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FEKETE-SZEGO TYPE COEFFICIENT INEQUALITIES FOR
CLASSES OF ANALYTIC FUNCTION ASSOCIATED WITH
(p,q)-DERIVATIVE OF SALAGEAN OPERATOR AND HORADAM
POLYNOMIALS

RABHA M. EL-ASHWAH! AND WAFAA Y. KOTA!

ABSTRACT. Using the concept of subordination principle, we propose to make use of
the Horadam polynomials and (p, ¢)-analogue of Silagean differential operator. We
introduce and study new subclasses of analytic functions. The objective of this paper
is to obtain the Fekete-Szegd inequalities associated with k-th root transformations
[f(s®)]* for functions in the subclasses of analytic univalent functions my (¢ o,7),
Ny (¢ o,7) and £7 (p,7) defined by the generalized fractional derivative operator
D 4+ Similar problems are investigated for %, when f(<) belongs to these classes.

1. INTRODUCTION

Quantum calculus is widely used in mathematical sciences because of its numerous
applications in combinatorics [15], number theory [34], fundamental hypergeometric
functions [14] and orthogonal polynomials [38]. The ideal basis for applying the g¢-
calculus within geometric function theory was provided by Srivastava’s 1989 book
chapter [30]. Jackson [22,23] was the first to successfully build the g-integral and
g-derivative. The geometrical indicating of the g-analysis was subsequently discovered
as a result of quantum group investigations. In 1990, the g¢-calculus techniques
were implemented to define the notion of a g-starlike function in geometric function
theory [21].
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The development of this field of study was subsequently facilitated by the appear-
ance of numerous g-calculus operators that were employed in different investigations,
including the definition of new classes of analytic functions and the discovery of various
features for them, the most typical of these being geometric properties and coefficient
estimates, through techniques specific to geometric function theory. In an attempt to
modify the classical operators to the g-calculus features incorporated into geometric
function theory, Kanas and Raducanu [24] began the field of exploration by building
the g-analogue of the Ruscheweyh differential operator utilizing the concept of con-
volution. Srivastava [32] established operators for basic (or ¢-)calculus and fractional
g-calculus together with their applications in their study of geometric function theory
of complex analysis. In [37], new subclasses of bi-univalent functions are obtained by
applying a ¢-integral operator.

The general background information for the current research is created by the
collection of analytic functions in the unit disc D = {¢ € C : [¢| < 1}, which are
observed with the geometric position presented by the star-likeness qualities that some
analytic function classes display.

The normalized analytic family of functions f, designated by A, can be written as
follows:

(1.1) fle)=c+> a” (s€D),
K>2
with f(0) = f'(0) —1=0.
Let

(1.2) U(s) = 14 Crs + Coc® + Cy® + -+

be an analytic function on D, with ¥(0) = 1, ¥'(0) > 0 and Re(¥(s)) > 0, mapping
the unit disc D onto a starlike region with regards to 1 and being symmetric with
regards to the real axis.

Definition 1.1 ([9]). The formula f(<) < h(s) indicates that two analytic functions
are subordinate to one another if there is a function w that is analytic in D and
satisfies w(0) = 0, |w(s)| < 1 for all ¢ € D, such that f(s) = h(w(s)), ¢ € D.

More precisely, if h in D is univalent, we have:

f(s) < h(s) ifand only if f(0) = h(0)and f(D) C h(D).

It is possible to extend the g-calculus to quantum calculus, represented by the
(p, q)-calculus. The g-calculus can be created when p = 1 in the (p, g)-calculus (see
[18,28]). First, we define (p, g)-calculus, which is helpful in understanding the subject
of the present paper.

Definition 1.2 ([4,33]). The (p, ¢)-derivative operator of a function f is defined by

13)  Dyf(e) =12V ) g (e, £0),

(p—q)s =2
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where [k],, is given by

p/@_qﬁ
[Klpq = p—q (p#q,0<g<p<1).

