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A NEW CLASS OF FOUR-POINT FRACTIONAL SUM
BOUNDARY VALUE PROBLEMS FOR NONLINEAR SEQUENTIAL
FRACTIONAL DIFFERENCE EQUATIONS INVOLVING SHIFT
OPERATORS

J. REUNSUMRIT! AND T. SITTHIWIRATTHAM?

ABSTRACT. In this article, we study the existence result for a Riemann-Liouville
fractional difference equation with four-point fractional sum boundary value condi-
tions, by using the Sadovskii’s fixed point theorem. Our problem contains the shift
operators on fractional difference operators that are different orders. Finally, we
present an example to show the importance of these result.

1. INTRODUCTION

In this paper we consider a Riemann-Liouville fractional difference equation with
nonlocal four-point fractional sum boundary value conditions of the form

(L1 AY B, (A u®) + B (AL 1()0(t))]
=ft+a+p+y—Lut+a+pf+y—1),v(t+a+F+y-1)),

u(a+ B +7—2) = p(u),
_ T-+a-+6+7
u(g) = [ a+B+y+v—3 U(S + V) U(S + V) }5:77 )
where t € Nor == {0,1,.... T}, 0 < a+f<a+y<a++7<2,0<v <1,
£, € Naypiy111a4817-1, § < 1, functions f € C (Naygiy271ats1y X R X RT,R),
v, ¢ € C (Notpiy—27T+a+p+y, RT), a functional p : C' (Nojpgiy—2 110184+ R) = R are
given, and the shift operator E_,u(t) := u(t — 7).
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Fractional difference equations have been interested many mathematicians since
they can use for describing many problems in the real-world phenomena such as
physics, mechanics, chemistry, control systems, electrical networks, and flow in porous
media. In recent years, mathematicians have used this fractional calculus to model
and solve various related problems. In particular, fractional calculus is a powerful
tool for the processes which appears in nature, e.g., biology, ecology and other areas,
can be found in [29,30], and the references therein.

Some good papers dealing with boundary value problems for fractional difference
equations, which have helped to build up some of the basic theory of this field, see
the textbooks [4,16] and the papers [5]-[18] and references cited therein. For example,
Goodrich [14] considered the discrete fractional boundary value problem

(1.2) — AMAR N y(t) = f(t + py + po + pz — Ly(t + pg + po + pz — 1)),
y(0) =0=y(b+2),

where t € No_ s br2—pi—po—pz> 0 < pa,pio, iz < 1,1 < po +puz < 2,1 <
p1 + p2 + 3 < 2and f: Ng x R — [0, 4+00) is a continuous function. Existence of
positive solutions are obtained by the the Krasnosel’skii fixed point theorem.

Dong et al. [11] investigated the existence of solutions to the following fractional
boundary value problem

(1.3) rAY L ((AY ) 2(t) = flz(t+v—1), t€Nor,
x(v—2)= [tAl’j_lx(t)L:T =0,

where 0 < v <1, ;A?V_, are pAf are respectively, the left fractional difference and the
right fractional difference operators and f : R — R is continuous.

Sitthiwirattham [23,24] examined two fractional sum boundary value problems for
fractional difference equations of the forms

(1.4) A&[Gp(AL2)() = f(t+at B = La(t+a+§-1),
Alr(a—=1)=0, z(a+B+T)=pAz(n+7),
and
(1.5) AS(AL 5+ AEg)a(t) = f(t +a+ B —La(t+a+ 8 —1)),
vla+B-2)=0, zla+pB+T)=pAl;  2(n+7),
where t € NO,Ta 0< Ol,ﬂ S 17 I <a+ 5 S 27 0 < Y S 17 n € Na-‘rﬁ—l,a-f—ﬁ-i—T—la P
[ Notp—2.a+pir X R = R is a given continuous function, Ezz(t) = z(t + f — 1) and
¢, is the p-Laplacian operator.
The results mentioned above are the motivation for this research. The plan of this
paper is as follows. In the next section, we recall some definitions and basic lemmas.
In Section 3, we prove the existence of solutions to the boundary value problem (1.1)

by the help of the Sadovskii’s fixed point theorem. An illustrative example is presented
in the last section.
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2. PRELIMINARIES

In the following, there are notations, definitions, and lemmas which are used in the
main results.

