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WHEN ARE MULTIPLICATIVE
(GENERALIZED)-(σ, τ)-DERIVATIONS ADDITIVE?

MOHAMMAD ASLAM SIDDEEQUE1 AND NAZIM KHAN1

Abstract. Let R be an associative ring. A multiplicative (generalized)-(σ, τ)-
derivation F is a map on R satisfying F (xy) = F (x)σ(y) + τ(x)g(y) for all x, y ∈ R,
where σ, τ are homomorphisms on R and g is any map on R. In this article, we have
obtained some conditions on R, which make both F and g additive.

1. Introduction

The study of the additivity of mappings on rings as well as operator algebras has
been an active area of research. Rickart [10] and Johnson [7] raised questions about
when a multiplicative isomorphism becomes additive. Both imposed some sort of
minimality conditions on ring R and answered it. Martindale [8] answered the above
questions under some restriction on R which contains a family of idempotent elements.
Daif et al. [1] introduced the definition of multiplicative derivation on R by choosing
a mapping d : R → R such that d(xy) = d(x)y + xd(y) for all x, y ∈ R and proved
that if R contains nontrivial idempotent elements then any multiplicative derivation
is additive. Lu and Xie [3] established a condition on R, in the case where R may not
contain any non-zero idempotents, that assures that a multiplicative isomorphism is
additive, which generalizes Martindale’s result. As an application, they showed that
under a mild assumption, every multiplicative isomorphism from the radical of a nest
algebra onto an arbitrary ring is additive.

Now let us recall the basic definition of Peirce decomposition. Let e in R be an
idempotent element so that e ̸= 1, e ̸= 0 (R need not have an identity). We will
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formally put e1 = e and e2 = 1 − e. Then, for Rij = eiRej, where i, j = 1, 2,
one may write R in its Peirce decomposition as R = R11 ⊕ R12 ⊕ R21 ⊕ R22, i.e.,
R = eRe ⊕ eR(1 − e) ⊕ (1 − e)Re ⊕ (1 − e)R(1 − e). An element of the subring Rij

will be denoted by aij. More transparently, e induces on R the generalized matrix
ring structure

R =
(

eRe eR(1 − e)
(1 − e)Re (1 − e)R(1 − e)

)
,

with the obvious matrix addition and multiplication. Here eRe, eR(1 − e), (1 − e)Re
and (1 − e)R(1 − e) are abelian subgroups of R.

A map F : R → R is called a multiplicative left centralizer if F (xy) = F (x)y
for all x, y ∈ R. In [12], M. S. Tammam El-Sayiad, M. N. Daif, and V. De Filippis
proved especially the result for the additivity of the multiplicative left centralizers
in prime and semiprime rings which contain an idempotent element. A map F on
R is called a multiplicative generalized derivation of R if F (xy) = F (x)y + xd(y)
for all x, y ∈ R and some derivation d of R. Similarly, a map F on R is called a
multiplicative semi-derivation of R if F (xy) = F (x)g(y) + xF (y) = F (x)y + g(x)F (y)
and F (g(x)) = g(F (x)) for all x, y ∈ R, where g is any map on R. Daif et al.
[2, Theorem 2.1] and Siddeeque et al. [11, Theorem 2.1] proved the additivity of a
multiplicative generalized derivation and multiplicative semi-derivation on an arbitrary
ring under certain conditions, respectively.

Let ℜ be a ring and σ, τ be two endomorphisms on ℜ. An additive mapping
F : ℜ → ℜ is called a generalized (σ, τ)- derivation on ℜ if there exists a (σ, τ)-
derivation d : ℜ → ℜ such that F (xy) = F (x)σ(y) + τ(x)d(y) holds for all x, y ∈ ℜ.
A map on a ring ℜ defined as x → aσ(x) + τ(x)b, where a, b are fixed elements of
ℜ, called as generalized (σ, τ)-inner derivation, is an example of generalized-(σ, τ)
derivation. More details about derivation, multiplicative derivation, and generalized
derivation can seen in [4,5], and [9]. Hou et al. [6] proved that if R contains nontrivial
idempotent elements, then any multiplicative (σ, τ)-derivation is additive and such
map is called (σ, τ)-derivation. We give the notion of multiplicative (generalized)-(σ, τ)
derivation as below.