If p=1and ¢ — 17, then D, ,f(s)

= f'(s) (see also [28]).
Note that, for p = 1, the (p, ¢)-derivative reduces to (see [22])

(1.4) D,f(s) = f(aii;)( 1+ [klgans™" (s #0).

k>0
For f(z) € A, the (p, ¢)-analogue of Salagean differential operator ©

A (ne NU{0}, N={1,2,3,...}) defined by Panigrahi and El-Ashwah [28] as:

D) f(s) =f(s),
gzlwf(g) :g(Dp,qf(g))7

(1.5) D, () =2, (955 1(5)) (0<g<p<1).
It follows from (1.1) and (1.5) that

(1.6) Or () =<+ > [k as” (s D).

K>2
Note that the following hold.
o Forp=1,D,f(c) =
e For p =1, limg,;- D) f(s) = D"f(S) = ¢ + Xusa K"axs", where D" defined
in [29].

Using the (p, g)-analogue of Salagean differential operator ®j , we introduce a new
classes of analytic functions as follows.

Definition 1.3. A function f € iﬁg’q((’,a, U) (0<g<p<I1l,neNU{0}, o>
0,0<(¢<1)if

-0 () s en, (01,00) (5,55) <v0 Geasen)
where W(¢) is defined in (1.2).

Remark 1.1. The following subclasses can be obtained by specializing the parameters
p,q,¢,0,n and W in (1.2).

(i) For p = 1, the class 97?;}7(1((, o, ¥) reduces to 97?3(@ o, V), which satisfied the
following condition:

(1-0) (W) +¢D, (D0£(5)) (@;(g)) < W(c).

DI f(s) = ¢ + Xysolrlfans”, where D} is defined in [17].
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(ii) For p = 1 and n = 0, the class ﬁg’q(c,a, U) reduces to iﬁq((,a, V), which
satisfies the following condition:

-0 (12) +em, 00 (fjg)) <),

(iii) For p =1 and ¢ — 17, the class 971;’7(1((, o, W) reduces to 97(”((, o, V), which
satisfies the following condition:

1-0 (P2 om0y (i) < vt

(iv) Forp=1, ¢ — 1~ and n = 0, the class ﬁjv?gq((, o, ¥) reduces to M. ,(¥) [7].
(v) Forpzl,q—)lﬂcrz1,n=0a1r1d\112$:§25)C (0 < B < 1), the class
97?;@((, o, ¥) reduces to Q¢() [8] (see also [10, with h(z) = %]).
(vi) Forp=1,g—1",0=1,n=0and ¥V = %2’ the class §Jvtg7q(§,a, U) reduces
to Q¢ [5]-
(vii) Forp=1,g—>1",0=1,n=0,(=1and ¥ = }—fz, the class ﬁJvtg’q(C,a, )
reduces to @ [27].

Definition 1.4. A function f € M ((,0,¥) (0<g<p<1,neN,0>0,0<(<
1) if

S

1-0 (Z) sy, (07,00) (BY) <0 Gencen)
where W(¢) is defined in (1.2).

Remark 1.2. By specializing the parameters p, q,(,0,n and ¥ in (1.2), we obtain the
following subclasses as follows.

(i) For p = 1, the class ‘f%(éa, U) reduces to ‘ﬁg({,a, U), which satisfies the
following condition:

-0 (B v en, (opr00) (1) <t

(ii) For p = 1 and n = 0, the class ‘ﬁg’q((’,a, U) reduces to ‘ftq(C,m ), which
satisfies the following condition:

10 (1) venun (19) <wo

(iii) For p = 1 and ¢ — 17, the class sftg’q(g,a, U) reduces to ‘ft"((,a, U), which
satisfies the following condition:

a-o (L) oy (L) <o)

S
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(iv) Forp=1, ¢ — 1~ and n = 0, the class ‘ftg’q(c, o, V) reduces to N¢ (V) [7].
(v) Forp=1,g— 17,0 =n=0and { = 1, the class ‘ﬁg’q((,a, U) reduces to
S* (W) [26]. -
(vi) Forp=1,¢g—>1",n=0,(=1and ¥ = }—fz, the class M7 (¢, 0, V) reduces
to N, [11]. N
(vii) Forp=1,¢g—>1",n=0,(=1,0 = % and ¥ = i—fz, the class 917 (¢, 0,¥)
reduces to N [12]. N
(viii) Forp=1,¢ >1",n=0,( =1, 0 =0 and ¥ = }—J_rz, the class 917 (¢, 0,¥)
reduces to S* [16].