Definition 2.1. The generalized falling function is defined by t% := Fzszrl for any

t and « for which the right-hand side is defined. If t + 1 — a is a pole of the Gamma
function and ¢ + 1 is not a pole, then ¢ = 0.

Lemma 2.1. [7] Assume the following factorial functions are well defined.
(i) (t — p)th =t where u € R.
(i) If t <, then t% < r2 for any a > 0.
(iil) o2 = (t — B)2 2.

Definition 2.2. The Gauss hypergeometric function o F}(a, b; c; z) is a function which
can be defined in the form of a hypergeometric series

Chtl _ P(k) _ (k+a)<k+b)3; co=1.

Ck Q(k) (k+c)

The resulting Gauss hypergeometric function is written by

:L.n

o Fi(a,b;c;x) =

Y

n!

where (2),, = F%Z(JS] is the Pochhammer symbol.

Theorem 2.1. [9] (The Gauss hypergeometric theorem) Let 2Fi(a,b;c;1) be the
Gauss hypergeometric function with x = 1. Then
['(e¢)T(c—a—b)

Filebial) = 5 T Ty

where c —a—b>0, a,b,c € R.

Definition 2.3. For @ > 0 and f defined on N, := {a,a + 1,...}, the a-order
fractional sum of f is defined by

Ao () = F(la) ;a(t ~o(s))e=tf (s),

where t € Ny, and o(s) = s+ 1.

Definition 2.4. For « > 0 and f defined on N,, the a-order Riemann-Liouville
fractional difference of f is defined by

1 t+o

Al-of (1) = AV ANZI ) = s (¢ = o)== (9),

where t € Nyiny_o and N € N is chosen so that 0 < N —1 < a < N.
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Lemma 2.2. [7] Let 0 < N—1<a < N andy deﬁned on N,_n. Then
ALNAGY(t) = y(t) + Crt®=t + Cot®=2 + - 4 Ont*=F,
for some C; € R, with 1 <i < N.

The following lemma deals with a linear variant of the boundary value problem
(1.1) and gives a representation of the solution.

Lemma 2.3. Let0 < a+f<a+y<1l,1<a+pB+7<2,0<v<1,é<n, Enc

Natgir—1,11a+p49-1, B € C (Naygiy-174a48+9-1,R), 0,0 € C (Natgiry—2+a+6+7,
RT) and p : C (Nagpiy—27+a+p+y: R) — R be given. Then the problem

AF By (Adiyau(t)) + Eop (AL 10(t)u() | = h(t +a+ 5 +5 - 1),
wa+ B +v—2) = p(u),

21) w€) = [A s s vl +v)uls+ )]
has the unique solution
B—1 t—3 o B—1 _ A\a—1
Y OL Yszary-1(t —0(s))F=(s —7)
R PR EE IS S NN | L Y
p(u) =4 1
‘ra+5+v—m&i+AW)+rwW«w>
p+B

X Z Y. (E—a) T+ B -y —a(s) L (s)u(s)

p=a+y-1s= a+5+v 1
p+p—-1
(22) Z Yo (E—o@) P pt+a+f—1-0(s)=h(s)
(6 ( p=o+vy s=a+B+y—1
1 t—p p+B . L
—rwﬂmJ”pg%ISWELAﬁ—a@»<p+5—7—d@> o(5)0(s)
-0 p+6-1

(ﬁ( > Y (o) pta+f—1-0(s)*h(s),

p=a+y s=a+pf+vy—1

where
1 T+a+B+y
A(U)ZF(V)@(Tg m g (T+a+B+7y+v—o0(s)u(s)
(2'3) X {TP<S>€) + ¢(3>€>qjv,¢(£) - w(‘g?g)jh(f) + Hh(s) - (I)v,cb(s)} )
and
oy 1(s — o(p)2=L (p — 7)ot
24 ) e e o) (p— L
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1 T+a+B+y

25)  PlEOl=ggy X THatfryty—ols) = o))