A multiplicative (generalized)-(σ, τ)-derivation is a map satisfying F (xy) =
F (x)σ(y) +τ(x)g(y) for all x, y ∈ ℜ, where g is any map on ℜ. Similarly a map
F : ℜ → ℜ is called a reverse multiplicative (generalized)-(σ, τ)-derivation on ℜ if
F (xy) = σ(x)F (y) + g(x)τ(y) holds for all x, y ∈ ℜ. Here σ and τ are endomorphisms
and g is any map on ℜ.

Now, we construct an example to support the definition of multiplicative (general-
ized) - (σ, τ)- derivation, which is not additive as follows.

Example 1.1. Let C[0, 1] be the ring of all complex-valued continuous functions defined
on [0, 1]. It can be easily verified that ℜ = C[0, 1] × C[0, 1], forms a ring with regard
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to component wise operations. Define the maps F , g, σ and τ : ℜ → ℜ such that:

F (h(x), k(x)) =



(
h̄(x) log |h(x)|, k̄(x) log |k(x)|

)
, if h(x) ̸= 0 and k(x) ̸= 0,(

0, k̄(x) log |k(x)|
)

, if h(x) = 0 and k(x) ̸= 0,(
h̄(x) log |h(x)|, 0

)
, if h(x) ̸= 0 and k(x) = 0,

(0, 0) , if h(x) = 0 and k(x) = 0,

g(h(x), k(x)) = F (h(x), k(x)) and σ (h(x), k(x)) = τ (h(x), k(x)) =
(
h̄(x), k̄(x)

)
,

where h̄ denotes the conjugate of h. It can be easily proved that σ, τ are auto-
morphisms of ℜ and F is a multiplicative (generalized)-(σ, τ)-derivation of ℜ, i.e.,
F (xy) = F (x)σ(y) + τ(x)g(y) for all x, y ∈ ℜ. But F is not additive on ℜ.

Motivated by the above-cited results, we have proved the additivity of multiplicative
(generalized)-(σ, τ)-derivation under some conditions on ℜ as follows.
Theorem 1.1. Let ℜ be an associative ring with identity containing an idempotent
e(e ̸= 0, 1) which satisfies the following conditions:

(i) xℜ = (0) =⇒ x = 0,
(ii) ℜx = (0) =⇒ x = 0.

If F is any multiplicative (generalized)-(σ, τ)-derivation on ℜ, i.e., F (xy) =
F (x)σ(y) + τ(x)g(y) holds for all x, y ∈ ℜ, where σ, τ are endomorphisms on ℜ
and g is any map on ℜ which is additive on ℜ11 and ℜ22, then F and g are additive.

For proof of Theorem 1.1, first we will prove some auxiliary results as follows.
Lemma 1.1. F (0) = 0.

Proof. By the definition of F , we have F (0) = F (00) = F (0)σ(0) + τ(0)g(0) =
F (0)0 + 0g(0) = 0, which completes the proof. □

Lemma 1.2. For any a11 ∈ ℜ11, a22 ∈ ℜ22, b12 ∈ ℜ12 and b21 ∈ ℜ21, the following
hold

(i) g(a11 + b21) = g(a11) + g(b21),
(ii) g(a22 + b12) = g(a22) + g(b12).

Proof. We prove only (i), and the proof of (ii) goes similarly.
(i) For any tn1 ∈ ℜn1 where n ∈ {1, 2}, we have

τ(tn1)(g(a11) + g(b21)) = τ(tn1)g(a11) + τ(tn1)g(b21)
= F (tn1a11) − F (tn1)σ(a11) + F (tn1b21) − F (tn1)σ(b21)
= F (tn1a11) − F (tn1)σ(a11) − F (tn1)σ(b21)
= F (tn1(a11 + b21)) − F (tn1)σ(a11 + b21)
= τ(tn1)g(a11 + b21).

