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ON SYSTEM OF VECTOR QUASI-EQUILIBRIUM PROBLEMS
FOR MULTIVALUED MAPPINGS

A. P. FARAJZADEH1 AND A. SHAFIE1

Abstract. In this paper, the notion of the vector quasiconcavity and lower vector
continuity for multivalued mappings without using the algebraic structure are intro-
duced. By applying these definitions and maximal element lemma, some existence
theorems of the solution of the system of vector quasi-equilibrium problems for a
family of multivalued mappings in the setting of topological order spaces are estab-
lished. The results of this note improve and generalize the corresponding results in
the literature, specially references [2, 6, 9–11,23].

1. Introduction

In 2003, Fu [10] introduced the symmetric vector quasi-equilibrium problem that
consists in finding (x̄, ȳ) ∈ C ×D such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

f(x, ȳ)− f(x̄, ȳ) /∈ − intP, for all x ∈ S(x̄, ȳ),

g(x̄, y)− g(x, y) /∈ − intP, for all y ∈ T (x̄, ȳ),
where X, Y and Z are real Hausdorff topological vector space, C and D are nonempty
subsets of X and Y , respectively, S : C × D → 2C and T : C × D → 2D are
set valued mappings, P is a convex cone subset of Z with intP 6= ∅, and f, g :
C ×D → Z are two mappings. The symmetric vector quasi-equilibrium problem is a
generalization of the (scalar) symmetric quasi-equilibrium problem posed by Noor and
Oettli [20] which this problem is a generalization of the equilibrium problem that, at
the first, proposed by Blum and Oettli [7]. The equilibrium problem contains as special
cases, for instance, optimization problems, problems of Nash equilibria, variational
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inequalities, and complementarity problems (see, for instance, [7]). A comprehensive
bibliography on vector equilibrium problems, vector variational inequalities, vector
variational-like inequalities and their generalizations can be found in a recent volume
[13]. Ansari and Yao [5] and Chiang et al. [21] introduced and studied some vector
quasi-equilibrium problems which generalized those quasi-equilibrium problems in
[4,16] and the references therein to the case of vector valued mapping. The system of
vector quasi-equilibrium problems was introduced by Ansari et al. [1] with applications
in Debreu-type equilibrium problem for vector-valued functions. The system of vector
quasi-equilibrium problems (SVQEP, in short) is a unified way to research some
nonlinear problems such as vector equilibrium problems (VEP), vector variational
inequality [23], and vector complementarity problems [24] and so on. In all the above
problems, the authors obtained some existence results in the setting of topological
linear structure. As a generalization of the above models, we consider the SVQEP, in
the setting of topological sup-semilattice where the linearity of the space is relaxed.
Moreover, some existence theorems of a solution of the SVQEP, by applying maximal
element lemma and introducing some new definitions, are established. The rest of this
section section deals with introducing some definitions and preliminaries results which
are needed in the sequel. For a nonempty set X, 2X denotes the class of all nonempty
subsets of X. A partially ordered set (X,≤) is called a sup-semilattice if any two
elements x and y of X have a least upper bound, denoted by x ∨ y = sup{x, y} (see,
for instance, [18,23]). If x and x′ are elements in a partially ordered set (X,≤) with
x ≤ x

′ , then the set
[x, x′ ] = {y ∈ X : x ≤ y ≤ x

′}
is called an order interval. It is easy to check that if X is a sup-semilattice and A is
a nonempty finite subset of X, then the set 4A = ⋃

x∈A
[x, supA] is well defined and

has the properties: A ⊆ 4A and 4A ⊆ 4B if A ⊆ B. Also the order interval [x, y]
is a subset of 4A. A sup-semilattice (X,≤) is called topological semilattice if X is
equipped with such a topology where the mapping ∨ : X ×X ⇒ X defined by

(x, y) 7→ x ∨ y

is continuous.
The following example shows that a sup-semilattice is not necessarily a topological

semilattice.