Horadam polynomials sequence k,(r, s,t; ¢,d) or h,(s) is defined by (see [19,20])

(1.7) h(r) = srh,_1(r) + th—a(r) (c,d,r,s,t € R, 12 € N\{1,2}),
with
(1.8) hi(r) =c, ho(r)=dr and hs(r) = sdr®+ cd.
The generating function of the Horadam polynomial sequence can be established by
_ + (d —cs)rs
1. N =S h(r)t = _cramesre
( 9) (§, T) ; (7‘)§ t§2 + sr¢ — 1

Remark 1.3. The following are specific instances of the polynomials A, (s) that we
present (see [19,20]).

e The Fibonacci polynomials F,(r), if we take c=d=1=1t=s.

e The Lucas polynomials L,(r), if we take d =s=t =1 and ¢ = 2.

e The Pell polynomials P,(r), if we take d = s =2 and c =1t = 1.

e The Pell-Lucas polynomials Q,(r), if we take t =1 and ¢ = s =d = 2.

e The Chebyshev polynomials U,(r) of the second kind, if we take t = —1, ¢ =1
and s =d = 2.

Definition 1.5. A function f € M7 (¢,0,7) (0<g<p<1,neNU{0},0>0,0<
(<1,edrs teR e N\{1,2})if

w0 1-0 ()t en (03,00) (5 50) e H1-e

where R(¢,7) is defined in (1.9).

Definition 1.6. A function f € 9 ((,0,7) (0<g¢<p<1,ne€N,0>0,0<(<
1, c,d,r,s,t € R v € N\{1,2}) if

aa a-0 (L) s on,, (0,0 (

where X(g,r) is defined in (1.9).

@n o—1
p,qgf(§)> < N(¢,r)+1—¢,
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Definition 1.7. A function f € £7 (p,7) (0<g¢<p<1,neN, p>0)if

sDpq <®Z,qf(§)>
D51 (<)

where R(g,7) is defined in (1.9).

(1.12) (14 €"*) ( ) —e” < N(g, 1)+ 1 —c,

The following publications offer an interesting summary of the development and
applications of Fekete-Szego inequalities and bi-univalent functions. El-Ashwah and
Hassan [13] derived Fekete-Szegé inequalities for functions within a specific subclass
of analytic functions by applying the Salagean operator. Srivastava established and
examined the first Maclaurin coefficient restrictions for new subclasses of analytic
and m-fold symmetric bi-univalent functions produced by a linear combination [31].
In their study of fractional g-calculus, Srivastava et al. [36] also connected p-valent
g-convex functions of complex order and p-valent ¢-starlike functions to the Fekete-
Szegd problem. For reference, one can see [1,3,6,35]. Using Horadam polynomials
and (p, ¢)-analogue of the Salagean differential operator, we introduce and study new
subclasses of analytic functions. The objective of this paper is to obtain the Fekete-
Szegd inequalities associated with k-th root transformations [f(¢*)]# for functions in
the subclasses of analytic univalent functions 9 (¢, 0,7), M7 (¢, 0,7) and £ (p,7)
defined by the generalized fractional derivative operator ®p . Similar problems are
investigated for -+~ when f(<) belonging to these classes. Our main conclusions will

f(s)
be presented using the following lemmas.

Lemma 1.1. (|2, Lemma 1, p. 36]). Let
(1.13) @(S) = wis + was® + - - -

be analytic function in D satisfying the condition |w(s)| < 1. Then,

—v, ifv < -—1,
’wz—uwﬂg 1, if —1<v<,
v, ifv>1.

Forv > 1 orv < —1, equality is satisfied if and only if ww(s) = < or one of its rotations.
For —1 < v < 1, the equality is satisfied if and only if () = % or one of its rotations.
For v = —1, equality satisfies if and only if w(s) = BX5 (0 < v < 1) or one of its

(1++9)
rotations. For v =1, equality is satisfied if and only if w(s) = —(rko)s 0<y<1)or

(1+5)
one of its rotations.

Lemma 1.2. ([25, inequality 7, p. 10]). If w(s) is defined by (1.13), then
lwy = vw?| < max({1, ]} (v €C),

The result is sharp for w(s) =< or w(s) = ¢%
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2. MAIN RESULTS
Unless otherwise mentioned, we shall assume throughout the paper that ¢ € D,

0<g<p<1,neN,c>0,0<(<1,cdrsteR, +eN\{l,2}and p > 0.