(26) @(Ta 57 77) =1- in [w<37 5)] )

@) Te0 = [ - u ] A
] €5 pts
Uy6(8) :ng;_ls_a;mv 1(5 —o(p)=
(2.8) X (p+ B —~—oa(s) = o(s)u(s),
-t 5 Y oy
"ITON ) a a
(2.9) X(p+a+p—1—ow)*Lh(w),
B 1 s—B p+B8-1 51
In(s) “TBNa) pgﬂ w_a;ﬁ:ﬂ_l(s —o(p))~—
(2.10) X(p+a+p—1-ow))=Lh(w),
1 s—p P+

Dy 6(s) :m Z Z (s — 0(19))E

p=atf-lw=atfty-1
(2.11) X (p+6_7_‘7(w))£¢(w)v(w)_

Proof. Using Lemma 2.2 and the fractional sum of order 0 < a < 1 for (2.1), we
obtain

By (Alru(®) + B (Alip10(0)0 (1))

a—1 1 a—1
=Cht*—+ (a) sz:%(t —o(s))*—h(s+a+B+v-1),

for t € No—1144. From E_ u(t) = u(t — 7), we have

(2.12) A§+v—1 u(t) + Al-‘rﬁ—l ot + B =yt + 5 —7)
~Cilt = jz_oau = o(s) (st at Bty — 1),

fort € Na+'y—1,T+a+'y-
Once again, using Lemma 2.2 and the fractional sum of order 0 < <1 —« for
(2.12), we obtain

i—p

—1 Cy —1 a—1
u(t) =Cyt?=1 + ) s:c;,_l(t —0(s))% (s — 7)==t
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1 t—p3 p+8

- - —o(p))P=L — v —a(8))22=L p(s)v(s
G XS el ek 5y o) b))

p=a+y—1 s=a+L+vy—1
(2.13)
| =5 pp-1

T 2A\T( )\ —0 A1 (0% —1—o0(s))2Lh(s
Jrr(@)[‘(a) > > (p)—{p+a+3-1 (s))=h(s),

p=a+y s=a+f+y-1

for ¢ S Na+ﬁ+7_2’T+a+B+«/ and 1 < « + ﬁ + Y S 2.

Applying the first boundary condition of (2.1) implies

B p(u)
(2.14) 02_(a+5+7—2)5;1'

The second condition of (2.1) implies

plu) =1 o Lo, o)=L (5 — ~)e=l
Grirr—o T, 2 o)
1 &— p+5

B
- T(B)L(—) —o(p)= — v —o(s) 2= p(s)v(s
), 2 (€ o) 8-~ o)t

1 e-8  prB-l

(AT AN\ —0 1 « —1—o0(s))=Lh(s
+F(ﬁ)r(a) > >, (¢ (p)—p+a+p-1 (s))*=h(s)

p=at+y s=a+f+y—1

1 T+a+p+y
= Y (TH+a+p+y+v—oa(s)=uv(s)u(s).
I'v) &=
The constant C can be obtained by solving the above equation, so
o 1 plu) €=
1= - - - -
S (€ o)L L | T (a pry -2
1 T+o+pB+y ) 1
+ T+a+pB+v+v—o(s)—v(s)u(s) + =—=———
ORI D=0l + T )

p+B

¢-8
x> . (=) =p+ By —al(s) L (s)u(s)

p=at+y—1 s=a+p+v—1
1 -3 p+6-1

(2.15) — T(B)T(a) > Yoo (=) p+a+B—1—0(s)>Lh(s)|.

p=a+y s=a+p+y—1

Substituting the constants C, Cy into (2.14), we obtain
u(t)

_ it Yl —o(s) P (s )
(a5 +7 =21 ST (6 - o) (s —y)et
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p(u) g8t 1 THatBty .
N @b, T & Trerfrytvool@) el
1 §&-0 p+5 - .
AN, 2 (o) e+ o) 220()els)

1 £ pt+B-1 o .
IO, 2, €Dt 1o)==
1 t=p p+B

CT(A(—) —a(p)= — v —o(s)) ==L p(s)v(s
['(3)(—7) nggl S:M%“(t (P)=—(p+ B —~—0(s)=(s)v(s)