This implies that
(1.1) τ(tn1)[(g(a11) + g(b21)) − g(a11 + b21)] = 0
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and
τ(tn2)(g(a11) + g(b21)) = τ(tn2)g(a11) + τ(tn2)g(b21)

= F (tn2a11) − F (tn2)σ(a11) + F (tn2b21) − F (tn2)σ(b21)
= F (tn2b21) − F (tn2)σ(a11) − F (tn2)σ(b21)
= F (tn2(a11 + b21)) − F (tn2)σ(a11 + b21)
= τ(tn2)(a11 + b21).

Thus, we obtain that
(1.2) τ(tn2)[(g(a11) + g(b21)) − g(a11 + b21)] = 0.

Using (1.1) and (1.2), we have ℜ[g(a11 + b21) − g(a11) − g(b21)] = (0). Using the
hypothesis of Theorem 1.1, we get g(a11 + b21) = g(a11) + g(b21). □

Lemma 1.3. For any a11 ∈ ℜ11, a22 ∈ ℜ22, b12 ∈ ℜ12, b21 ∈ ℜ21 and b22 ∈ ℜ22, we
have the following:

(i) F (a11 + b12) = F (a11) + F (b12),
(ii) F (a22 + b21) = F (a22) + F (b21),
(iii) F (a11 + b22) = F (a11) + F (b22),
(iv) F (a11 + b21) = F (a11) + F (b21),
(v) F (a22 + b12) = F (a22) + F (b12).

Proof. Proofs of (i), (ii) and (iii) are similar to each other. Similarly the proofs of
(iv) and (v) are on the same pattern. Therefore we prove only (i) and (iv).

(i) For any t1n ∈ ℜ1n, where n ∈ {1, 2}, we have
(F (a11) + F (b12))σ(t1n) = F (a11)σ(t1n) + F (b12)σ(t1n)

= F (a11t1n) − τ(a11)g(t1n) + F (b12t1n) − σ(b12)g(t1n)
= F ((a11 + b12)t1n) − τ(a11 + b12)g(t1n)
= F (a11 + b12)σ(t1n).

Thus, we obtain that
(1.3) [F (a11 + b12) − F (a11) − F (b12)]σ(t1n) = 0.

For any t2n ∈ ℜ2n, where n ∈ {1, 2}, we have
(F (a11) + F (b12))σ(t2n) = F (a11)σ(t2n) + F (b12)σ(t2n)

= F (a11t2n) − τ(a11)g(t2n) + F (b12t2n) − τ(b12)g(t2n)
= F ((a11 + b12)t2n) − τ(a11)g(t2n) − τ(b12)g(t2n)
= F ((a11 + b12)t2n) − τ(a11 + b12)g(t2n)
= F (a11 + b12)σ(t2n).

This implies that
(1.4) [F (a11 + b12) − F (a11) − F (b12)]σ(t2n) = 0.
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Using (1.3) and (1.4), we arrive at [F (a11 + b12) − F (a11) − F (b12)]ℜ = (0). Using the
hypothesis of Theorem 1.1, we get F (a11 + b12) = F (a11) + F (b12).

(iv) For any t2n ∈ ℜ2n, where n ∈ {1, 2}, we have
(F (a11) + F (b21))σ(t2n) = F (a11)σ(t2n) + F (b21)σ(t2n)

= F (a11t2n) − τ(a11)g(t2n) + F (b21t2n) − τ(b21)g(t2n)
= − τ(a11 + b21)g(t2n)
= − F ((a11 + b21)t2n) + F (a11 + b21)σ(t2n)
= F (a11 + b21)σ(t2n).