Definition 2.1. For f(¢) € A given by (1.1), the k-th root transform is defined by:

1

G(S) = (F(sM)" = ¢+ bipas™

i>1
a9 as k—1
(2.1) =c¢+ ?ngrl + </€ ~ o2 a%) §2k+1 + -

For k =1 in (2.1), the function G(s) reduces to f(s).
Theorem 2.1. If f(c) € M7 (¢, 0,7) and G(s) is defined by (2.1), then

_ (0=1)(0-2[2]p,¢Q)k[2]77y +(k—1+2v) (0 —¢(20—[3]p,e—1)) 3]} 4 72 (r)
2k%(0—((20—2]p,g—1))2 (0 —C(20—[3]p,¢—1)) 227 [3]7. 2
+ hs(r
k(o—C(20—[3]p,q—1))[3]},4’

V§7-17

9 ha(r)
|b2k+1_ka+1| < k(o—4(2o—é’)}p,q—1))[3]$,q’

71 < v < To,

(o= 1) (o202 MR+ kL 20) oG0Pl g D)3 )
A T=eCar =D (o=~
3(r

K0 Blpa DB, V2T
where
_ 1 h3(r) n
" 20 = (20— 850 — D)Bl ha(r) { (hi(r) ~1) (240 — c(o0 ~ 2~ 1))
— (0= 1)(0 = 2[2]p,gQ)k212 ha(r) — (k — 1) (0 — ((20 — [3]pq — 1))[3]$,qﬁ2(7‘)}7
1 I (T’) n
™ =S~ T~ T (5 +1) (k0 = 2o — 2y = 1))
— (o= 1)(0 = 2[2]p¢Q)k[2]2% o (r) — (k — 1)(0 — ((20 — [3]p,g — 1))[3]Z,qﬁ2(7“)}
and

5 hg(T’)
|b2g1 — Vb | < k(o —((20 = [3]pq — 1)) B3,

where v is any complex number and
(2.2)

&=

max{1, [¢]},

(= 1o = 22 R, + (= 14+ 2)(0 = C(20 = Bpg = D)y, 1 Fislr)
2k(0 — C(20 — [2lpq — 1))2[212% 2 Ry

where hy(r) and hs(r) are denoted by (1.8).
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Proof. Let f(s) € M7 (¢, 0,7). Then,

(1—0¢) <W> + (D (D0,£(9)) (m gf(g)> Nl +1-c

S p.q

where w(s) is given by (1.13). Since

o7 f(6)\’ 1
(p’qgf( )> =1+ o[2]} ,a25 + {0[3];}7(1@3 - olo )[2]§j;a§} ST

2
(2.3)
o—1
(%) =1 — (0~ 1)[2I2 jazs + {0(02— L 1)[3];#@3} R
and
@;qf(g) o . ¢ o—1
1-9¢) (g) + Dy (Dp0f () ( o f (Q)
=1+ (0 = ((20 =1 = [2]5,4))[2],ga2¢
)+ {T OO D (o oo~ g - DB [
and
(2:5) R(ew(<),r) + 1= e =L+ ha(r)wis + (ha(r)ws + hs(r)w?) & 4 -
we have, from (2.4) and (2.5),
_ ha(r)ws
20 “ (0 —C(20—1—2,4) [2I34
and
(2.7)

1 Mw ") — (0 —1)(0 — 2[2]p,qo 200 ) w2
(0 @0 — By — 1) Bl {h2< Joz <h3< )" 3o o 1 R )) } |

Using (2.1), (2.6) and (2.7), we have

az =

b B hQ(T‘)wl
T k(0 — (20 — 1 [21p9)) 212,
and
b = 1 I B 2
2 = o @20 Blyy — 1) Bl {a)en + hatrred
_ (0= Do = 22 OR(2 + (k= Do = 620 = Blg = D)Bg s ) s
2k(0 — C(20 — 1 — [2].0))2 12120 2L
Therefore,
bok1 — vb} 4 = a(r) {wn —€u?}
it =V = T 3 — By, — 1) Bl V2

where £ is defined by (2.2). Applying Lemma 1.1, we obtain the following.
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(i) If € < —1, then

