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WELL-POSEDNESS AND EXPONENTIAL DECAY OF ENERGY
FOR THE SOLUTION OF A WAVE EQUATION WITH

NONLINEAR SOURCE AND LOCALIZED DAMPING TERMES

MHAMED KOUIDRI1, MAMA ABDELLI1, MOUNIR BAHLIL1, AND AKRAM BEN AISSA2

Abstract. We consider the wave equation with a locally damping and a nonlinear
source term in a bounded domain. ytt −∆y +a(x)g(yt) = |y|p−2y, where p > 2. The
damping is nonlinear and is effective only in a neighborhood of a suitable subset of
the boundary. We show, for certain initial data and suitable conditions on g, a and
p that this solution is global we use the Faedo-Galerkin method. Also we established
the exponential decay of the energy when the nonlinear damping grows linearly by
introducing a suitable Lyapunov functional.

1. Introduction

Let Ω be a bounded domain in Rn, n ≥ 1, having a boundary Γ = ∂Ω of class C2.
We denote by ν the unit normal pointing into the exterior of Ω. We fix x0 ∈ Rn be
an arbitrary point of Rn and we set
(1.1) Γ(x0) = {x ∈ Γ : m(x)ν(x) > 0}
and
(1.2) m(x) = x− x0.

Let ω be a neighborhood of Γ(x0) in Ω and consider δ sufficiently small such that

M0 =
{
x ∈ Ω : d(x,Γ(x0)) < δ

}
⊂ ω,(1.3)

M1 =
{
x ∈ Ω : d(x,Γ(x0)) < 2δ

}
⊂ ω.(1.4)

Key words and phrases. Wave equation, localized nonlinear damping, well-posedness, Faedo-
Galerkin, multiplier method, exponential stabilization.
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If A ⊂ Rn and x ∈ Rn, we have
d(x;A) = inf

y∈A
(|x− y|).

and M0 ⊂ M1 ⊂ ω.
Now consider with the following initial-boundary value problem of damped wave

equation

(1.5)


ytt − ∆y + a(x)g(yt) = f(y), x ∈ Ω × [0,+∞[,
y = 0, x ∈ Γ × [0,∞[,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω × [0,+∞[,

where f(y) = |y|p−2y and g : R → R is a continuous nondecreasing function with
g(0) = 0 and a : Ω → R is a nonnegative and bounded function.

In the absence of nonlinear source term (i.e., if f = 0), Tebou [12] has used the
multipliers techniques to prove the decay estimates of global solutions for the problem
(1.5) for certain initial data (y0, y1) ∈ H1

0 (Ω) × L2(Ω) and g having a polynomial
growth near the origin. Precisely, he showed that the rate of decay of the energy
is exponential or polynomial depending on exponents of the damping terms. This
method is based on new integral inequality that generalizes a result of Haraux [6] and
Komornik [7]. Tebou [14] studied (1.5) for a localized nonlinear strong damping. He
proved that for certain initial data the global existence by using the Fadeo-Galerkin
approximations and the semigroup methods, he used and also showed that the energy
of the system decays exponentially by introducing a multiplier method combined with
a nonlinear integral inequalities given by Martinez [9].

When f = 0 and the feedback term depends on the velocity in a linear way, as in
the present paper, Zuazua [15] proved that the energy related to problem (1.5) decays
exponentially if the damping region contains a neighbourhood of the boundary Γ or,
at least, contains a neibourhood of the particular part given by (1.5).

When g(yt) = div(a(x)∇yt), where a(x) = d1ω(x), d > 0, Ammari et al. [2] consider
the problem (1.5) without the source term f(y). They obtained a logarithmic decay
of energy. Their idea is to transform the resolvent problem to a transmission system
to easily use the so-called Carleman estimate.

When g(∆yt) = |∆yt|p−2∆yt and the source term is absent, Tebou [13] investigates
the global existence of solution with initial-boundary value conditions. Meanwhile, he
proved that the rate of decay of the energy is exponential or polynomial depending
on exponents of the damping terms.

In the presence of the viscoelastic term Cavalcanti et al. [5] studied (1.5) in the pres-
ence of a linear localised frictional damping (a(x)yt). They obtained an exponential
rate of decay by assuming that the kernel term is decaying exponentially. This work
was later improved by Berrimi and Messaoudi [4] by introducing a different functional
which allowed them to weaken the conditions on viscoelastic damping.