Example 1.1. Let X = R2 = R×R. It is easy to check that X together with following
ordering

(a, b) ≤ (c, d)⇔ a < c ∨ (a = c, b < d)
is sup-semilattice. It is not topological semilattice whenX is endowed by the Euclidean
topology. Because of (( 1

n
,−1

)
,
(
− 1
n
, 1
))
→ ((0,−1), (0, 1)),
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while

sup
{( 1

n
,−1

)
,
(
− 1
n
, 1
)}

=
( 1
n
,−1

)
9 sup{(0,−1), (0, 1)} = (0, 1).

The following examples illustrate the above definitions.
• It is easy to check that the real line (that is X = R) with the usual topology
and the usual ordering is a topological semilattice.
• Let X = N, the positive integers numbers, together with the ordering m ≤ n
if and only if there exists k ∈ N such that n = km is sup-semilattice and with
the discrete topology (i.e., τ = P (X)) is a topological semilattice. Also, if we
take A = {2, 3, 4} then

4A = ∪x∈A[x, supA] = {2, 3, 4, 6, 12}.

• It is obvious that the set of all (real valued) continuously differentiable functions
(denoted by X = C1([0, 1])) with the topology induced by the norm ‖ f ‖=
supx∈[0,1] |f(x)|+ supx∈[0,1] |f

′(x)| and the usual ordering is not sup-semilattice
(note sup{−x, x} /∈ C1([0, 1])).

Definition 1.1. A subset E of a sup-semilattice X is called 4-convex, if for any
nonempty finite subset A ⊆ E, we have 4A ⊆ E.

Let (X,≤) be a sup-semilattice and E be a subset of X. It is easy to verify that E
fulfils in Definition 1.1 iff (E,≤) is sup-semilattice and [x, y] ⊂ E, for each x, y ∈ E
with x ≤ y. It is worth noting that if E is an ordered topological vector space then
the order interval [x, y] is convex.
Some examples

• Let X equal to the real line with the usual ordering then a subset E of X is
4-convex if and only if it is convex and supA ∈ E, for each nonempty finite
subset A ⊂ E.
• Let X = N, the positive integers numbers, with the ordering m ≤ n if and only
if there exists k ∈ N such that n = km, then a subset E of X is 4-convex if
and only if it is closed under the lowest common multiple and contains all the
divisors of its elements.
• Consider R2 with usual order defined by

(a, b) ≤ (c, d)⇔ a ≤ c, b ≤ d, (a, b), (c, d) ∈ R2.

Clearly,(R2,≤) is a topological sup-semilattice and the set

X = {(0, y), 0 ≤ y ≤ 1} ∪ {(x, 0), 0 ≤ x ≤ 1}

is 4-convex but not convex (in the sense of linear structure). Also the set

X = {(x, 1− x), 0 ≤ x ≤ 1}

is convex but it not 4-convex.



360 A. P. FARAJZADEH AND A. SHAFIE

Definition 1.2. Let S be a nonempty subset of a vector space X. The algebraic
interior of S is denoted by by corS and is defined as

corS = {x̄ ∈ S : for all x ∈ X, exists λ̄ > 0, x̄+ λx ∈ S, for all λ ∈ [0, λ̄]}.

Lemma 1.1. [12, 17] Let C be a convex cone in a topological vector space X. Then
• cor(C) = C + cor(C);
• intC = C + intC.

Notice that the algebraic interior of a convex set is convex, while the converse may
fail (for instance, consider the set of all rational numbers). Also if C is a subset of a
topological vector space then intC ⊆ cor(C) and the following example shows that it
may be intC = ∅ and cor(C) 6= ∅.

Example 1.2. Let X = C00 be the space of all the real sequences which have finite
support, that is

X = C00 = {x = (x(n)) : the set {n ∈ N : x(n) 6= 0} is finite}
and ‖ x ‖= maxn∈N x(n), for all x = (x(n)) ∈ C00. It easy to check that (C00, ‖ . ‖) is
a normed space. Let

C =
{
x = (x(n)) ∈ C00 : x(n) ≤ 1

n
, for all n)

}
.

