1, p. 36]). Let

(1.13) ϖ(ς) = ω1ς + ω2ς
2 + · · ·

be analytic function in D satisfying the condition |ϖ(ς)| < 1. Then,

∣∣∣ω2 − νω2
1

∣∣∣ ≤


−ν, if ν ≤ −1,
1, if − 1 ≤ ν ≤ 1,
ν, if ν ≥ 1.

For ν > 1 or ν < −1, equality is satisfied if and only if ϖ(ς) = ς or one of its rotations.
For −1 < ν < 1, the equality is satisfied if and only if ϖ(ς) = ς2 or one of its rotations.
For ν = −1, equality satisfies if and only if ϖ(ς) = (γ+ς)ς

(1+γς) (0 ≤ γ ≤ 1) or one of its
rotations. For ν = 1, equality is satisfied if and only if ϖ(ς) = −(γ+ς)ς

(1+γς) (0 ≤ γ ≤ 1) or
one of its rotations.

Lemma 1.2. ([25, inequality 7, p. 10]). If ϖ(ς) is defined by (1.13), then∣∣∣ω2 − νω2
1

∣∣∣ ≤ max{1, |ν|} (ν ∈ C).

The result is sharp for ϖ(ς) = ς or ϖ(ς) = ς2.
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2. Main Results

Unless otherwise mentioned, we shall assume throughout the paper that ς ∈ D,
0 < q < p ≤ 1, n ∈ N, σ ≥ 0, 0 ≤ ζ < 1, c, d, r, s, t ∈ R, ı ∈ N\{1, 2} and ρ ≥ 0.

Definition 2.1. For f(ς) ∈ A given by (1.1), the k-th root transform is defined by:

G(ς) =
(
f(ςk)

) 1
k = ς +

∑
i≥1

bik+1ς
ik+1

= ς + a2

k
ςk+1 +

(
a3

k
− k − 1

2k2 a2
2

)
ς2k+1 + · · · .(2.1)

For k = 1 in (2.1), the function G(ς) reduces to f(ς).

Theorem 2.1. If f(ς) ∈ Mn
p,q(ζ, σ, r) and G(ς) is defined by (2.1), then

|b2k+1−νb2
k+1|≤



− (σ−1)(σ−2[2]p,qζ)k[2]2n
p,q+(k−1+2ν)(σ−ζ(2σ−[3]p,q−1))[3]np,q

2k2(σ−ζ(2σ−[2]p,q−1))2(σ−ζ(2σ−[3]p,q−1))[2]2n
p,q [3]np,q

ℏ2
2(r)

+ ℏ3(r)
k(σ−ζ(2σ−[3]p,q−1))[3]np,q

, ν ≤ τ1,

ℏ3(r)
k(σ−ζ(2σ−[3]p,q−1))[3]np,q

, τ1 ≤ ν ≤ τ2,

(σ−1)(σ−2[2]p,qζ)k[2]2n
p,q+(k−1+2ν)(σ−ζ(2σ−[3]p,q−1))[3]np,q

2k2(σ−ζ(2σ−[2]p,q−1))2(σ−ζ(2σ−[3]p,q−1))[2]2n
p,q [3]np,q

ℏ2
2(r)

− ℏ3(r)
k(σ−ζ(2σ−[3]p,q−1))[3]np,q

, ν ≥ τ2,

where

τ1 = 1
2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)

{(ℏ3(r)
ℏ2(r) − 1

)(
2k(σ − ζ(2σ − [2]p,q − 1))2[2]2n

p,q

)
− (σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,qℏ2(r) − (k − 1)(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)
}

,

τ2 = 1
2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)

{(ℏ3(r)
ℏ2(r) + 1

)(
2k(σ − ζ(2σ − [2]p,q − 1))2[2]2n

p,q

)
− (σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,qℏ2(r) − (k − 1)(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)
}

and

|b2k+1 − νb2
k+1| ≤ ℏ2(r)

k (σ − ζ(2σ − [3]p,q − 1)) [3]np,q

max{1, |ξ|},

where ν is any complex number and
(2.2)