1
v SQ(O‘ —((20 — [3]p,g — 1))[3]7 Fia(r)

| Gy 1) (ke —cta 2o~ 7213)

— (0 = 1) (0 = 2[2)p g Ok ha(r) = (k= 1)(0 = ¢(20 — [3]pq — 1))[3]Z,qﬁ2(7“)}
and

|bok+1 — Vb1 ]

<_ ((U — 1)(0 = 2[2)p,4Q)k[2]7%4 + (k — 1+ 2v)(0 — (20 — [Blpq — 1))[3]Z,q> R ()

2k%(0 — ¢(20 — [2]pq — 1))? (0 = (20 — [3]p,0 — 1)) 2137 [3]5

hg(Y’) 7
k(o =(20 = [Blog = 1) B,
(i) If =1 < € < 1, then

1 hg(’l“) B o — o — _ 2re12n
oG e ~ D L i) ~ ) (2~ =y = 112)

— (0 = 1)(0 =22k [2 g ha(r) — (k = 1)(0 — (20 — [3]pq — 1))[3}27,1?12(7“)}

14

_l’_

IN

1 hs(r) B 200720
oG Blpa DA kit ) (27 = 62 = Bl = 1)72)

— (0 =1)(0 = 22 Ok[2 g ha(r) — (k = 1)(0 — (20 — [3]pq — 1))[3}$,qﬁ2(7“)}

and

<

hQ(?“)
20 = [Blpg = 1)) Bl34

—ub? <
|bok1 — vby | < k(o=

(iii) If £ > 1, then

1 hs(r) B > 270120
> e By VB L Uiy + 1) (257 =627 = loa = D712

— (0 = 1)(0 = 22Ok [2gha(r) — (k = 1)(0 — (20 — [3]pq — 1))[3}Z,qhz(7“)}

14

and

|bak41 — vbj 41|
(0 = 1)(0 = 2[2)p QK217 + (k — 1+ 2v)(0 = ((20 = [3]p,¢ — 1)) (3]}, R(r)
T 2k*(0 — (20 — [2lpg — 1))? (0 — C(20 — [Blpq — 1)) [2174[3]}4 ?
B h(r)
k(o =20 —[Blpq— 1) Blp,
Applying Lemma 1.2, we obtain the second part of the theorem. O




468 R. M. EL-ASHWAH AND W. Y. KOTA

Theorem 2.2. If f(c) € M (¢, 0,7) and G(s) is defined by (2.1), then

(2.8)
—{(e—1)(0—2¢(1—[2]p,g))k[2]37, +(k—14+2v) (0 —¢(1—[3]p,q)) 18] o } A5 (7)
2"32(‘7_4"‘[2]1%114)2(U_C(l_[:g]p,q))[3]5,(1[2]%%

ha(r)
BRI CE =M R V1S T3,

ho(r
|bokt1 — v1bj 4| < k(a_gu—z[é]z,q))[g]g,q’ T3 S V1S Ta,

{(0—1)(0—2¢(1~[2]p.4)) k[2]37, + (k—14+20) (0 —¢ (1= [3]5,4)) [3]} 4 } A5 (r)
2k2 (0 —C+[2]p,q€)* (0 —C(1=[8]p,)) 3]} 4 [2137,

_ ho(r)
o Ca- BB v > T,

where
_ (h3<r> _ 1) ( k(o = ¢+ 21p.00)* 215 )
ha(r) (0 — C+ BlpgQ) Bl ha(r)
(0= (0 26(1 = [2]p ) k(22 + (k= (o — C1 = [3,0)3I2,
20— (1~ Bl B, ’
I ha(r) w—<+[b¢>u
M‘(@wy*g<< 0= Bl Blp o)
(0= (0 — 26(1 = 21 )k(2)2 + (k= (o — C(1 = [3,0)3]2,
20 — (1 — Blyo))BlL,
and
(2.9 baer — 1] < Ly max{L, &),

k(o — C(1 = [3].0)B]pg

where vy is any complex number and
(2.10)