Motivated by previous works, it is interesting to investigate the global existence and
decay of solutions to problem (1.5). Firstly, we show that, under suitable conditions
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on the functions g and a, the parameter p and certain initial data in the stable set,
the existence of regular and weak solutions to problem (1.5).

After that, we establish the rate of decay of solutions by the perturbed energy
method. Precisely, we show that the decay rate of energy function is exponential. In
this way, we can extend the results of [14] where the authors considered (1.5) without
source term and the results of [10] and [11] in the linear damping term.

This article is organized as follows. In the next section, we give some preliminaries.
In Section 3, we prove the existence and uniqueness for regular and weak solutions.
Then in Section 4, we are devoted to the proof of decay estimate.

2. Preliminaries

To state and prove our result, we need some assumptions.
(A1) g : R → R is non decreasing function of class C1 functions such that g(0) = 0

and
(∃τ0, τ1 > 0) τ0 ≤ g′(s) ≤ τ1, for all s ∈ R.

(A2) The nonnegative function a : Ω → [0,+∞) is assumed bounded such that
(∃a0 > 0) a(x) ≥ a0 > 0, a.e. in ω,(2.1)
a(x) ∈ W 1,∞(Ω).

(A3) Let p be a number with 2 ≤ p < +∞, n = 1, 2, and 2 ≤ p ≤ 2n−2
n−2 , n ≥ 3.

Now, we define the following functionals
I(y(t)) = ∥∇y(t)∥2 − ∥y(t)∥p

p,

J(y(t)) = 1
2∥∇y(t)∥2 − 1

p
∥y(t)∥p

p.

We define the energy as

(2.2) E(t) = 1
2∥yt(t)∥2+ 1

2∥∇y(t)∥2− 1
p

∥y(t)∥p
p = 1

2∥yt(t)∥2+J(y(t)), for all t ≥ 0.

The energy E is a nonincreasing function of the time variable t, and its derivative
satisfies

(2.3) E ′(t) = −
∫

Ω
a(x)ytg(yt) dx ≤ 0, for all t ≥ 0.

We can define the stable set as
W =

{
y | y ∈ H1

0 (Ω), I(y) > 0
}

∪ {0}.

For later applications, we list up some lemmas.

Lemma 2.1 ([1]). Let q be a number with 2 ≤ q < +∞, n = 1, 2, or 2 ≤ q ≤
2n/(n− 2), n ≥ 3, then there exists a constant Cs = C(Ω, q) such that

∥y∥q ≤ Cs∥∇y∥, for y ∈ H1
0 (Ω).
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Lemma 2.2 ([8]). Let Q a bounded domain of Rx × Rt, φm and φ functions of
Lq(Q), 1 < q < +∞, such that

∥φm∥Lq(Q) ≤ C, φm → φ, a.e. in Q.

Then,
φm → φ in Lq weak.

Lemma 2.3. Suppose that n ≥ 3 and p ≤ 2n
n−2 . Let y(t) be a local solution on [0, tm]

with the initial data y0 ∈ W such that

Cp
s

(
2p
p− 2E(0)

) p−2
2

< 1.

Then, y(t) ∈ W for all t ∈ [0, tm].

Proof. We introduce

t∗ = inf{t ∈ [0, T ∗] | y(t) ̸∈ W} ≠ ∅.

For continuity in time of y(t), y(t) ∈ W for all 0 ≤ t ≤ t∗ and y(t∗) ̸∈ W, then we
have y(t∗) ̸= 0.

From the continuity of y and the definition of t∗

(2.4) I(y(t∗)) = 0.

Hence, we get

J(y(t)) = p− 2
2p ∥∇y(t)∥2 + 1

p
I(y(t)) ≥ p− 2

2p ∥∇y(t)∥2, on [0, t∗].(2.5)

By the energy identity (2.2) and (2.5), we get

∥∇y(t)∥2 ≤ 2p
p− 2J(y(t)) ≤ 2p

p− 2E(t) ≤ 2p
p− 2E(0), on [0, t∗].(2.6)

Hence, from the Sobolev-Poincaré inequality, we get

∥y(t)∥p
p ≤ Cp

s ∥∇y(t)∥p ≤ Cp
s ∥∇y(t)∥p−2∥∇y(t)∥2(2.7)

≤ Cp
s

(
2p
p− 2E(0)

) p−2
2

∥∇y(t)∥2, on [0, t∗].