One can verify that intC = ∅ and (α, 0, 0, . . . ) ∈ cor(C), where 0 < α < 1.

Definition 1.3. Let X be a sup-semilattice or a 4-convex set, Y a vector space and
C ⊂ Y be a subset of Y with corC 6= ∅. A multivalued mapping F : X → 2Y \ {∅}
is said to be a C4-quasiconcave mapping if, for any pair x1, x2 ∈ X and for any
x ∈ 4{x1, x2}, we have either

F (x) ⊂ F (x1)− C
or

F (x) ⊂ F (x2)− C.

Recall that ifK and C are convex subsets of the vector spacesX and Y , respectively,
then f : K → Y is called C-quasiconcave if and only if for any pair x1, x2 ∈ X and
for any x ∈ [x1, x2], we have either

f(x1)− f(x) ∈ C or f(x2)− f(x) ∈ C.
Hence the C-quasiconcave is a special case of Definition 1.3 by taking F (x) = {f(x)}.
Moreover, it is not difficult to verify that Definition 2.2 of [23] implies Definition 1.3
when the multivalued mapping F reduces to a single valued mapping.

Definition 1.4. Let X and Y be nonempty sets and F : X → 2Y be a multivalued
mapping. The domain of F is defined to be the set domF = {x ∈ X : F (x) 6= ∅}.

The following definition extends the definition of lower C-continuity given in [14]
from single valued mappings to multivalued mappings.
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Definition 1.5. Let X be a topological space, Y a topological vector space and C a
subset of Y . A multi-valued mapping F : X → 2Y is said to be lower C-continuous
at x̄ ∈ domF if for any neighborhood V of the origin in Y there is a neighborhood U
of x̄ such that

F (x̄) ⊂ F (x) + V − C, for all x ∈ domF ∩ U.

The following proposition is the multivalued version of Lemma 2.1 of [23] by relaxing
the locally convexity of the space and replacing the topological interior of the cone C
by the algebraic interior of C.

Proposition 1.1. Let X be a sup-semilattice, Y a vector space and C a subset
of Y . If the multivalued mapping φ : X → 2Y is C4-quasiconcave then the set
A = {x ∈ X : φ(x) ⊂ − corC} is 4-convex.

Proof. Let x1, x2 ∈ A and x′ ∈ 4{x1, x2}. Then it follows from the C4-quasiconcavity
of φ and the relation − corC − C ⊆ − corC that

φ(x′) ⊆ φ(x1)− C ⊆ − corC − C ⊆ − corC
or

φ(x′) ⊆ φ(x2)− C ⊆ − corC − C ⊆ − corC.
Hence x′ ∈ A and so the proof is completed. �

Now we are ready to introduce the main problem of the paper which is known
as the system of vector quasi-equilibrium problem (SVQEP, for short). Let I be a
nonempty set. For each i ∈ I, Ki is a topological sup-semilattice and Yi is a topological
vector space. Denote K = ∏

i∈I Ki, K−i = ∏
j∈I\{i}Kj, Ci ⊂ Yi is a closed, convex

and pointed cone with corCi 6= ∅. For each i ∈ I, φi : Ki × K−i × Ki ⇒ 2Yi and
Gi : K−i ⇒ 2Ki are multivalued mappings.The system of vector quasi-equilibrium
problem correspond to (Ki, Yi, Ci, φi, Gi)i∈I is to find x̄ = (x̄i)i∈I ∈ K, such that for
all i ∈ I

xi ∈ Gi(x−i) and φi(x, yi) * − corCi, for all yi ∈ Gi(x−i).
If I is singleton then we can replace Ki, Yi, Ci by K, Y and C, respectively. In
this case the SVQEP reduces to the vector quasi-equilibrium problem studied (for
instance) in [5, 9, 20, 22]. Moreover, the (SVQEP) will collapse to the problems given
in [1, 4, 14, 23] when the algebraic interior of Ci is replaced by the interior of Ci. It is
easy to present some examples in order to show that the converse of Proposition 1.1
may drop.