£y — hg(r) | (o= 1)(o —2¢(1 = [2]pg))k[20, + (k =1+ 2v)(0 — (1 - Blr.a)Blp.g ,
2= Q(T)7

ha(r) 2k(7 — ¢ + o P2
where hy(r) and hs(r) are given by (1.8).
Proof. Let f(s) € 97 (¢, 0,7). Then,

-0 (Y 4 o, (o3,00) (F) T — o 116
where w(¢) is given by (1.13). Since

(’D;qf(C)) —1 4 of2]" as + {0[3}71 4 4 oo — 1)[2]17,2@%} g,

P9
S

(W>Ul —14 (0 — )[2J7 ass + {(a — DB a5 + : 2

S
4+ ..
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and
(1-2¢) <©Zq§f(§)> + Dy (@Z,qf(g)) (%) -
=1+ (0 — ¢+ [2]p,40)[2]} 426 + {(U — (4 [3lpgQ)[3]5.4a3
(2.11) o=~ 224 + 2([2],.q) [2]3,2@3}8 L

We have from (2.11) and (2.5)

hg (r)wl

(2.12) BT o= ) 2,

and

o—1)(c—2(+2[2
(e + (ha(r) — OGO 1)

(0 = ¢+ 13peC) B34

(2.13) as =

Using (2.12), (2.13) and (2.1), we have

bers — o (1) wy
k(0 = ¢+ [2]p40) 2154

and

1 2
bokt1 “Flo—C+ EGIE {hQ(T)M + 3 (r)wy
(o= 1)(o =20+ 22, Q)20k + (k= 1)(o — ¢+ [3]p,qC)[3}§,chw2}
2k(0 — ¢ + [2]p,40)?[2]37 e

Therefore,

. ) _ hQ(T‘)
bawir =10k = P T A B )]

- {wz - fzw%},

p.q

where & is given in (2.10). The results (2.8) are established by Lemma 1.1 and
inequality (2.9) by Lemma 1.2. |
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Theorem 2.3. If f(c) € £ (p,r) and G(s) is defined by (2.1), then
(2.14)

ha(r) '
Bl DB k(I+e?)
(k*1+21/)([3]p,q*1)[3]$,q*2([2}p,q*1)k[2]§?q}hg(r)
A hya~ D2 (Bl DT PBIE, B, 0 2 ST
|bogt1 — V2bi+1| < ([3],)’(1_1)%](;‘119(1%@)7 Ts < V2 < Te,
—ha(r) _
Bl DB k(I+e?)
(k71+2u)([3]p,q71)[3]2’q72([2]p,q71)k[2]12,”§1}h%(r)
a2 Blya— DT PRy, B, Y2276
where
i (hsm - 1) (([2] 1?2 k(1 +e@ﬂ)>
ha(r) (18lp.qg 1)[ Jngha(r)
2([2]p,e — DE[2]% )([3],,,q — )3
2([3] 1)[ I g ’
hy(r) [2] 1)*[2]; n k<1 + ')
76‘ ha(r) T (3] 1>] Jha(r) )
2([2]pq — 1)k 2?2 — (k- )([ Ipa — D35,
2([3p.q )[ I g ’
and
215) P — ] < Palr) ma{1, &},

(Blpq = DI3]5 k(1 + €)
where vy is any complexr number and

(F =1+ 2v)([3]pg — D[3Jpq — 2([2pq — [2 ]f;"qkh (r) — hs(r)
2([2]pq — 12255k (1 + €)

where hy(r) and hs(r) are given by (1.8).
Proof. Let f(s) € £7 (p,7). Then,

(2.16) €3 =

. Dy (D5, .
(14 ¢€") (g @éqf(!;(g))) —e? =R(w(s),r)+1—c (seD),

where w(<) is given by (1.13). Since
i <Dypq (Qﬁ,qf(g)) ip
(2.17) (1+e)( 0 o )—e
1+ (2 — D1+ €)ass
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+{([Blpq = DB qas + (1 = [2pq) [225a3} (1 +€#)6” + -,
we have from (2.17) and (2.5)

(2.18) as =

and

hg r
hg(?")bdg —+ (hg(r) + m) w%
([Blpg = D)[3]54(1 + €) '

Using (2.18), (2.19) and (2.1), we have

(2.19) as =

bk, = hg(r)wl

* k([Q]pﬂz - 1)[2]3,(1(1 + €'?)
and

1 2

bak11 kBl — DEETD (ﬁz(r)wz + Rz (1)w;
2([2]pq — D21k — (k = D)([3lpg — DBl5g\ 12 2
T )