This implies that
(1.5) [F (a11 + b21) − F (a11) − F (b21)]σ(t2n) = 0.

For any t1n ∈ ℜ1n, where n ∈ {1, 2}, we have
F (a11 + b21)σ(t1n) = F ((a11 + b21)t1n) − τ(a11 + b21)g(t1n)

=F ((e2 + a11)(t1n + b21t1n)) − τ(a11 + b21)g(t1n)
=F (e2 + a11)σ(t1n + b21t1n) + τ(e2 + a11)g(t1n + b21t1n) − τ(a11 + b21)g(t1n).

Using Lemma 1.3 (iii) and Lemma 1.2, we have
F (a11 + b21)σ(t1n)

=F (e2)σ(t1n) + F (e2)σ(b21t1n) + F (a11)σ(t1n)
+ F (a11)σ(b21t1n) + τ(e2)g(t1n) + τ(e2)g(b21t1n) + τ(a11)g(t1n)
+ τ(a11)g(b21t1n) − τ(a11)g(t1n) − τ(b21)g(t1n)

=F (e2t1n) + F (e2b21t1n) + F (a11t1n) + F (a11b21t1n) − τ(a11)g(t1n) − τ(b21)g(t1n)
=F (b21t1n) + F (a11t1n) − τ(a11)g(t1n) − τ(b21)g(t1n)
=F (b21)σ(t1n) + F (a11)σ(t1n)
=(F (b21) + F (a11))σ(t1n).

This shows that
(1.6) [F (a11 + b21) − F (a11) − F (b21)]σ(t1n) = 0.

Using (1.5) and (1.6), we have [F (a11 + b21) − F (a11) − F (b12)]ℜ = (0). With the help
of hypothesis of Theorem 1.1, we obtain F (a11 + b21) = F (a11) + F (b21). □

Lemma 1.4. F is additive on ℜ12.

Proof. Let a12, b12 ∈ ℜ12 and t1n ∈ ℜ1n, where n ∈ {1, 2}, we have
(F (a12) + F (b12))σ(t1n) =F (a12)σ(t1n) + F (b12)σ(t1n)

=F (a12t1n) − τ(a12)g(t1n) + F (b12t1n) − τ(b12)g(t1n)
= − τ(a12 + b12)g(t1n)
= − F ((a12 + b12)t1n) + F (a12 + b12)σ(t1n)
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=F (a12 + b12)σ(t1n).
This gives us
(1.7) [F (a12 + b12) − F (a12) − F (b12)]σ(t1n) = 0.

For any t2n ∈ ℜ2n, where n ∈ {1, 2}, we have
F (a12 + b12)σ(t2n)

=F ((a12 + b12)t2n) − τ(a12 + b12)g(t2n)
=F ((e + a12)(t2n + b12t2n)) − τ(a12 + b12)g(t2n)
=F (e + a12)σ(t2n + b12t2n) + τ(e + a12)g(t2n + b12t2n) − τ(a12 + b12)g(t2n).

Using Lemma 1.3 (i) and Lemma 1.2, we obtain
F (a12 + b12)σ(t2n)

=F (e)σ(t2n) + F (e)σ(b12t2n) + F (a12)σ(t2n) + F (a12)σ(b12t2n) + τ(e)g(t2n)
+ τ(e)g(b12t2n) + τ(a12)g(t2n) + τ(a12)g(b12t2n) − τ(a12)g(t2n) − τ(b12)g(t2n)

=F (et2n) + F (eb12t2n) + F (a12t2n) + F (a12b12t2n) − τ(a12)g(t2n) − τ(b12)g(t2n)
=F (b12t2n) + F (a12t2n) − τ(a12)g(t2n) − τ(b12)g(t2n)
=F (b12)σ(t2n) + F (a12)σ(t2n)
=(F (b12) + F (a12))σ(t2n).

This implies that
(1.8) [F (a12 + b12) − F (a12) − F (b12)]σ(t2n) = 0.