ξ =
(σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,q + (k − 1 + 2ν)(σ − ζ(2σ − [3]p,q − 1))[3]np,q

2k(σ − ζ(2σ − [2]p,q − 1))2[2]2n
p,q

ℏ2(r) − ℏ3(r)
ℏ2(r) ,

where ℏ2(r) and ℏ3(r) are denoted by (1.8).
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Proof. Let f(ς) ∈ Mn
p,q(ζ, σ, r). Then,

(1 − ζ)
(
Dn

p,qf(ς)
ς

)σ

+ ζDp,q

(
Dn

p,qf(ς)
)( ς

Dn
p,qf(ς)

)σ−1

= ℵ(ϖ(ς), r) + 1 − c,

where ϖ(ς) is given by (1.13). Since(
Dn

p,qf(ς)
ς

)σ

=1 + σ[2]np,qa2ς +
{

σ[3]np,qa3 + σ(σ − 1)
2 [2]2n

p,qa2
2

}
ς2 + · · · ,

(
ς

Dn
p,qf(ς)

)σ−1

=1 − (σ − 1)[2]np,qa2ς +
{

σ(σ − 1)
2 [2]2n

p,qa2
2 − (σ − 1)[3]np,qa3

}
ς2 + · · · ,

(2.3)

and

(1 − ζ)
(
Dn

p,qf(ς)
ς

)σ

+ ζDp,q

(
Dn

p,qf(ς)
)( ς

Dn
p,qf(ς)

)σ−1

=1 + (σ − ζ(2σ − 1 − [2]p,q))[2]np,qa2ς

+
{

(σ − 2[2]p,qζ)(σ − 1)
2 [2]2n

p,qa2
2 + (σ − ζ(2σ − [3]p,q − 1))[3]np,qa3

}
ς2 + · · ·(2.4)

and
(2.5) ℵ(ϖ(ς), r) + 1 − c = 1 + ℏ2(r)ω1ς +

(
ℏ2(r)ω2 + ℏ3(r)ω2

1

)
ς2 + · · · ,

we have, from (2.4) and (2.5),

(2.6) a2 = ℏ2(r)ω1
(σ − ζ(2σ − 1 − [2]p,q)) [2]np,q

and
(2.7)

a3 = 1
(σ − ζ(2σ − [3]p,q − 1)) [3]np,q

{
ℏ2(r)ω2 +

(
ℏ3(r) − (σ − 1)(σ − 2[2]p,qζ)

2(σ − ζ(2σ − 1 − [2]p,q))2 ℏ
2
2(r)

)
ω2

1

}
.

Using (2.1), (2.6) and (2.7), we have

bk+1 = ℏ2(r)ω1
k (σ − ζ(2σ − 1 − [2]p,q)) [2]np,q

and

b2k+1 = 1
k (σ − ζ(2σ − [3]p,q − 1)) [3]np,q

{
ℏ2(r)ω2 + ℏ3(r)ω2

1

−
(σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,q + (k − 1)(σ − ζ(2σ − [3]p,q − 1))[3]np,q

2k(σ − ζ(2σ − 1 − [2]p,q))2[2]2n
p,q

ℏ2
2(r)ω2

1

}
.

Therefore,

b2k+1 − νb2
k+1 = ℏ2(r)

k (σ − ζ(2σ − [3]p,q − 1)) [3]np,q

{
ω2 − ξω2

1

}
,

where ξ is defined by (2.2). Applying Lemma 1.1, we obtain the following.
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(i) If ξ ≤ −1, then

ν ≤ 1
2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)

×
{(ℏ3(r)

ℏ2(r) − 1
)(

2k(σ − ζ(2σ − [2]p,q − 1))2[2]2n
p,q

)
− (σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,qℏ2(r) − (k − 1)(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)
}

and ∣∣b2k+1 − νb2
k+1

∣∣
≤ −

(
(σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,q + (k − 1 + 2ν)(σ − ζ(2σ − [3]p,q − 1))[3]np,q

2k2(σ − ζ(2σ − [2]p,q − 1))2 (σ − ζ(2σ − [3]p,q − 1)) [2]2n
p,q[3]np,q

)
ℏ2

2(r)

+ ℏ3(r)
k (σ − ζ(2σ − [3]p,q − 1)) [3]np,q

.