2. Main results

In this section we provide an existence theorem for a solution of the SVQEP and
then we present an existence result for a solution of the VEP for a multivalued map
which its domain is not necessarily convex and ordering induced by the convex cone
C does not need to have a nonempty topological interior. The results of this section
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can be viewed as an extension of the corresponding results given in the literature,
especially [23]. We need the following results which are needed in the sequel.

Theorem 2.1. [15] Let X be a topological semilattice with path-connected (order)
intervals, X0 ⊆ X be a nonempty subset of X and R ⊆ X0 ×X be a binary relation
such that

(i) for each x ∈ X0, the set R(x) = {y ∈ X : (x, y) ∈ R} is nonempty and closed
in R(X0) = ⋃

z∈X0
R(z);

(ii) there exists x0 ∈ X0 such that the set R(x0) is compact;
(iii) for any nonempty finite subset A ⊆ X0⋃

x∈A
[x, supA] ⊆

⋃
x∈X

R(x).

Then the set ⋂
x∈X0

R(x) is nonempty.

The following example shows that condition (ii) of Theorem 2.1 is essential.

Example 2.1. Let X = X0 = R. Define the binary relation R as follows
R = {(0, x) : x ∈ R} ∪ {(x, y) : 0 6= x ≤ y}.

It is clear that, for each nonzero element x ∈ R, R(x) = [x,+∞) and R(0) = R which
are closed but not compact. It is easy to check that the example satisfies all the
conditions of Theorem 2.1 except (ii) and⋂

x∈X0

R(x) =
⋂
x∈R

[x,+∞) = ∅.

Theorem 2.2. [18, 23] Let X be a compact topological sup-semilattice with path con-
nected order interval, S : X → 2X a multivalued map on X. Assume that the following
conditions are satisfied:

(a) for each x ∈ X, S(x) is 4-convex;
(b) for each y ∈ X, S−1(y) = {x ∈ X : y ∈ S(x)} ⊂ X is open in X;
(c) for each x ∈ X, x /∈ S(x).

Then there exists an x̄ ∈ X such that S(x̄) = ∅.

Notice that, one can deduce Theorem 2.2 from Theorem 2.1. Indeed, define the
binary relation R as follows

(x, y) ∈ R⇔ x /∈ S(y).
It is obvious, for each x ∈ X, that R(x) = X\S−1(x) which is closed by condition (b).
It follows from condition (c) that x ∈ R(x). Then, for each x ∈ X, the set R(x) is
nonempty and closed. Also if A = {x1, x2, . . . , xn} is a finite subset of X, then

n⋃
i=1

[xi, supA] ⊆
n⋃
i=1

R(xi).
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Because, otherwise there exists z ∈ X such that

(2.1) z ∈
n⋃
i=1

[xi, supA] \
n⋃
i=1

R(xi).

Hence, z /∈ R(x), for each x ∈ A. This means x ∈ S(z), for each x ∈ A. Hence, it
follows from condition (1) that, for each i ∈ {1, 2, . . . , n}, [xi, supA] ⊆ S(z) and so
by the relation 2.1 we have z ∈ S(z) which is a contradiction by the condition (3).
Consequently, the relation R satisfies all the assumptions of Theorem 2.1 and so there
there exists w ∈ X such that w ∈ ⋂

x∈X
R(x) = ⋂

x∈X
S(x) and so specially w ∈ S(w)

which is contradicted by condition (3). This completes the proof.

Theorem 2.3. [15] Let K be a nonempty compact 4-convex subset of a topological
sup-semilattice with path-connected intervals, F : K → 2K a multivalued mapping
with nonempty 4-convex values, and let F−1(y) ⊂ K be open, for any y ∈ K. Then
F has a fixed point.