As t → t∗ and α < 1, we obtain

∥y(t∗)∥p
p ≤ α∥∇y(t∗)∥2 and ∥∇y(t∗)∥2 ̸= 0.

Then
∥y(t∗)∥p

p ≤ ∥∇y(t∗)∥2.

As a result, we obtain I(y(t∗)) > 0, which contradicts to (2.4). Thus, we conclude
that u(t) ∈ W, on [0, t∗]. This ends the proof of Lemma 2.3. □
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3. Well-Posedness

In this section we prove the existence of regular solutions to problem (1.5) and for
this purpose we employ Galerkin method. Then, using a density argument we extend
the same result to weak solutions.

Theorem 3.1. Let y0 ∈ H2(Ω) ∩ W, y1 ∈ H1
0 (Ω). Assume that (A1)-(A3) hold.

Then problem (1.5) admits a unique regular solution y(x, t) in the class

y ∈ L∞([0,∞);H2(Ω) ∩ W), yt ∈ L∞([0,∞);H1
0 (Ω)), ytt ∈ L∞([0,∞);L2(Ω)).

Theorem 3.2. Let y0 ∈ W, y1 ∈ L2(Ω). Assume that (A1)-(A3) hold. Then problem
(1.5) possesses a weak solution in the class

y ∈ C0([0,∞);W) ∩ C1([0,∞);L2(Ω)).

Proof. We employ the Faedo-Galerkin approximation method to construct a global
solution, let {wi | i ∈ N} be the Hilbert basis of L2(Ω), H1

0 (Ω) and H2(Ω) given by− ∆wi = λiwi, in Ω,
wi = 0, on Γ.

Set V m the space generated by {w1, w2, . . . , wi} and we construct approximate solu-
tions ym, m = 1, 2, 3, . . . , in the form

ym(t, x) =
m∑

j=1
cj,m(t)wj(x),

where cj,m is determined by the ordinary differential equations

(3.1) (ym
tt (t), v) − (∆ym(t), v) + (a(x)g(ym

t ), v) = (|ym|p−2ym, v), for all v ∈ V m,

on some interval [0, tm). Let ym
0 and ym

1 in V m be such that

ym(0) =ym
0 =

m∑
j=1

(y0, w
j)wj → y0, in H2(Ω) ∩ W as m → +∞,(3.2)

ym
t (0) =ym

1 =
m∑

j=1
(y1, w

j)wj → y1, in H1
0 (Ω) as m → +∞,(3.3)

and

∆ym
0 −a(x)g(ym

1 ) + |ym
0 |p−2ym

0 →∆y0−a(x)g(y1) + |y0|p−2y0, in L2(Ω) as m → +∞.

(3.4)
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3.1. A priori estimates.

3.1.1. The first estimate. We are going to use some a priori estimates to show that
tm = +∞.

Choosing v = 2ym
t in (3.1), using Green’s formula and then integrating over (0, t),

we find

∥ym
t (t)∥2 + 2J(ym(t)) + 2

∫ t

0

∫
Ω
a(x)ym

t (s)g(ym
t (s)) dx ds = ∥ym

1 ∥2 + 2J(ym
0 ),

for all t ∈ [0, tm). Using (3.2) and (3.3), we obtain

(3.5) ∥ym
t (t)∥2 + 2J(ym(t)) + 2

∫ t

0

∫
Ω
a(x)ym

t (s)g(ym
t (s)) dx ds ≤ C0,

where J(ym(t)) = 1
2∥∇y(mt)∥2 − 1

p
∥ym(t)∥p

p, for some C0 independent of m. These
estimates imply that the solution ym exists globally in [0,+∞[.

Estimate (3.5) yields

ym is bounded in L∞(0, T,W),(3.6)
ym

t is bounded in L∞(0, T, L2(Ω)),(3.7)
a(x)ym

t g(ym
t ) is bounded in L1(Ω × (0, T )).(3.8)

We prove that a(x)g(ym
t (t)) is bounded, using (A1) and (3.8), we have

∫ T

0

∫
Ω
a2(x)g2(ym

t ) dx dt ≤ τ1∥a∥∞

∫ T

0

∫
Ω
a(x)|ym

t g(ym
t )| dx dt ≤ K.