1 t=p p+B-1 o »
NGO p%ﬁﬂ S:a;ﬁﬂl(t — o) p+a+ B —1—a(s)2=Lh(s).
(2.16)
Let
T+o+B+y
AW =Fos 3 (T+a+p+y+r=ol)=o(s) u(s)

then we have

1 TratB+y ol
) X (Tratftytv—ols)=us)

S=n

Au) =
(2.17)

X {TP<S7§) + 1/}(S,§)A(U) + ¢(8,€)\I/U’¢(§) - ¢(S’§)jh<§) + gh(s) - CI)U#’(S)}’

where ¥(s,€), T,(5,€), Vye(§), In(€), dn(s) and &, 4(s) are defined as (2.4), (2.7)-
(2.11), respectively.

We simplify (2.17) into (2.3). Finally, substituting A(u) into (2.16), we obtain (2.2).
This completes the proof. 0

In the following, we shall give some definitions and lemma, which are associated
with the Sadovskii fixed point theorem as follow.

Definition 2.5. Let M be a bounded set in metric space (X;d), then Kuratowski
measure of noncompactness, (M) is defined as

inf{e : M covered by a finitely many sets such that the diameter of each set < ¢}.

Definition 2.6. Let ¢ : D(®) € X — X be a bounded and continuous operator
on Banach space X. Then & is called a condensing map if a(®(B)) < a(B) for all
bounded sets B C D(®), where a denotes the Kuratowski measure of noncompactness.
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Lemma 2.4. [31] The map K + C' is a k-set contraction with 0 < k < 1, and thus
also condensing, if

(i) K,C: D C X — X are operators on the Banach space X ;
(ii) K is k-contractive, i.e.,
Kz — Kyl < kllz -y
for all z,y € D and fized k € [0,1);
(iii) C is compact.

Lemma 2.5. [17] (Arzela-Ascoli theorem) A set of function in Cla,b] with the sup
norm, is relatively compact if and only it is uniformly bounded and equicontinuous
on |a,b.

Lemma 2.6. [17] If a set is closed and relatively compact then it is compact.

Theorem 2.2. [22] (Sadovskii’s fixed point theorem) Let B be a convex, bounded and
closed subset of a Banach space X and ® : B — B be a condensing map. Then ® has
a fized point.

3. THE EXISTENCE OF SOLUTIONS TO THE FOUR-POINT FRACTIONAL SUM
BOUNDARY VALUE PROBLEM (1.1)

Now, we wish to establish the existence result for the problem (1.1). To accomplish
this, we denote that € = C'(Nytpiy—27+a+p++, R) is a Banach space of all functions
u with the norm defined by

[ulle = [lulllv]],
where
[Jul| = max {lu(®)] : u(®)] =1},
t€Nat g4y -2, T+at B4y

|v]| =max{|v(t)] : v € C(Naspir—27+ats+y, RT) is a given function}.

Also define an operator ¥ : € — € by

(3. (Fu) (8) =) (1) + (Fau)(0).
and
P T-= S - S ) L e
T = 1y 2P T 50, (= o) (s =)ot
plu) &&= - 1
- @i oyt AW T R )
p+0B

X Z Yo (E—a@) =+ B = o(s) = e(s)u(s)

p=aty—1s= a+ﬁ+7—
p+p—-1

—o(p))i= « —1—o(s))22L
(5 T'(a) Z Z (€ (p)—p+a+p-1 (s))

p=0+y s=a+f+y—1
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x [f(s,u(s), v(s))

(3.2) =T, (t,€) + 1 (t, E)A(u) + P(t, €)W, (€) — ¥(t, €)T4(€),
- # t—p p+B ., 51 I o
(?QU)@) - F(ﬁ)F(—v) - o%:ﬁ L a%fy l(t (p))i(p_'_ﬁ 7 ( ))
p+p—-1

X ¢(s)v(s) + 6 Z > (t—om)=

p aty s=a+p+y-1

X(p+a+Bf—1- 0( ))*= f(s,u(s), v(s))