Using (1.7) and (1.8), we have [F (a12 + b12) − F (a12) − F (b12)]ℜ = (0). Using the
hypothesis of Theorem 1.1, we get F is additive on ℜ12. □

Lemma 1.5. F is additive on ℜ21.

Proof. Proof is similar to Lemma 1.4. □

Lemma 1.6. F is additive on ℜ11.

Proof. Let a11, b11 ∈ ℜ11. We have,
F (a11 + b11) = F (e(a11 + b11)) = F (e)σ(a11 + b11) + τ(e)g(a11 + b11).

Since g is additive on ℜ11, we get F (a11 + b11) = F (a11) + F (b11). □

Lemma 1.7. F is additive on ℜ11 + ℜ12 = eℜ.

Proof. Let a11 + a12, b11 + b12 ∈ eℜ. We have,
F ((a11 + a12) + (b11 + b12)) = F ((a11 + b11) + (a12 + b12)).

Using Lemma 1.3 (i), we have
F ((a11 + a12) + (b11 + b12)) = F (a11 + b11) + F (a12 + b12).
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Lemma 1.4 and Lemma 1.6, provide us

F ((a11 + a12) + (b11 + b12)) = F (a11) + F (a12) + F (b11) + F (b12).

With the help of Lemma 1.3 (i), we get

F ((a11 + a12) + (b11 + b12)) = F (a11 + a12) + F (b11 + b12).

That is, F is additive on eℜ. □

Lemma 1.8. F is additive on ℜ22.

Proof. Proof is similar as Lemma 1.6. □

Lemma 1.9. F is additive on ℜ21 + ℜ22 = e2ℜ = (1 − e)ℜ.

Proof. Let a21 + a22, b21 + b22 ∈ (1 − e)ℜ. We have

F ((a21 + a22) + (b21 + b22)) = F ((a21 + b21) + (a22 + b22)).

Using Lemma 1.3 (ii), we get

F ((a21 + a22) + (b21 + b22)) = F (a21 + b21) + F (a22 + b22).

Lemma 1.5 and Lemma 1.8 provide us

F ((a21 + a22) + (b21 + b22)) = F (a21) + F (a22) + F (b21) + F (b22).

Lemma 1.3 (ii) provides us

F ((a21 + a22) + (b21 + b22)) = F (a21 + a22) + F (b21 + b22).

That is, F is additive on (1 − e)ℜ. □

Lemma 1.10. F is additive on ℜ22 + ℜ12 = ℜ(1 − e).

Proof. Let a22 + a12, b22 + b12 ∈ ℜ(1 − e). We have

F ((a22 + a12) + (b22 + b12)) = F ((a22 + b22) + (a12 + b12)).

Using Lemma 1.3 (v), we get

F ((a22 + a12) + (b22 + b12)) = F (a22 + b22) + F (a12 + b12).

Lemma 1.4 and Lemma 1.8, provide us

F ((a22 + a12) + (b22 + b12)) = F (a22) + F (a12) + F (b22) + F (b12).

With the help of Lemma 1.3 (v), we get

F ((a22 + a12) + (b22 + b12)) = F (a22 + a12) + F (b22 + b12).

Hence, F is additive on ℜ(1 − e). □

Lemma 1.11. F is additive on ℜ11 + ℜ21 = ℜe.
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Proof. Let a11 + a21, b11 + b21 ∈ ℜe. We have
F ((a11 + a21) + (b11 + b21)) = F ((a11 + b11) + (a21 + b21)).

By Lemma 1.3 (iv), we get
F ((a11 + a21) + (b11 + b21)) = F (a11 + b11) + F (a21 + b21).

Lemma 1.5 and Lemma 1.6, provide us
F ((a11 + a21) + (b11 + b21)) = F (a11) + F (a21) + F (b11) + F (b21).

Finally, we conclude by Lemma 1.3 (iv)
F ((a11 + a21) + (b11 + b21)) = F (a11 + a21) + F (b11 + b21).