Then

(3.9) a(x)g(ym
t ) is bounded in L2(Ω × (0, T )).

3.1.2. The second estimate. We now proceed with further a priori estimates. In doing
so, differentiating (3.1) with respect to t, we get

(ym
ttt(t) − ∆ym

t (t) + a(x)ym
tt g

′(ym
t (t)), v) = ((p− 1)|ym(t)|p−2ym

t (t), v).

Choosing v = ym
tt , we get

d

dt

∫
Ω
(|ym

tt (t)|2 + |∇ym
t (t)|2) dx+ 2

∫
Ω
a(x)|ym

tt (t)|2g′(ym
t (t)) dx(3.10)

=2(p− 1)
∫

Ω
|ym(t)|p−2ym

t (t)ym
tt (t) dx.
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From Hölder’s, Young’s inequalities and (3.6), we have

∣∣∣∣∫
Ω

|ym(t)|p−2ym
t (t)ym

tt (t) dx
∣∣∣∣

(3.11)

≤C(Ω)
( ∫

Ω
1

p−1
p−2 dx

) p−2
p−1
( ∫

Ω
|ym(t)|2(p−1) dx

) p−2
2(p−1)

( ∫
Ω

|ym
t (t)|2(p−1)

) 1
2(p−1)

∫
Ω

|ym
tt (t)| dx

≤Cs∥∇ym(t)∥p−2∥∇ym
t (t)∥

∫
Ω

|ym
tt (t)| dx

≤C∥∇ym
t (t)∥

∫
Ω

|ym
tt (t)| dx

≤C(ε)∥∇ym
t (t)∥2 + ε∥ym

tt (t)∥2.

Integrating (3.10) over (0, t) and using (3.11), we have∫
Ω
(|ym

tt (t)|2 + |∇ym
t (t)|2) dx+ 2τ0

∫ t

0

∫
Ω
a(x)|ym

tt (s)|2 dx ds(3.12)

≤∥ym
tt (0)∥2 + ∥∇ym

1 ∥2 + C
∫ t

0
∥ym

tt (s)∥2 + ∥∇ym
t (s)∥2 ds.

We shall estimate ∥ym
tt (0)∥. To this end, choose v = ym

tt in (3.1) and set t = 0 to derive

∥ym
tt (0)∥2 =

∫
Ω
ym

tt (0)(∆ym
0 − a(x)g(ym

1 ) + |ym
0 |p−2ym

0 ) dx,

from which, thanks to (3.4) and Cauchy-Schwarz inequality, we find ∥ym
tt (0)∥ ≤ C1,

where C1 is a positive constant independent of m.
We gain from (3.12) and Gronwall’s lemma that

(3.13) ∥ym
tt (t)∥2 + ∥∇ym

t (t)∥2 ≤ C2,

for all t ∈ [0, T ], and C2 is a positive constant independent of m. We conclude from
(3.13) that

ym
t is bounded in L∞(0, T,H1

0 (Ω)),(3.14)
ym

tt is bounded in L∞(0, T, L2(Ω)).(3.15)

3.1.3. The third estimate. Choosing v = −∆ym
t in (3.1) and then integrating over

[0, t] for all t ∈ [0, T ], we obtain∫
Ω
(|∇ym

t (t)|2 + |∆ym(t)|2) dx− 2
∫ t

0

∫
Ω
a(x)∆ym

t g(ym
t ) dx ds(3.16)

=∥∇ym
1 ∥2 + ∥∆ym

0 ∥2 − 2
∫ t

0

∫
Ω

|ym(s)|p−2ym(s)∆ym
t (s) dx ds.

Since g(0) = 0 and ym
t = 0 on Γ, applying the Green formula, we obtain

−
∫

Ω
a(x)∆ym

t g(ym
t ) dx =

∫
Ω

∇a(x)∇ym
t g(ym

t ) dx+
∫

Ω
a(x)|∇ym

t |2g′(ym
t ) dx,
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using (A1), we obtain

(3.17)
∫

Ω
∇a(x)∇ym

t g(ym
t ) dx ≤ Csτ1∥∇a∥∞

∫
Ω

|∇ym
t |2 dx.