(ii) If −1 ≤ ξ ≤ 1, then
1

2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)

{(ℏ3(r)
ℏ2(r) − 1

)(
2k(σ − ζ(2σ − [2]p,q − 1))2[2]2n

p,q

)
− (σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,qℏ2(r) − (k − 1)(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)
}

≤ν

≤ 1
2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)

{(ℏ3(r)
ℏ2(r) + 1

)(
2k(σ − ζ(2σ − [2]p,q − 1))2[2]2n

p,q

)
− (σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,qℏ2(r) − (k − 1)(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)
}

and

|b2k+1 − νb2
k+1| ≤ ℏ2(r)

k (σ − ζ(2σ − [3]p,q − 1)) [3]np,q

.

(iii) If ξ ≥ 1, then

ν ≥ 1
2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)

{(ℏ3(r)
ℏ2(r) + 1

)(
2k(σ − ζ(2σ − [2]p,q − 1))2[2]2n

p,q

)
− (σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,qℏ2(r) − (k − 1)(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)
}

and
|b2k+1 − νb2

k+1|

≤
(σ − 1)(σ − 2[2]p,qζ)k[2]2n

p,q + (k − 1 + 2ν)(σ − ζ(2σ − [3]p,q − 1))[3]np,q

2k2(σ − ζ(2σ − [2]p,q − 1))2 (σ − ζ(2σ − [3]p,q − 1)) [2]2n
p,q[3]np,q

ℏ2
2(r)

− ℏ3(r)
k (σ − ζ(2σ − [3]p,q − 1)) [3]np,q

.

Applying Lemma 1.2, we obtain the second part of the theorem. □
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Theorem 2.2. If f(ς) ∈ Nn
p,q(ζ, σ, r) and G(ς) is defined by (2.1), then

(2.8)

|b2k+1 − ν1b2
k+1| ≤



−{(σ−1)(σ−2ζ(1−[2]p,q))k[2]2n
p,q+(k−1+2ν)(σ−ζ(1−[3]p,q))[3]n

p,q}ℏ2
2(r)

2k2(σ−ζ+[2]p,qζ)2(σ−ζ(1−[3]p,q))[3]n
p,q [2]2n

p,q

+ ℏ3(r)
k(σ−ζ(1−[3]p,q))[3]n

p,q
, ν1 ≤ τ3,

ℏ2(r)
k(σ−ζ(1−[3]p,q))[3]n

p,q
, τ3 ≤ ν1 ≤ τ4,

{(σ−1)(σ−2ζ(1−[2]p,q))k[2]2n
p,q+(k−1+2ν)(σ−ζ(1−[3]p,q))[3]n

p,q}ℏ2
2(r)

2k2(σ−ζ+[2]p,qζ)2(σ−ζ(1−[3]p,q))[3]n
p,q [2]2n

p,q

− ℏ3(r)
k(σ−ζ(1−[3]p,q))[3]n

p,q
, ν1 ≥ τ4,

where

τ3 =
(ℏ3(r)
ℏ2(r) − 1

)(
k(σ − ζ + [2]p,qζ)2[2]2n

p,q

(σ − ζ + [3]p,qζ)[3]np,qℏ2(r)

)

−
(σ − 1)(σ − 2ζ(1 − [2]p,q))k[2]2n

p,q + (k − 1)(σ − ζ(1 − [3]p,q))[3]np,q

2(σ − ζ(1 − [3]p,q))[3]np,q

,

τ4 =
(ℏ3(r)
ℏ2(r) + 1

)(
k(σ − ζ + [2]p,qζ)2[2]2n

p,q

(σ − ζ(1 − [3]p,q))[3]np,qℏ2(r)

)