Note that, Theorem 2.3 can be deduce from Theorem 2.2 as an application. Because
if we assume, on the contrary, that y /∈ F (y), for all y ∈ K. Then the mapping
S : K → 2K defined by S(y) = F (y), for all y ∈ K satisfies all the conditions of
Theorem 2.2. Hence there exists z ∈ K such that F (z) = ∅ which is contradicted by
F (y) 6= ∅ for all y ∈ K. This completes the proof of Theorem 2.3. Now we are ready
to provide an existence result for a solution of SVQEP.

Theorem 2.4. Let (Ki, Yi, Ci, φi, Gi)i∈I be a system of vector quasi-equilibrium prob-
lems. For each i ∈ I let Ki be a compact topological semilattice with path connected
order intervals, Yi be a Hausdorff locally convex topological vector space, and Gi be
a multivalued mapping with non-empty and 4-convex values. Assume that for any
yi ∈ Ki the set G−1

i (yi) = {x−i ∈ K−i : yi ∈ Gi(x−i)} is open in K−i and the following
conditions are satisfied:

(i) φi(zi, x−i, ·) is Ci∆-quasiconcave, for all i ∈ I, x−i ∈ K−i, zi ∈ Gi(x−i);
(ii) {zi ∈ Ki : φi(zi, x−i, xi) * − corCi} is closed in Gi(x−i), for all i ∈ I, x−i ∈

K−i, yi ∈ Gi(x−i);
(iii) for each i ∈ I, x = (xi) ∈ K, if xi ∈ Gi(x−i) then φ(xi, x−i, xi) * − corCi;
(iv) φi(·, x−i, yi) is Ci4-quasiconcave, for all i ∈ I, x−i ∈ K−i, yi ∈ Gi(x−i);
(v) {x−i ∈ K−i : φi(zi, x−i, yi) * − corCi} is closed for all i ∈ I, zi, yi ∈ Ki.

Then the solution set of SVQEP is nonempty.

Proof. Define the multivalued mapping B : K → 2K by B(x) = ∏
i∈I Bi(x−i), for all

x ∈ K, where

Bi(x−i) = {zi ∈ Gi(x−i) : φi(zi, x−i, yi) * − corCi, for all yi ∈ Gi(x−i)},

for all i ∈ I. We claim that the multivalued mapping B fulfils all the conditions of
Theorem 2.2. To see this, we will complete our proof in the following three steps (a),
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(b) and (c).
(a) For all i ∈ I, define multivalued mapping Qi on Gi(x−i) as follows

Qi(zi) = {yi ∈ Gi(x−i) : φi(zi, x−i, yi) ⊆ − corCi}, for all zi ∈ Gi(x−i).
Then for any zi ∈ Gi(x−i) we get

Qi(zi) = Gi(x−i) ∩ Yi(zi, x−i),
where

Yi(zi, x−i) = {yi ∈ Ki : φi(zi, x−i, yi) ⊆ − corCi}.
It follows from (i) that for all i ∈ I, the multivalued mapping φi(zi, x−i, ·) is Ci4-
quasiconvex. Hence, for each i ∈ I, the set Yi(zi, x−i) is 4-convex by Theorem 1.1.
Moreover, since for all i ∈ I the set Gi(x−i) is 4-convex we deduce that, for all i ∈ I,
the set Qi(zi) is 4-convex. Also it follows from (ii) that for each yi ∈ Gi(x−i), the set
Q−1
i (yi) = {zi ∈ G−i(x−i) : yi ∈ Qi(zi)} = {zi ∈ Gi(x−i) : φi(zi, x−i, yi) ⊆ − corCi}

is open in Gi(x−i). We assert that xi /∈ Qi(xi). By contrary we suppose that
xi ∈ Qi(xi). Hence by definition Qi we have

xi ∈ Gi(x−i), φi(xi, x−i, xi) ⊆ − corCi.
Which is contradiction with the condition (iii). So xi /∈ Qi(xi). Therefore, for all
i ∈ I, the multivalued mapping Qi satisfies all the assumptions of Theorem 2.2 and
so there exists an x∗i ∈ Gi(x−i) such that Qi(x∗i ) = ∅. This means