Thanks to Green’s formula, Hölder’s inequality, we have

−
∫

Ω
|ym(t)|p−2ym(t)∆ym

t (t) dx =
∫

Ω
∇(|ym(t)|p−2ym(t))∇ym

t (t) dx(3.18)

≤ 1
2∥∇ym(t)∥2(p−1) + 1

2∥∇ym
t (t)∥2.

Reporting estimate (3.17) and (3.18) in (3.16), we find

∥∇ym
t (t)∥2 + ∥∆ym(t)∥2 + 2τ0

∫ t

0

∫
Ω
a(x)|∇ym

t (s)|2 dx ds

≤∥∇ym
1 ∥2 + ∥∆ym

0 ∥2 +
∫ t

0
∥∇ym(s)∥2(p−1) ds+

(1
2 + Csτ1∥∇a∥∞

) ∫ t

0
∥∇ym

t (s)∥2 ds.

By Gronwall lemma, we obtain
(3.19) ∥∇ym

t (t)∥2 + ∥∆ym(t)∥2 ≤ C3,

where C3 is a positive constant independent of m. We conclude from (3.19) that
ym is bounded in L∞(0, T,H2(Ω)).(3.20)

Furthermore, we have from (A3), Lemma (2.1) and (3.6) that
|ym|p−2ym is bounded in L∞(0, T,H1

0 (Ω)).(3.21)

3.2. Solvability of (1.5). Applying the Dunford-Pettis theorem and the Riesz lemma
we conclude from (3.6), (3.7), (3.9), (3.14), (3.15), (3.20) and (3.21), replacing the
sequence ym with a subsequence if needed, that

ym ⇀ y weakly star in L∞(0, T,H2(Ω) ∩ W),(3.22)
ym

t ⇀ yt weakly star in L∞(0, T,H1
0 (Ω)),(3.23)

ym
tt ⇀ ytt weakly star in L∞(0, T, L2(Ω)),(3.24)

|ym|p−2ym ⇀ χ weakly star in L∞(0, T,H1
0 (Ω)),(3.25)

a(x)g(ym
t ) ⇀ φ weakly star in L2(Ω × (0, T )).(3.26)

3.2.1. Analysis of the nonlinear terms. From (3.6), we see that
ym is bounded in L2(0, T,H1(Ω)).(3.27)

Then, we have ym is bounded in H1(Q), where Q = [0, T ] × Ω and the injection
H1(Q) ↪→ L2(Q) is compact, and there exists a subsequence of ym still denoted by the
same notation such that

ym → y, a.e. in L2(Q)(3.28)
ym

t → yt, a.e. in L2(Q)(3.29)
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We deduce from (3.28) that
|ym|p−2ym → |y|p−2y, a.e. in Q.

From Lemma (2.2), we deduce
(3.30) |ym|p−2ym ⇀ |y|p−2y, weakly star in L∞(0, T,H1

0 (Ω)).
By (3.26) and (3.30), we obtain χ = |y|p−2y. It remains now to prove that∫ T

0

∫
Ω
a(x)g(ym

t )v dx dt →
∫ T

0

∫
Ω
a(x)g(yt)v dx dt, for all v ∈ L2(0, T, L2(Ω)).

We have a(x)g(yt) ∈ L1(Q). Since g is continuous, we deduce from (3.29), that
(3.31) a(x)g(ym

t ) → a(x)g(yt, a.e. in Q.

a(x)ym
t g(ym

t ) → a(x)ytg(yt), a.e. in Q.

Using (3.8) and Fatou’s Lemma, we deduce that∫ T

0

∫
Ω
a(x)ytg(yt) dx dt ≤ K.

By using Cauchy-Schwarz’s inequality, we obtain∫ T

0

∫
Ω

|a(x)g(yt)| dx dt ≤ c|Q|
1
2

( ∫ T

0

∫
Ω

|a(x)g(yt)|2 dx dt
) 1

2
≤ K̃.

Let Q ⊂ [0, T ] × Ω. We set

Q1 =
{

(t, x) ∈ [0, T ] × Ω | |g(ym
t )| ≤ |Q|−1/2

}
, Q2 = Q \Q1

and J(r) = inf
{

|s| | s ∈ R, |g(s)| ≥ r
}

. Then, we have∫
Q
a(x)g(ym

t ) dx dt =
∫

Q1
a(x)g(ym

t ) dx dt+
∫

Q2
a(x)g(ym

t ) dx dt

≤ ∥a∥∞|Q|1/2 + J(|Q|
−1
2 )−1

∫
Q2
a(x)|ym

t g(ym
t )| dx dt.