−
(σ − 1)(σ − 2ζ(1 − [2]p,q))k[2]2n

p,q + (k − 1)(σ − ζ(1 − [3]p,q))[3]np,q

2(σ − ζ(1 − [3]p,q))[3]np,q

and

(2.9) |b2k+1 − νb2
k+1| ≤ ℏ2(r)

k(σ − ζ(1 − [3]p,q))[3]np,q

max{1, |ξ2|},

where ν1 is any complex number and
(2.10)

ξ2 = −ℏ3(r)
ℏ2(r) +

(σ − 1)(σ − 2ζ(1 − [2]p,q))k[2]2n
p,q + (k − 1 + 2ν)(σ − ζ(1 − [3]p,q))[3]np,q

2k(σ − ζ + [2]p,qζ)2[2]2n
p,q

ℏ2(r),

where ℏ2(r) and ℏ3(r) are given by (1.8).

Proof. Let f(ς) ∈ Nn
p,q(ζ, σ, r). Then,

(1 − ζ)
(
Dn

p,qf(ς)
ς

)σ

+ ζDp,q

(
Dn

p,qf(ς)
)(Dn

p,qf(ς)
ς

)σ−1

= ℵ(ϖ(ς), r) + 1 − c,

where ϖ(ς) is given by (1.13). Since(
Dn

p,qf(ς)
ς

)σ

=1 + σ[2]np,qa2ς +
{

σ[3]np,qa3 +
σ(σ − 1)[2]2n

p,q

2 a2
2

}
ς2 + · · · ,

(
Dn

p,qf(ς)
ς

)σ−1

=1 + (σ − 1)[2]np,qa2ς +
{

(σ − 1)[3]np,qa3 +
(σ − 1)(σ − 2)[2]2n

p,q

2 a2
2

}
ς2

+ · · ·
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and

(1 − ζ)
(
Dn

p,qf(ς)
ς

)σ

+ ζDp,q

(
Dn

p,qf(ς)
)(Dn

p,qf(ς)
ς

)σ−1

=1 + (σ − ζ + [2]p,qζ)[2]np,qa2ς +
{

(σ − ζ + [3]p,qζ)[3]np,qa3

+ (σ − 1)(σ − 2ζ + 2ζ[2]p,q)
2 [2]2n

p,qa
2
2

}
ς2 + · · · .(2.11)

We have from (2.11) and (2.5)

(2.12) a2 = ℏ2(r)ω1

(σ − ζ + [2]p,qζ) [2]np,q

and

(2.13) a3 =
ℏ2(r)ω2 +

(
ℏ3(r) − (σ−1)(σ−2ζ+2[2]p,qζ)

2(σ−ζ+[2]p,qζ)2 ℏ2
2(r)

)
ω2

1

(σ − ζ + [3]p,qζ) [3]np,q

.

Using (2.12), (2.13) and (2.1), we have

bk+1 = ℏ2(r)ω1

k (σ − ζ + [2]p,qζ) [2]np,q

and

b2k+1 = 1
k (σ − ζ + [3]p,qζ) [3]np,q

{
ℏ2(r)ω2 + ℏ3(r)ω2

1

−
(σ − 1)(σ − 2ζ + 2[2]p,qζ)[2]2n

p,qk + (k − 1)(σ − ζ + [3]p,qζ)[3]np,q

2k(σ − ζ + [2]p,qζ)2[2]2n
p,q

C2
1ω

2
1

}
.

Therefore,

b2k+1 − ν1b
2
k+1 = ℏ2(r)

k(σ − ζ(1 − [3]p,q))[3]np,q

{
ω2 − ξ2ω

2
1

}
,

where ξ2 is given in (2.10). The results (2.8) are established by Lemma 1.1 and
inequality (2.9) by Lemma 1.2. □
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Theorem 2.3. If f(ς) ∈ Ln
p,q(ρ, r) and G(ς) is defined by (2.1), then

(2.14)

|b2k+1 − ν2b
2
k+1| ≤



ℏ3(r)
([3]p,q−1)[3]np,qk(1+eiρ)