Therefore,

ha(r)
baksr = vabieyy = ([Blpq — 1)[?),];;(11{(1 + eir) {w — &t}

where &3 is defined by (2.16). The results (2.14) are established by Lemma 1.1 and
the inequality (2.15) is established by Lemma 1.2. O

3. FEKETE-SZEGO RESULT

In this section, the Fekete-Szego type coefficient inequalities associated with the
rational function Q(¢) of the form

(3.1) Q(g):f(g):1+’§dK§”=1—a2§+(ag—a3)g2—|—--~,

where dy = —ay, dy = a3 — as.
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Theorem 3.1. If f(c) € M7 (¢, 0,7) and () is defined by (3.1) then

(3.2)
(0—1)(6—=2[2]p,¢¢) (227 +2(1—v) (e —((20—[3]p,q—1)) 3], B2 (7“)
2(0—{(20;1(—%2]17711))2[2]%3}1(0—((20—[3}%(1—1))[3];141 2
(e C2o Blyy DB, vs < P,
ha(r)
|d2 - V3d%| < (J_C(gg_[g]p,q_l))[gmq7 B < vy < P,
_ (= D(0—202lp g O[20 +2(1 1) (0—C (20— [3lp,a ) BIp., o2 (r)
2(a—<<2ro(—1)—[21p,q)>2[2};:;(a—<<2a—[31p,q—1>>[3m,q 2
3 (7
T e B DB, vs 2 B,
where
1 h3(T) ) 216121
= —1)(2(c — (20 — |2 -1 2
=Ty T ) ) (2 <o~ 2o = )R
— (o= 1)(0 = 2[2p,g O[22 ha(r) — 2(0 — ¢(20 — [3]p,q — 1))[3]Z,qh2(7")}»
1 53(7") ) 2191210
= +1) (2(0c — (20 — |2 -1 2
TP e 1))[3]Z,q52(7“){ <hg<r> (20 = 620 = Php.a = D) 2%)
— (0= 1)(0 = 2[2],.4O) 212" ha(r) — 2(0 — C(20 — [3]pq — 1))[3];},(;12(7«)}
and
ho(r
(3.3) |dy — v3d?| < 2(r) max{1, |m|},

(0 = ¢(20 — [3],q — 1))[3]7,

where v3 is any complex number and

(3.4)
r) (0 =1)(0 —2[2]40) 212" +2(1 — v) (0 — ¢(20 — [3]p,g — 1)) 3],
where hy(r) and hs(r) are given by (1.8).
Proof. Let f(c) € My (¢, 0,7). Using (2.6), (2.7) and (3.1), we have
4 — ha(r)w;
(0 =C(20—1—1[2],4)) [Q]Z,q
and
dy— — ha(r)ws
(0 = ¢(20 = [Blpg = V)35,
1 2
T s o RO
(0 = 1)(0 — 2[2]pO)[2l5y +2(0 — (20 = Blpg —1))Bl5g 5, \
i 2(0 = C(20 =1 = [2]p0))*[2174 hz(r)%)'
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Therefore,
—hy(r) 2
dy — V3d2 = Wz — Ty ¢,
P (0= C(20 = [3pq — 1))[3]Z,q{ 1
where 7 is defined by (3.4). The results (3.2) are established by Lemma 1.1 and the
inequality (3.3) is established by Lemma 1.2. O
Theorem 3.2. If f(c) € N7 (¢, 0,7) and (<) is defined by (3.1), then
(3.5)
{(0_1)(0_2<(1_[2]177(1))[2}2:{2"’2(1_1’)(U_C(l_[g]P,Q))[3];2,(1}}7‘%(7‘)
h250)*<+[2]p,q4)2(0*4(1*[3117,11))[3}?,(;[2}%’3;
~ o= Bla B, va < P,
|dy — v4di| < (O—_C(l_hfg(]z)ﬂq))[g}quv B3 < vy < Py,
_{(0—1)(0—24(1—[Q}p,q))@]% +2(1-v)(0—¢(1=[3]p,q)) 8]}, 115 (r)
. (2)(0*C+[2]p ,46)?(0—C(1=[3]p,q)) 8]} ¢[2]37
H o= BB, va = B,
where
&:<%vy_0< (0= ¢+ 21202 )
ha(r) (0 = ¢+ BlpaQ)3]5.4h2(r)
(o= 1)(0 = 2¢(1 = [2]pg) 25 + 2(0 = C(1 = [3]p,0)) B34
2(0 = C(1 = [3]pq))Bl}4 ’
hs(r) > < (o — ¢+ [2p.g0)* 217 )
= +1
= (i) + ) =~ )
(o= 1)(o = 2¢(1 = [2]pq)) [27% + 2(0 — C(1 = [3]5,0)) B34
2(0 = ¢(1 = [3lpq)) B34
and
h
(3.6) |do — vad3| < 2(r) max{1, |},