Applying (3.8), we find

sup
m

∫
Q
a(x)g(ym

t ) dx dt → 0, when |Q| → 0,

and from (3.31), we deduce thanks to Vitali’s Theorem that
a(x)g(ym

t ) → a(x)g(yt), in L1([0, T ] × Ω).
Hence, (3.26) yields a(x)g(yt) = φ ∈ L2(Q) and

a(x)g(ym
t ) ⇀ a(x)g(yt), in L2(Q).

We deduce, for all v ∈ L2([0, T ] × L2(Ω)), that

(3.32)
∫ T

0

∫
Ω
a(x)g(ym

t )v dx dt →
∫ T

0

∫
Ω
a(x)g(yt)v dx dt.
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Convergences (3.22)–(3.26), (3.30) and (3.32) permit us to pass to the limit in the
(3.1). As wj is a basis of H2(Ω), then, for all T > 0, for all θ ∈ D(0, T ) and for all
v ∈ L2([0, T ] × L2(Ω)), after passing to the limit we obtain∫ T

0

∫
Ω
(ytt(t), v(t))θ(t) dt−

∫ T

0
(∆y(t), v(t))θ(t) dt(3.33)

+
∫ T

0
(a(x)(g(yt), v(t))θ(t) dt−

∫ T

0
(|y|p−2(t)y(t), v(t))θ(t) dt = 0.

From (3.33) and taking v ∈ D(0, T )), we show that

ytt − ∆y + a(x)g(yt) = |y|p−2y, in D′(Ω × (0, T ))

Now, since ytt, a(x)g(yt), |y|p−2y ∈ L2(0,∞, L2(Ω)) we have ∆y ∈ L2(0,∞, L2(Ω))
and therefore

ytt − ∆y + a(x)g(yt) = |y|p−2y, in L∞(0,∞, L2(Ω))

3.3. Uniqueness. Let y1 and y2 be solutions to problem (1.5). Then, defining z =
y1 − y2, we obtain

(ztt, v) + (∇z,∇v) + (a(x)(g(y1,t) − g(y2,t)), v) = (|y1|p−2y1 − |y2|p−2y2, v),

for all v ∈ H1
0 (Ω). Substituting v = zt(t) in the above equality and observing that g

is nondecreasing, it results that
(3.34)
d

dt

{
∥zt∥2+∥∇z∥2

}
+2

∫
Ω
a(x)(g(y1,t)−g(y2,t))zt dx = 2

∫
Ω
(|y1|p−2y1−|y2|p−2y2)zt(t) dx.

It follows from the mean value theorem that∣∣∣∣y1(x, t)|p−2y1(x, t) − |y2(x, t)|p−2y2(x, t)
∣∣∣∣

≤(p− 1)(|y1(x, t)| + |y2(x, t)|)p−2|y1(x, t) − y2(x, t)|,

from (3.34) and using the monotonicity of g a hence, we conclude that

d

dt

{
∥zt∥2 + ∥∇z∥2

}
≤ 2(p− 1)

∫
Ω
(|y1(x, t)| + |y2(x, t)|)p−2|z(t)||zt(t)| dx.

Using analogous arguments like those used in the second estimate, we obtain

d

dt

{
∥zt∥2 + ∥∇z∥2

}
+ 2

∫
Ω
a(x)(g(y1,t) − g(y2,t))zt dx ≤ C(∥zt∥2 + ∥∇z∥2).(3.35)

Integrating the inequality (3.35) over (0, t) and making use of Gronwall’s lemma we
conclude that ∥zt∥2 = ∥∇z∥2 = 0. This concludes the first part of the proof.
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3.4. Weak solutions. In order to obtain existence for weak solutions we use standard
arguments of density. Indeed, let us assume that {y0, y1} ∈ W × L2(Ω). So, let
{yµ

0 , y
µ
1 } ∈ W × L2(Ω) be such that

(3.36) yµ
0 → y0, in W, and yµ

1 → y1, in L2(Ω).
Then, for each µ ∈ N there exists yµ regular solution of (1.5) belonging to the class
of Theorem (3.1). Repeating the same arguments used in the first estimate we obtain