(3:3) =3;(1) — @ (1),
where
~ 1 T+a+pB+y -
Aw) =tosamey 2 (Trettyty—o(sy
(3.4) X U(S){Tp(s,f) (5, E) Wy 4(€) — (s, )T () + T 5(s) — @W(S)}’
~ p+B—1
J1(8) = Z S (E—o@) L ptats—1—o(s)

(6 ( p=a+v s=a+L+v—1

(3.5) X f(s,u(s), v(s))),
1 t—p5 p+p—1

ds(s) :W > Yo t—o)p+ta+p—1-o0(s)t

p=at+y s=a+B+y—1
(3.6) x f(s,u(s),v(s)),

with ©(s,€), Puo(T, ), Q(E), O(T,E,1), Tp(5,€), Wyg(s,€) and By (s, €) are defined
as (2.4)-(2.7) and (2.11). The problem (1.1) has solutions if and only if the operator

3" has fixed points.

In the following theorem, we shall give the existence result for the problem (1.1),
by the help of Sadovskii’s fixed point theorem.

Theorem 3.1. Assume that functions f € C (Notgiy—27+a+p4y X R X RTR), v, ¢ €
C (Natpty—21+a+84+, RT) and functional p : C (Noygiy—217+a+p+v, R) = R are given.
Also, suppose f, p and ¢ satisfying the following conditions.

(Hy) There exists a constant L > 0 such that
‘f(tvulav) - f(t,UQ,U)| < L‘ul - u2||v|,

for each t € Noygiy—2rra+piy and ug,us € R.
(Hy) There exists a constant X\ > 0 such that

|p(u1) = pluz)| < Allus — wallf|v]],
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for each uy,us € C.
(H3) 0 <n < ¢(t) < N for each t € Noypgiy—2Tratstry-
Then the problem (1.1) has at least one solution on Nuipiy—o1ra+sty, provided that

= ||U||{)\Ql + LQQ + NQ3} < 1,

where

(37) Q, = gK?+@D

(3.8) Q, :”‘”@T (3+3)(7+lel).
(3.9) Qs :%‘T‘ (@ +w)(P+0)),

with Ymax, P, 0], |T], ¥, 7,9 and ® are defined as (3.10), (3.12)-(3.18), respectively.

Proof. Let B = {u € C: |lul]le < R} be a closed bounded and convex subset of C,
where R will be fixed later. We define a map F : B — € as

(Fu)(t) = (Fru)(t) + (Fou)(?),
where F; and JF, are defined by (3.2) and (3.3) respectively. Notice that the problem
(1.1) is equivalent to a fixed point problem F(u) = u.

Step 1. JF(Bg) C Bg.
Set max |f(t,0,0)] = K, sup|p(u)] = M and choose a constant R

t€Natfy—2,T+atp+ry ueC

satisfied R
MOy + K (22 +17)

A= MU+ L (2 +3) + N(Qs + )]
We first consider that the values of (s, €), P, Q, ©(s,T,&,n), T,(s,£), ¥,4(£),
J¢(s,€),ds(s) and @, 4(s), as follow

R >

b(s,€) = (s —a—vy—1)21 12F1(a a+pf+y—s;a+v—s+1;1)
S e ma—y - DELR( e+ By - Gaty -+ L)

77Z)maLx :¢(a + B +7, 5)

- (6= 1)L, Fi(a,0;1 = 5;1)
(3.10) C(E—a—-v-1DF LR (aa+ By —Ea+y—E4+1;1)
(3.11) Y =Y(a+ S +7—1,&) =0,
HU” T+a+B+y
TPUSF(V) Y. T+a+B+y+v—o(s)=
s=1)

_HvHF(T—l—oz—l—ﬁ—F’H—u—n%—l)
T+ )T +a+B+vy—n+1)

(3.12) —: Jo]|2,
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OT.¢.0)| 2[pun(I0IP) — 1| = [~ 1] =1

(3.13) =: |0,

(le(w) = p(0)] + 1p(0)])
(a4 4+~ —2)5=L

Vmax 871 — §8=1
(a+B8+~—2)~2L

Tp(svg) < @Dfﬁ — st

< (Mllollllulf+ M)