−

{
(k−1+2ν)([3]p,q−1)[3]np,q−2([2]p,q−1)k[2]2n

p,q

}
ℏ2

2(r)
2([2]p,q−1)2([3]p,q−1)k2(1+eiρ)2[3]np,q [2]2n

p,q
, ν2 ≤ τ5,

ℏ2(r)
([3]p,q−1)[3]np,qk(1+eiρ) , τ5 ≤ ν2 ≤ τ6,

−ℏ3(r)
([3]p,q−1)[3]np,qk(1+eiρ)

+

{
(k−1+2ν)([3]p,q−1)[3]np,q−2([2]p,q−1)k[2]2n

p,q

}
ℏ2

2(r)
2([2]p,q−1)2([3]p,q−1)k2(1+eiρ)2[3]np,q [2]2n

p,q
, ν2 ≥ τ6,

where

τ5 =
(ℏ3(r)
ℏ2(r) − 1

)(([2]p,q − 1)2[2]2n
p,qk(1 + eiρ)

([3]p,q − 1)[3]np,qℏ2(r)

)

+
2([2]p,q − 1)k[2]2n

p,q − (k − 1)([3]p,q − 1)[3]np,q

2([3]p,q − 1)[3]np,q

,

τ6 =
(ℏ3(r)
ℏ2(r) + 1

)(([2]p,q − 1)2[2]2n
p,qk(1 + eiρ)

([3]p,q − 1)[3]np,qℏ2(r)

)

+
2([2]p,q − 1)k[2]2n

p,q − (k − 1)([3]p,q − 1)[3]np,q

2([3]p,q − 1)[3]np,q

,

and

(2.15) |b2k+1 − ν2b
2
k+1| ≤ ℏ2(r)

([3]p,q − 1)[3]np,qk(1 + eiρ) max{1, |ξ3|},

where ν2 is any complex number and

(2.16) ξ3 =
(k − 1 + 2ν)([3]p,q − 1)[3]np,q − 2([2]p,q − 1)[2]2n

p,qk

2([2]p,q − 1)2[2]2n
p,qk(1 + eiρ) ℏ2(r) − ℏ3(r)

ℏ2(r) ,

where ℏ2(r) and ℏ3(r) are given by (1.8).

Proof. Let f(ς) ∈ Ln
p,q(ρ, r). Then,

(1 + eiρ)
ςDp,q

(
Dn

p,qf(ς)
)

Dn
p,qf(ς)

− eiρ = ℵ(ϖ(ς), r) + 1 − c (ς ∈ D),

where ϖ(ς) is given by (1.13). Since

(1 + eiρ)
ςDp,q

(
Dn

p,qf(ς)
)

Dn
p,qf(ς)

− eiρ(2.17)

=1 + ([2]p,q − 1)[2]np,q(1 + eiρ)a2ς
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+
{
([3]p,q − 1)[3]np,qa3 + (1 − [2]p,q) [2]2n

p,qa
2
2

}
(1 + eiρ)ς2 + · · · ,

we have from (2.17) and (2.5)

(2.18) a2 = ℏ2(r)ω1

([2]p,q − 1)[2]np,q(1 + eiρ)

and

(2.19) a3 =
ℏ2(r)ω2 +

(
ℏ3(r) + ℏ2

2(r)
([2]p,q−1)(1+eiρ)

)
ω2

1

([3]p,q − 1)[3]np,q(1 + eiρ) .

Using (2.18), (2.19) and (2.1), we have

bk+1 = ℏ2(r)ω1

k([2]p,q − 1)[2]np,q(1 + eiρ)

and

b2k+1 = 1
k([3]p,q − 1)[3]np,q(1 + eiρ)

(
ℏ2(r)ω2 + ℏ3(r)ω2

1

+
(

2([2]p,q − 1)[2]2n
p,qk − (k − 1)([3]p,q − 1)[3]np,q

2([2]p,q − 1)2[2]2n
p,qk(1 + eiρ)

)
ℏ2

2(r)ω2
1

)
.