That is, F is additive on ℜe. □

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. (i) First we prove that g is additive.
Let t ∈ eℜ = ℜ11 + ℜ12, x, y ∈ ℜ. We have tx, ty ∈ eℜ.

τ(t)(g(x) + g(y)) = τ(t)g(x) + τ(t)g(y)
= F (tx) − F (t)σ(x) + F (ty) − F (t)σ(y)
= F (tx) + F (ty) − F (t)σ(x) − F (t)σ(y).

Lemma 1.7 provides us
τ(t)(g(x) + g(y)) = F (t(x + y)) − F (t)σ(x + y) = τ(t)g(x + y).

This implies that
(1.9) τ(t)[(g(x) + g(y)) − g(x + y)] = 0.

Also, let m ∈ (1 − e)ℜ = ℜ21 + ℜ22. This shows that mx, my ∈ (1 − e)ℜ,
τ(m)(g(x) + g(y)) = τ(m)g(x) + τ(m)g(y)

= F (mx) − F (m)σ(x) + F (my) − F (m)σ(y)
= F (mx) + F (my) − F (m)σ(x) − F (m)σ(y).

Using Lemma 1.9, we get
τ(m)(g(x) + g(y)) = F (m(x + y)) − F (m)σ(x + y) = τ(m)(x + y).

This implies that
(1.10) τ(m)[(g(x) + g(y)) − g(x + y)] = 0.

On adding (1.9) and (1.10), we have
τ(t + m)[g(x + y) − g(x) − g(y)] = 0.

Since τ is onto on ℜ, we get
ℜ[g(x + y) − g(x) − g(y)] = (0).
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Using hypothesis, we conclude that

g(x + y) = g(x) + g(y).

(ii) Now, we prove that F is additive.
Let t ∈ ℜe = ℜ11 + ℜ21, m ∈ ℜ(1 − e) = ℜ22 + ℜ12, and a, b ∈ ℜ. Then at, bt ∈ ℜe

and am, bm ∈ ℜ(1 − e),

(F (a) + F (b))σ(t) = F (a)σ(t) + F (b)σ(t) = F (at) − τ(a)g(t) + F (bt) − τ(b)g(t)
= F (at) + F (bt) − (τ(a) + τ(b))g(t).

Using Lemma 1.11, we get

(F (a) + F (b))σ(t) = F ((a + b)t) − τ(a + b)g(t) = F (a + b)σ(t).

This implies that

(1.11) [F (a + b) − F (a) − F (b)]σ(t) = 0.

Also,

(F (a) + F (b))σ(m) = F (a)σ(m) + F (b)σ(m)
= F (am) − τ(a)g(m) + F (bm) − τ(b)g(m)
= F (am) + F (bm) − (τ(a) + τ(b))g(m).

Lemma 1.10 provides us

(F (a) + F (b))σ(m) = F ((a + b)m) − τ(a + b)g(m) = F (a + b)σ(m).

This implies that

(1.12) [F (a + b) − F (a) − F (b)]σ(m) = 0.

On adding (1.11)and (1.12), we have

[F (a + b) − F (a) − F (b)]σ(t + m) = 0.

Since σ is onto on ℜ, we conclude that

[F (a + b) − F (a) − F (b)]ℜ = (0).

Using hypothesis, we get F (a + b) = F (a) + F (b), i.e., F is additive. □

Corollary 1.1. Let ℜ be a semi-prime ring with identity containing an idempotent
e ̸= 0, 1. If F is any multiplicative (generalized)-(σ, τ)-derivation on ℜ, i.e., F (xy) =
F (x)σ(y) + τ(x)g(y) holds for all x, y ∈ ℜ, where σ, τ are endomorphisms on ℜ and
g is additive on ℜ11 and ℜ22, then F and g are additive.