Q/JmaXSE_ (T+a+6+7)ﬁ;1
< e + by | P
(3.14) = (Mulle + M) [T},
— o — )L
() IAE S =D R - ot g4y -6 - iy - 6)
—a—~)8L
~mewN§wf V=R - va+ ey —E—Taty-&1)
—a—~)8L
JW%NﬁWS V) 211 —va+B+y-E-Lat+y—-§1)
(3.15) = ||ulle NV,
R 1 -6 p+p-1 51 )
J <— — b=l — 1= a-1
1O <t o2 E-ol)prats—1 o)

x (If (w, u(w), v()) = f(w,0,0)| + | f(w,0,0)])

(Llvlflull + K),, et
< T) E—a—v—1)
xoFi(a+la+f+y—-&a+B -6+ 1;1)
(3.16) = (Ll|ulle + K) 7,
N 1 s—f p+5—-1

A

Hf(s)__fzgjfzaﬁ' > Yo (s—o)Xpt+a+p-—1-0w))t

p=aty w=a+f+y—1

x (If (w, u(@), v(w)) = f(w,0,0)| + | f(w,0,0)])

SRS TSN
oFila+lL,a+pf+y—s;a+8—s+1;1)
(Lulle + K) B-1 P
_W(ﬁ—l)—gﬂ(a—i—l,l,l 7; 1)

~

(3.17) =: (L||ulle + K) 4,
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) ¢(3) <HUHH¢H (S — o — ,-)/)ﬁ;l

h N0

211 —v,a+B+y—s—La+y—s1)

_ 1\8-1
_”””Nﬁﬁ(ﬁ) D A= ,0:1— B:1)
_ 1)8-1L
:”“”@N;fm Y R =701 — B 1)

(3.18) = ||lu|leND.
Next, we consider

o~ o~

{aCm@a+¢@@%w@—wmawgwwﬂﬁ—%wﬂ)

(3.19) | A(u)] <

Now, we will show that F(Bgr) C Bg. For each t € Nyygiy—27+a1p+, and u € Bg,
we have

[(Fru)(8)] =| Tt €) + s, )A() + (s, ) W,(§) = ¥(5,)T5(s,6) |

W(s, 6P| [T —v(s,9)T(s,9)], _
<|T,(t,€) + o) ] —¥(s,§)Iy(s,€)
5, &)W, — o |P,
|W : |g<f> | —¢(8,§)\va,¢(§)'
< (/\||U||e+M):gHT+ |@|} + (Llulle + K) ﬁgjx [(3+7)(P+10])]
+ NHuH@(p’gT‘ [(2+w)(P+]0))]
(3.20) =M ulle + M) @1 + (L fJufle + K) Q2 + N|jules,
and
(@) ()] =[5(0) - @us(0)
(3.21) < (Llulle + K) |3 + Nljulle®.
Consequently,

ll|Fu)(®)| =loll {|(Frw)@)] + | (F20) ()|}
=[loll {(Allulle + M) + (L [|ulle + K) [ + 3] + Nllulle [Q5 + @]}
(3.22) <R.

Therefore H(Stu)(t)He < R, it follows that F(Bg) C Bg.

Step 2. J; is continuous and y-contractive.
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Let € > 0 be given. Since p, f and v are continuous, so p, f and v are uniformly
continuous on Br. Therefore, there exists 6 = min {51, g, (53} > 0 such that

€

- < ¢ wh | o] < &

‘p(ul) p(“?)‘ 3||U||)\Ql, whenever ‘ul U2| |U| 1,
€

t — f(t < o h — . <0
‘f( 7u17/U) f( ,UQ,'U)’ 3HUHLQ27 whenever max{‘ul u2’ ”U’} 2

€

- < o h — Uz - |v| < d3.

Hu1 UQHG SN, whenever |u; — ug - |v| < d3

Thus, for all t € Noyg1y—21+a+8+y and for all u;, us € Br, we obtain

[(Frua)(£) — (Fruz)(t)le
= [[ollll(Frua)(2) — (Fruz) (D)

< ||v\|{ml\p<u1) — ()| + L F(t, ur,v) = F(t,uz, )| + Nujur - WH@}

L
-t -+ =€
3 3 3

This means that F; is continuous on Bg.