Therefore,

b2k+1 − ν2b
2
k+1 = ℏ2(r)

([3]p,q − 1)[3]np,qk(1 + eiρ)
{
ω2 − ξ3ω

2
1

}
,

where ξ3 is defined by (2.16). The results (2.14) are established by Lemma 1.1 and
the inequality (2.15) is established by Lemma 1.2. □

3. Fekete-Szegö Result

In this section, the Fekete-Szegö type coefficient inequalities associated with the
rational function Ω(ς) of the form

(3.1) Ω(ς) = ς

f(ς) = 1 +
∑
κ≥1

dκςκ = 1 − a2ς +
(
a2

2 − a3
)
ς2 + · · · ,

where d1 = −a2, d2 = a2
2 − a3.
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Theorem 3.1. If f(ς) ∈ Mn
p,q(ζ, σ, r) and Ω(ς) is defined by (3.1) then

(3.2)

|d2 − ν3d
2
1| ≤



(σ−1)(σ−2[2]p,qζ)[2]2n
p,q+2(1−ν)(σ−ζ(2σ−[3]p,q−1))[3]np,q

2(σ−ζ(2σ−1−[2]p,q))2[2]2n
p,q(σ−ζ(2σ−[3]p,q−1))[3]np,q

ℏ2
2(r)

− ℏ3(r)
(σ−ζ(2σ−[3]p,q−1))[3]np,q

, ν3 ≤ β1,

ℏ2(r)
(σ−ζ(2σ−[3]p,q−1))[3]np,q

, β1 ≤ ν3 ≤ β2,

− (σ−1)(σ−2[2]p,qζ)[2]2n
p,q+2(1−ν)(σ−ζ(2σ−[3]p,q−1))[3]np,q

2(σ−ζ(2σ−1−[2]p,q))2[2]2n
p,q(σ−ζ(2σ−[3]p,q−1))[3]np,q

ℏ2
2(r)

+ ℏ3(r)
(σ−ζ(2σ−[3]p,q−1))[3]np,q

, ν3 ≥ β2,

where

β1 = 1
2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)

{(
ℏ3(r)
ℏ2(r) − 1

)(
2(σ − ζ(2σ − [2]p,q − 1))2[2]2n

p,q

)
− (σ − 1)(σ − 2[2]p,qζ)[2]2n

p,qℏ2(r) − 2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)
}

,

β2 = 1
2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)

{(
ℏ3(r)
ℏ2(r) + 1

)(
2(σ − ζ(2σ − [2]p,q − 1))2[2]2n

p,q

)
− (σ − 1)(σ − 2[2]p,qζ)[2]2n

p,qℏ2(r) − 2(σ − ζ(2σ − [3]p,q − 1))[3]np,qℏ2(r)
}

and

(3.3) |d2 − ν3d
2
1| ≤ ℏ2(r)

(σ − ζ(2σ − [3]p,q − 1))[3]np,q

max{1, |η1|},

where ν3 is any complex number and
(3.4)

η1 = −ℏ3(r)
ℏ2(r) +

(σ − 1)(σ − 2[2]p,qζ)[2]2n
p,q + 2(1 − ν)(σ − ζ(2σ − [3]p,q − 1))[3]np,q

2(σ − ζ(2σ − 1 − [2]p,q))2[2]2n
p,q

ℏ2(r),

where ℏ2(r) and ℏ3(r) are given by (1.8).

Proof. Let f(ς) ∈ Mn
p,q(ζ, σ, r). Using (2.6), (2.7) and (3.1), we have

d1 = − ℏ2(r)ω1

(σ − ζ(2σ − 1 − [2]p,q)) [2]np,q

and

d2 = − ℏ2(r)ω2

(σ − ζ(2σ − [3]p,q − 1))[3]np,q

+ 1
(σ − ζ(2σ − [3]p,q − 1))[3]np,q

(
− ℏ3(r)ω2

1

+
(σ − 1)(σ − 2[2]p,qζ)[2]2n

p,q + 2(σ − ζ(2σ − [3]p,q − 1))[3]np,q

2(σ − ζ(2σ − 1 − [2]p,q))2[2]2n
p,q

ℏ2
2(r)ω2

1

)
.
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Therefore,

d2 − ν3d
2
1 = −ℏ2(r)