(0 —¢(1— [3]p7q))[3]g,q

where vy is any complex number and
(3.7) ,
_ M) (o= 1)(o — 200 — [2pg) 2l + 2 — v)(0 = CA — Blpa))Blpg,

" ) 20— + Py CPEE, el

where hy(r) and hs(r) are given by (1.8).

Proof. Let f(c) € 97 (¢, 0,7). Using (2.12), (2.13) and (3.1), we have

—hy(r)w;

" = RO B,
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and
b Mt Rt (halr) — T, ) o
(0 —(+ [2]1)76102 [2];2721 (c—C+ [3]177110 [3]541
Therefore,
—ha(r) 2
dy — V4d2 = W2 — MWy ¢,
' (0 —¢(1— [3}p7q>>[3]g,q{ 1}
where 7y is given in (3.7). The results (3.5) are established by Lemma 1.1 and
inequality (3.6) by Lemma 1.2. O
Theorem 3.3. If f(c) € £ (p,r) and Q(s) is defined by (3.1), then
(3.8)
B B () { A=) ([Blp.a—1)BIE.y— ([2]p.a— DI }R2(r) _
(o) 4o (Bl ) (S 1) rerpplg oz, 0=
|d — U d2| < iz (r) RE] 65 S Vs S 667
2TRISN (Bl -1) Bl (1 eir)
ha(r) _ 0@l -1Bl, @ - DRE 3 > 5
o )il ren | DBl - D0Fer B, 2z, ¥ 2P
where
B = <h3(7") B 1) (([2]p,q - D227 (1 + €ip)> L (Bl = D25y — (Bleg — DB,
ha(r) ([8lp.g = DBIF gha(r) (Blp.g = D3l ’
o= (1 1) (B = )) | (B — DEs (S 11
ha(r) (Blp.g = D35 gha2(r) (Blp.g = D[3J54 ’
and
h
(39) |d2 - l/5d%| S Q(T)

([3lp.g = D3], (1 +€) max{1, |n3]},

where vs 1s any complexr number and

(1 = ) (Blog = DB, = (2pg — DI (r) — hs(r)
([2lp.g = 12255 (1 + e) i

where hy(r) and hs(r) are given by (1.8).

(3.10) 13 =

Proof. Let f(s) € £ (p,7). Using (2.18), (2.19) and (3.1), we have
—hg(r)wl
([2lp.q — DI2]5,(1 + )

dy =

and

d = B (r)wi _ Ialr)en + (Ral0) + g S ) 4
L (2l — DRI, (1 + ) ([Bpg — D3]z, (1 + ei)
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Therefore,
hg (’T‘) 2
(e L
where 73 is defined by (3.10). The results (3.8) are established by Lemma 1.1 and the
inequality (3.9) is established by Lemma 1.2. O

dg — l/5d% =

4. CONCLUSION

Using the concept of the subordination principle, we propose an approach that
incorporates the Horadam polynomials together with the (p, ¢)-analogue of Salagean
differential operator. These subclasses are characterized through the generalized

fractional derivative operator 7 . which provides a flexible framework for study-

ing various geometric properties. The main objective of this paper is to establish
Fekete-Szegd inequalities associated with the k-th roots transformations [f(¢*)]# for
functions in the subclasses of analytic univalent functions 9t (¢, o0,7), M (¢, 0,7)

and £7 (p,7). In addition, we consider similar problems for the reciprocal function
S

1] when f(¢) belongs to these classes.
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