Next, we show that F; is y-contractive. For any wui,us € Br and for each t €
Na+g+y-2,1+a48+~, We have

[(Frur) (t) — (Frua)(t)[le = [Jv[[|(Frur)(t) — (Frua)(@)]|
< {3 — s, 0o =]+ 30 ],

S —ly
XHl 2|

By the given assumption: y < 1, it follows that J; is x-contractive.

Step 3. F, is compact.

In Step 1. it has been shown that &y is uniformly bounded. Now we show that Fy
maps bounded sets into equicontinuous sets of C.

For any € > 0, there exists 5 = min {gl, 52} > () such that

~ ~ € ~
‘3f(t2) — 3f(t1)‘ SW, whenever |ty — 1] < 41,

|(I>v,¢(t2) — (I)v,¢(t1) whenever |t2 - tl‘ < gg.

‘ <L
AIC R
Hence, for any t1,%2 € Nojgiy—2 71018+ a0y U, v € Br, we have
[F2u(tz) — Fou(tr)lle =[lv[|[|F2ultz) — Foultr)|]
<ol {1511 [35(22) = By (e0)| + 101N [@u(t2) — @uo(t)] }

£ €
—+ - =
-2 2
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Thus (F3)(Bg) is an equicontinuous set. Therefore it follows by Lemma 2.6 and the
Arzela-Ascoli theorem that F5 is compact on Bpg.
Step 4. F is is condensing.

Since F; is continuous, y-contraction and F, is compact, therefore, by Lemma 2.4,
J : Br — Bg with § = J, 4+ J5 is a condensing map on Bgp.

Consequently, by Theorem 3.1, the map F has a fixed point which, implies that the
problem (1.1) has a solution. O

4. EXAMPLE

In this section, in order to illustrate our result, we consider an example. Consider
the following fractional sum boundary value problem

<Aégu(t)) + E» (m >¢( )v(t)] et ul

(t+190)° e+

41) Al [E

wl—=

3 ! .
U (—4) = ;Ciu(ti)a ti=1— 1

25
13 1 1 1\1%
«() =12 (+2)“(+2)]
where t € Nyjs, v(t) = ™ ¢(t) = % are given functions, and C; are given
positive constants with 21‘7:0 Ci < 55
_ _ 2 _ 1 _
%erea 4,T 567—377—§,V—
T |u|+1 and p(u) = >, Ciu(t;).
Let t € N%% and uy,uy € C, then

) é = %7 n = %7 f(t7u(t)7v(t)) =

N[

1 16 €3/4
Sl e and[f(m(e), o) = f(6us), 0] < Tl )
SO (Hl) holds with L = m ~ 0.0012.
Also, we get
|p(u U2|—ZCU1 ZCug
7 e 1
<Z:C’i lug — us| < 2—O|u1 —uy| = %vaul — Ug.

So, (Hy) holds with A = 5= ~ 0.05. Since 6.1448 x 107¢ < ¢(t) < 0.00674 = N, then
(Hg) is satisfied.
We can show that
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7pmin :07
r'(3)
P2 15
L(3)T(2)
o] =1,

4
~1/3
(%)
(§)71 3
— ) 8
v=23__ ( —3-—-1) — 1.7284
1—‘(2) 2 1 37 b 3’ b
3
(0
R 5 5
J=23/__ ( —2-—-1) — 2.79514
1—‘<2) 2 1 47 b 3’ 795 b
3
14\Z1/3
- (¥ 5 13 )
3/ R (S -5 —22:1) =10.
3 F 2 1<47 57 3a 057897

— 2 17
A3 LR ,—6;—;1) = 2.1082,
re) ° 1(3 3

and Q; = 0.2075, 2y = 38.05917 and Q3 = 10.9177.
Therefore, we have

X = [0{A\2 + LOs + NQs} = 0.1296¢ = 0.3523 < 1.

Hence, by Theorem 3.1, the boundary value problem (4.1) has at least one solution

on Nogry—2,T+a+8+7-
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