(σ − ζ(2σ − [3]p,q − 1))[3]np,q

{
ω2 − η1ω

2
1

}
,

where η1 is defined by (3.4). The results (3.2) are established by Lemma 1.1 and the
inequality (3.3) is established by Lemma 1.2. □

Theorem 3.2. If f(ς) ∈ Nn
p,q(ζ, σ, r) and Ω(ς) is defined by (3.1), then

(3.5)

|d2 − ν4d2
1| ≤



{(σ−1)(σ−2ζ(1−[2]p,q))[2]2n
p,q+2(1−ν)(σ−ζ(1−[3]p,q))[3]np,q}ℏ2

2(r)
2(σ−ζ+[2]p,qζ)2(σ−ζ(1−[3]p,q))[3]np,q [2]2n

p,q

− ℏ3(r)
(σ−ζ(1−[3]p,q))[3]np,q

, ν4 ≤ β3,

ℏ2(r)
(σ−ζ(1−[3]p,q))[3]np,q

, β3 ≤ ν4 ≤ β4,

−{(σ−1)(σ−2ζ(1−[2]p,q))[2]2n
p,q+2(1−ν)(σ−ζ(1−[3]p,q))[3]np,q}ℏ2

2(r)
2(σ−ζ+[2]p,qζ)2(σ−ζ(1−[3]p,q))[3]np,q [2]2n

p,q

+ ℏ3(r)
(σ−ζ(1−[3]p,q))[3]np,q

, ν4 ≥ β4,

where

β3 =
(ℏ3(r)
ℏ2(r) − 1

)( (σ − ζ + [2]p,qζ)2[2]2n
p,q

(σ − ζ + [3]p,qζ)[3]np,qℏ2(r)

)

−
(σ − 1)(σ − 2ζ(1 − [2]p,q))[2]2n

p,q + 2(σ − ζ(1 − [3]p,q))[3]np,q

2(σ − ζ(1 − [3]p,q))[3]np,q

,

β4 =
(ℏ3(r)
ℏ2(r) + 1

)( (σ − ζ + [2]p,qζ)2[2]2n
p,q

(σ − ζ(1 − [3]p,q))[3]np,qℏ2(r)

)

−
(σ − 1)(σ − 2ζ(1 − [2]p,q))[2]2n

p,q + 2(σ − ζ(1 − [3]p,q))[3]np,q

2(σ − ζ(1 − [3]p,q))[3]np,q

and

(3.6) |d2 − ν4d2
1| ≤ ℏ2(r)

(σ − ζ(1 − [3]p,q))[3]np,q

max{1, |η2|},

where ν4 is any complex number and
(3.7)

η2 = −ℏ3(r)
ℏ2(r) +

(σ − 1)(σ − 2ζ(1 − [2]p,q))[2]2n
p,q + 2(1 − ν)(σ − ζ(1 − [3]p,q))[3]np,q

2(σ − ζ + [2]p,qζ)2[2]2n
p,q

ℏ2(r),

where ℏ2(r) and ℏ3(r) are given by (1.8).

Proof. Let f(ς) ∈ Nn
p,q(ζ, σ, r). Using (2.12), (2.13) and (3.1), we have

d1 = −ℏ2(r)ω1

(σ − ζ + [2]p,qζ) [2]np,q
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and

d2 = ℏ2
2(r)ω2

1

(σ − ζ + [2]p,qζ)2 [2]2n
p,q

−
ℏ2(r)ω2 +

(
ℏ3(r) − (σ−1)(σ−2ζ+2[2]p,qζ)

2(σ−ζ+[2]p,qζ)2 ℏ2
2(r)

)
ω2

1

(σ − ζ + [3]p,qζ) [3]np,q

.