φi(x∗i , x−i, yi) * − corCi, for all yi ∈ Gi(x−i).
Which implies that Bi(x−i) is not empty and consequently B(x) is also.
(b) For any z1

i , z
2
i ∈ Bi(x−i), we have

zji ∈ Gi(x−i and φi(zji , x−i, yi) ⊆ − corCi, for all yi ∈ Gi(x−i), j = 1, 2.
From the condition (iv), φi(·, x−i, yi) is Ci4-quasiconcave. Then for any zi ∈ 4{z1

i , z
2
i }

and yi ∈ Gi(x−i), without loss of generality, we have
φi(zi, x−i, yi) ∈ φi(z1

i , x−i, yi) + Ci.

Equivalently
φi(z1

i , x−i, yi) ∈ φi(zi, x−i, yi)− Ci.
Now if we assume there is yoi ∈ Gi(x−i), such that φi(zi, x−i, yoi ) ∈ − corCi, then

φi(z1
i , x−i, y

o
i ) ∈ φi(zi, x−i, yoi )− Ci ⊂ − corCi − Ci ⊂ − corCi,

which is contradicted by z1
i ∈ Bi(x−i). Therefore

zi ∈ Bi(x−i) and φi(zi, xi, yi) /∈ corCi, for all yi ∈ Gi(x−i),
that is zi ∈ Bi(x−i). Then 4{z1

i , z
2
i } ⊆ Bi(x−i) and so Bi(x−i) is 4-convex. Conse-

quently, we obtain B(x) is 4-convex. For each z ∈ K, denote Di(zi) as follows
Di(zi) = ∩yi∈Gi(x−i){x−i : φi(zi, x−i, yi) ⊆ − corCi}
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then we have
B−1
i (zi) = {x−i ∈ K−i : zi ∈ Bi(x−i)} = {x−i ∈ K−i : zi ∈ Gi(x−i) ∩Di(zi)}.

The set {x−i ∈ K−i : φi(zi, x−i, yi) * − corCi} is closed according to (v). Thus
Di is open in K−i. In addition, by assumption we have G−1

i (zi) = {x−i ∈ K−i :
zi ∈ Gi(x−i)} is open. Consequently, we obtain B−1

i (zi) is open, B−1(z) is also open.
Up to now, B(x) is non-empty and 4-convex, B−1(x) is open for any x ∈ K. If
x /∈ B(x), for all x ∈ K, then there exists an x̃ such that B(x̃) = ∅ by Theorem 2.2.
This is contradicted by B(x) is non-empty for each x ∈ K. Therefore, we can find an
x̄ ∈ K such that x̄ ∈ B(x̄). Obviously, x̄ is a solution of the SVQEP. This completes
the proof. �

As an application of the previous theorem we deduce the following existence result
for a solution of the generalized vector equilibrium problem whose domain need not
to have nonempty interior in the setting of topological semilattice. Moreover, it can
be viewed as improvement of the corresponding result given in [2, 3, 6, 8, 11].

Corollary 2.1. Let (K,Y,C, φ) be a vector equilibrium problem, where K is a compact
topological sup-semilattice with path connected intervals, Y is a topological vector space
and φ : K ×K → 2Y . If the following conditions are satisfied:

(i) for each x ∈ K, φ(x, ·) is C4-quasiconcave;
(ii) for each y ∈ K, {x : φ(x, y) * − corC} is closed in K;
(iii) for each x ∈ K, φ(x, x) * − corC;

then there exists x∗ ∈ K such that
φ(x∗, y) * − corC, for all y ∈ K.