Now we construct an example to support the necessity of the condition that “g is
additive on both ℜ11 and ℜ22” in Theorem 1.1 for additivity of F on ℜ.
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Example 1.2. Let S be an integral domain ring with the unity and

M =
{[

a b
0 c

]
| a, b, c ∈ S

}

be the ring of upper triangular matrices over S. Let C[0, 1] be the ring of all complex-
valued continuous functions defined on [0, 1]. It can be easily shown that ℜ =
C[0, 1] × M forms a ring concerning component-wise operations. Define the maps F ,
g, σ and τ : ℜ → ℜ as follows

F

(
f(x),

[
a b
0 c

])
=



f̄(x) log |f̄(x)|,
 0 a + c

0 0

 , if f(x) ̸= 0,0,

 0 a + c

0 0

 , if f(x) = 0,

σ

(
f(x),

[
a b
0 c

])
=
(

f̄(x),
[

a −b
0 c

])
, τ

(
f(x),

[
a b
0 c

])
=
(

f̄(x),
[

a b
0 c

])
,

g

(
f(x),

[
a b
0 c

])
=



f̄(x) log |f̄(x)|,
 0 a − c

0 0

 , if f(x) ̸= 0,0,

 0 a − c

0 0

 , if f(x) = 0,

where f̄ denotes the conjugate of f . One can verify that ℜ satisfies both the conditions
(i) and (ii) of Theorem 1.1 and also both σ, τ are automorphisms. F is a multiplicative
(generalized)-(σ, τ) derivation, i.e., F (xy) = F (x)σ(y) + τ(x)g(y) for all x, y ∈ ℜ.

Obviously a non trivial idempotent element of the ring ℜ is e =
(

1(x),
[

1 0
0 0

])
and

then 1 − e =
(

0(x),
[

0 0
0 1

])
, where 1(x) and 0(x) are the constant functions on

[0, 1] defined as; 1(x) = 1 for all x ∈ [0, 1] and 0(x) = 0 for each x ∈ [0, 1]. Then,

ℜ11 =
{(

f(x),
[

a 0
0 0

])
| f(x) ∈ C[0, 1], a ∈ S

}

and

ℜ22 =
{(

0(x),
[

0 0
0 a

])
| 0(x) ∈ C[0, 1], a ∈ S

}
.

Clearly, it can be proved that g is additive on ℜ22 but not additive on ℜ11. But F is
not additive on ℜ.
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Similarly, if we choose another non-trivial idempotent element as

e1 =
(

0(x),
[

1 0
0 0

])
, then (1 − e1) =

(
1(x),

[
0 0
0 1

])
. In this case,

ℜ11 =
{(

0(x),
[

a 0
0 0

])
| a ∈ S

}
and

ℜ22 =
{(

f(x),
[

0 0
0 a

])
| f(x) ∈ C[0, 1], a ∈ S

}
.

Here, one can observe that g is additive on ℜ11 but not additive on ℜ22. However, F
is not additive on ℜ.

Theorem 1.2. Let ℜ be an associative ring with identity containing an idempotent
e(e ̸= 0, 1) which satisfies the conditions (i) and (ii) of Theorem 1.1. If F is any
reverse-multiplicative (generalized)-(σ, τ)-derivation on ℜ, i.e., F (xy) = σ(x)F (y) +
g(x)τ(y) holds for all x, y ∈ ℜ, where σ, τ are endomorphisms on ℜ and g is additive
on ℜ11 and ℜ22, then F and g are additive.

Proof. The proof is in the same pattern as done for multiplicative (generalized)-(σ, τ)-
derivation in Theorem 1.1. □

Corollary 1.2. Let ℜ be a semi-prime ring with identity containing an idempotent
e ̸= 0, 1. If F is any reverse-multiplicative (generalized)-(σ, τ)-derivation on ℜ, i.e.,
F (xy) = σ(x)F (y) + g(x)τ(y) holds for all x, y ∈ ℜ, where σ, τ are endomorphisms
on ℜ and g is additive on ℜ11 and ℜ22, then F and g are additive.
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