Therefore,

d2 − ν4d
2
1 = −ℏ2(r)

(σ − ζ(1 − [3]p,q))[3]np,q

{
ω2 − η2ω

2
1

}
,

where η2 is given in (3.7). The results (3.5) are established by Lemma 1.1 and
inequality (3.6) by Lemma 1.2. □

Theorem 3.3. If f(ς) ∈ Ln
p,q(ρ, r) and Ω(ς) is defined by (3.1), then

(3.8)

|d2 − ν5d2
1| ≤



− ℏ3(r)(
[3]p,q−1

)
[3]n

p,q(1+eiρ)
+
{

(1−ν)([3]p,q−1)[3]n
p,q−([2]p,q−1)[2]2n

p,q

}
ℏ2

2(r)(
[2]p,q−1

)2(
[3]p,q−1

)
(1+eiρ)2[3]n

p,q [2]2n
p,q

, ν5 ≤ β5,

ℏ2(r)(
[3]p,q−1

)
[3]n

p,q(1+eiρ)
, β5 ≤ ν5 ≤ β6,

ℏ3(r)(
[3]p,q−1

)
[3]n

p,q(1+eiρ)
−
{

(1−ν)([3]p,q−1)[3]n
p,q−([2]p,q−1)[2]2n

p,q

}
ℏ2

2(r)
([2]p,q−1)2([3]p,q−1)(1+eiρ)2[3]n

p,q [2]2n
p,q

, ν5 ≥ β6,

where

β5 =
(ℏ3(r)
ℏ2(r) − 1

)(([2]p,q − 1)2[2]2n
p,q(1 + eiρ)

([3]p,q − 1)[3]np,qℏ2(r)

)
+

([2]p,q − 1)[2]2n
p,q − ([3]p,q − 1)[3]np,q

([3]p,q − 1)[3]np,q

,

β6 =
(ℏ3(r)
ℏ2(r) + 1

)(([2]p,q − 1)2[2]2n
p,q(1 + eiρ)

([3]p,q − 1)[3]np,qℏ2(r)

)
+

([2]p,q − 1)[2]2n
p,q − ([3]p,q − 1)[3]np,q

([3]p,q − 1)[3]np,q

,

and

(3.9) |d2 − ν5d
2
1| ≤ ℏ2(r)

([3]p,q − 1)[3]np,q(1 + eiρ) max{1, |η3|},

where ν5 is any complex number and

(3.10) η3 =
(1 − ν)([3]p,q − 1)[3]np,q − ([2]p,q − 1)[2]2n

p,q

([2]p,q − 1)2[2]2n
p,q(1 + eiρ) ℏ2(r) − ℏ3(r)

ℏ3(r) ,

where ℏ2(r) and ℏ3(r) are given by (1.8).

Proof. Let f(ς) ∈ Ln
p,q(ρ, r). Using (2.18), (2.19) and (3.1), we have

d1 = −ℏ2(r)ω1

([2]p,q − 1)[2]np,q(1 + eiρ)

and

d2 = ℏ2
2(r)ω2

1
([2]p,q − 1)[2]np,q(1 + eiρ) −

ℏ2(r)ω2 +
(
ℏ3(r) + ℏ2

2(r)
([2]p,q−1)(1+eiρ)

)
ω2

1

([3]p,q − 1)[3]np,q(1 + eiρ) .
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Therefore,

d2 − ν5d
2
1 = ℏ2(r)

([3]p,q − 1)[3]np,q(1 + eiρ)
{
ω2 − η3ω

2
1

}
,

where η3 is defined by (3.10). The results (3.8) are established by Lemma 1.1 and the
inequality (3.9) is established by Lemma 1.2. □

4. conclusion

Using the concept of the subordination principle, we propose an approach that
incorporates the Horadam polynomials together with the (p, q)-analogue of Sălăgean
differential operator. These subclasses are characterized through the generalized
fractional derivative operator Dn

p,q, which provides a flexible framework for study-
ing various geometric properties. The main objective of this paper is to establish
Fekete-Szegö inequalities associated with the k-th roots transformations [f(ςk)] 1

k for
functions in the subclasses of analytic univalent functions Mn

p,q(ζ, σ, r), Nn
p,q(ζ, σ, r)

and Ln
p,q(ρ, r). In addition, we consider similar problems for the reciprocal function

ς
f(ς) when f(ς) belongs to these classes.
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