Note that x∗ is called a solution of generalized vector equilibrium problem (GVEP).
Moreover, the solution set of (GVEP) is a closed subset of K.

Example 2.2. Let P [0, 1] denote the set of all polynomials on K = [0, 1] and let
P [0, 1] denote the set of all polynomials over K = [0, 1] and C consist of all element
p ∈ P [0, 1] which have degree less than or equal two with p(t) ≥ 0 for all t ∈ [0, 1].
The mapping φ : K ×K → P [0, 1] is defined as follows: φ(s, t) = p(s−t) where

p(s−t)(x) = (s− t)x2, for all s, t, x ∈ [0, 1].
It is straightforward to see that C is closed , convex pointed cone and

intC = ∅, corC = {p ∈ P [0, 1] : min
x∈[0,1]

p(x) > 0}.

It is obvious that the condition (i) of the previous corollary is satisfied and to check
(ii) of it, we pick s0 ∈ K. Then

{t ∈ K : φ(t, s0) /∈ corC} ={t ∈ [0, 1] : −ps0−t /∈ corC}
={t ∈ [0, 1] : max

x∈[0,1]
(s0 − t)x2 ≥ 0} = [0, 1],
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which is a closed in K. Also the condition (iii) is trivially fulfilled because

φ(s, s) = p0 = 0 /∈ corC.

Hence all the assumptions of the aforementioned corollary is satisfied and one can
check that the set of solution of the problem (GVEP) equal to K.

The next result is a multivalued version of the corresponding results given in
[6, 9] for dual equilibrium problem in the setting of topological semilattice with mild
assumptions.

Theorem 2.5. Let K be a C4-convex with path connected intervals of a topological
sup-semilattice X, C be a convex cone of a vector Y with corC 6= ∅. Assume F :
K ×K → 2Y satisfies the following conditions.

(i) for each x ∈ K, F (x, x) * corC;
(ii) for each y ∈ K, the set {x : F (x, y) * corC} is closed in K;
(iii) for each y ∈ K, the set {x : F (x, y) ⊆ corC} is C4-convex;
(iv) there exists x0 ∈ X such that {y ∈ K; F (x0, y) * corC} is compact.

Then there exists x∗ ∈ K such that F (x, x∗) * corC for all x ∈ K.

Proof. LetW = {(x, y) ∈ K×K : F (x, y) * corC}. Then it follows from (ii) that, for
each x ∈ K, the set W (x) = {y ∈ K : (x, y) ∈ W} is closed and by (iv) the set W (x0)
is compact. We claim that for all finite subset A of K the inclusion 4A ⊆ ∪x∈AW (x)
is valid. Because otherwise there exists a finite subset A = {x1, x2, . . . , xn} ⊆ K such
that 4A * ∪x∈AW (x). Hence, for some y0 ∈ 4A and all x ∈ A we have y0 /∈ W (x).
Then, for all i = 1, 2, . . . , n, we get F (xi, y0) ⊆ corC and it follows from (iii) that
F (4A, y0) ⊆ corC. Consequently, since y0 ∈ 4A we have F (y0, y0) ⊆ corC which is
contradicted by (i). Therefore 4A ⊆ ∪x∈AW (x). Now, F satisfies all the conditions
of Theorem 2.1 and so ∩x∈AW (x) 6= ∅. Then there exists x∗ ∈ K such that for all
x ∈ K, x∗ ∈ W (x). This means that,

F (x, x∗) * corC, for all x ∈ K.

This completes the proof. �

Theorem 2.6. Let K be a nonempty compact 4-convex subset of a topological sup-
semilattice with path connected intervals, Y be a topological vector space, F : K×K →
2Y , and C a closed, pointed and convex cone in Y with intC 6= ∅. Assume that

(i) for each x ∈ K, F (x, x) ∩ intC = ∅;
(ii) for each x ∈ K, F (x, ·) is C4-quasiconcave;
(iii) for each y ∈ K, F (·, y) is lower C-continuous.

Then there exists x∗ ∈ K such that F (x∗, y) ∩ intC = ∅ for all y ∈ K.

Proof. Define P : K → 2K by

P (x) = {y ∈ K : F (x, y) ∩ intC 6= ∅} .
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We are going to show that the multivalued mapping P fulfils all conditions of Lemma
1.1. (a) The values of P are4-convex. Otherwise, there exist x′ ∈ K and y1, y2 ∈ P (x′)
such that

4({y1, y2}) * P (x′).

This means that there exists z ∈ 4({y1, y2}) with z /∈ P (x′). Thus F (x′ , z)∩intC = ∅
and so by the Definition 1.3 (note, by (ii), F is C4-quasiconcave) and losing of
generality we can assume that F (x′ , y1) ⊂ F (x′ , z) − C. Since F (x′ , y1) ∩ intC 6= ∅
(note y1 ∈ P (x′)), we can take u1 ∈ F (x′ , y1) with u1 ∈ intC. Then there exist
v1 ∈ F (x′ , z) and w1 ∈ C such that u1 = v1 − w1. Hence, by applying Lemma 1.1 we
get v1 = u1 + w1 ∈ intC + C ⊆ intC which is contradicted by F (x′ , z) ∩ intC = ∅.
Then, for all x ∈ X we get P (x) is 4-convex. Now we prove P−1(y) is open for each
y ∈ K. We know that

K \ P−1(y) ={x ∈ K;x /∈ P−1(y)} = {x ∈ K; y /∈ P (x)}
= {x ∈ K;F (x, y) ∩ intC = ∅} .(2.2)

Put D := K \ P−1(y). The set D is closed. Because on the contrary if there exists
x̄ ∈ D̄ \D, then F (x̄, y)∩ intC 6= ∅. Therefore there exists ȳ ∈ F (x, y)∩ intC. Hence
there exists a neighborhood V of zero in Y such that ȳ − V ⊂ intC. It follows from
(iii) that there exists a neighborhood U of x̄ such that

F (x̄, y) ⊂ F (x, y) + V − C, for all x ∈ U.

Then

0 ∈ F (x, y)− ȳ + V − C ⊂ F (x, y)− intC − C ⊂ F (x, y)− intC,

which implies
F (x, y) ∩ intC 6= ∅, for all x ∈ U.

Since x̄ ∈ D there must be a net {xα} ∈ D which is convergent to x̄. Then there exists
β such that xα ∈ U , for all α ≥ β and then F (xα, y) ∩ intC 6= ∅, which contradicts
xα ∈ D. Therefore x̄ ∈ D and D is closed. Consequently we infer that P−1(y) is open
for each y ∈ K. By Theorem 2.2 there exists x ∈ K such that P (x) = ∅. This means,
for all y ∈ K, y /∈ P (x) and so

F (x, y) ∩ intC = ∅, for all y ∈ K.

This completes the proof. �

It is clear from the proof of Theorem 2.6 that we can replace condition (iii) of the
Theorem 2.6 by the lower semicontinuity of the multivalued mapping x 7→ F (x, y).
There are examples which show the class of all lower semicontinuous multivalued
mappings does not equal the class of all lower C-continuous. The following example
illustrates Theorem 2.6.
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Example 2.3. Let K = [0, 1]× [0, 1], C = R+ = [0,∞). The (K,�) is a sup-semilattice,
in which x � y means that x1 ≤ y1, x2 ≤ y2 for any x = (x1, x2), y = (y1, y2) of K.
Define multivalued mapping F : [0, 1] × [0, 1] → 2R by F (x, y) = (−∞, y − x). It is
easy to check F satisfies all the conditions of Theorem 2.6 and so there exists x∗ ∈ K
such that

F (x∗, y) ≥ 0, for all y ∈ K,
in fact x∗ = 1 is the unique solution.
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