(3.37) ∥yµ
t (t)∥2 + ∥∇y(µt)∥2 − 2

p
∥yµ(t)∥p

p + 2
∫ t

0

∫
Ω
a(x)yµ

t (s)g(yµ
t (s)) dx ds ≤ C,

where C is a positive constant independent of µ.
Defining zµ,σ = yµ − yσ, µ, σ ∈ N, where yµ and yσ are smooth solutions of (1.5),

we obtain by the monotonicity of g that
(3.38)

1
2 · d

dt

{
∥zµ,σ

t ∥2 + ∥∇zµ,σ∥2
}

≤ K(p)
∫

Ω
(|yµ(x, t)| + |yσ(x, t)|)p−2|zµ,σ(t)||zµ,σ

t (t)| dx.

Combining (3.37) and (3.38) we obtain, after integrating over (0, t) and using Gron-
wall’s lemma, that
(3.39) ∥yµ

t (t)−yσ
t (t)∥2 +∥∇yµ(t)−∇yσ(t)∥2 ≤ K(p, T )(∥yµ

1 −yσ
1 ∥2 +∥∇yµ

0 −∇yσ
0 ∥2),

where K(p, T ) is a positive constant independent of µ, σ ∈ N.
From (3.36) and (3.39), we conclude that there exists a function y such that, for

all T > 0, we have
yµ → y strongly in C0(0, T,W),(3.40)
yµ

t → yt strongly in C0(0, T, L2(Ω)).(3.41)
From (3.37), (3.40) and (3.41) we also have,

yµ
t ⇀ yt weakly star in L2

loc(0,∞, L2(Ω)),
|yµ|p−2yµ ⇀ |y|p−2y weakly star in L2

loc(0,∞, L2(Ω)),
a(x)g(yµ

t ) ⇀ a(x)g(yt) weakly star in L2(Ω × (0, T )).(3.42)
The weak convergences from the estimate given by (3.37) and the convergences ob-
tained in (3.40)–(3.42) are sufficient to pass to the limit in order to obtain a weak
solution to problem (1.5). □

4. Stability Result

In this section, we state and prove the stability result for the energy of the problem
(1.5). The stability result reads as follows.

Theorem 4.1. Let y0 ∈ H2(Ω) ∩W, y1 ∈ H1
0 (Ω). Assume that (A1)-(A3) hold. The

energy of the unique solution of the problem (1.5), given by (2.2), decays exponentially
to zero, there exist positive constants K and λ, independent of the initial data, with
(4.1) E(t) ≤ KE(0)e−λt, for all t ≥ 0.
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We first consider ψ ∈ C∞
0 (Rn) such that

(4.2)


0 ≤ ψ ≤ 1,
ψ = 1, in Ω̄\M1,

ψ = 0, in M0.

For M > 0 and µ > 0, define the perturbed energy
(4.3) Ê(t) = M.E(t) + Eµ(t)ρ(t),
where

ρ(t) =2
∫

Ω
yt(h.∇y) dx+ θ

∫
Ω
yty dx,(4.4)

h(x) =m(x)ψ(x),(4.5)
and θ ∈]n− 2, n[.

Lemma 4.1. There exist two positive constants λ1 and λ2 such that
(4.6) λ1E(t) ≤ Ê(t) ≤ λ2E(t), for all t ≥ 0.

Proof. Thanks to Cauchy-Schwarz’s inequality, we have

(4.7) |ρ(t)| ≤ 2R(x0)∥∇y∥∥yt∥ + θ
√
Cs∥∇y∥∥yt∥,

where
(4.8) R(x0) = max

x∈Ω
|x− x0|.

From (4.7) we obtain

|ρ(t)| ≤ (θ
√
Cs + 2R(x0))

{
1
2∥yt∥2 + 1

2∥∇y∥2
}

≤ (θ
√
Cs + 2R(x0))E(t).

Then, for M large enough, we obtain (4.6), where λ1 = M − Eµ(0)(θ
√
Cs + 2R(x0))

and λ2 = M + Eµ(0)(θ
√
Cs + 2R(x0)). □

Lemma 4.2. The functional ρ(t) defined in (4.4) satisfies

ρ′(t) =
∫

Γ
(h.ν)

(
∂y

∂ν

)2

dΓ − (n− θ)
∫

Ω
|yt|2 dx− (θ − n+ 2)

∫
Ω

|∇y|2 dx(4.9)

−
∫
M1\M0

m∇ψy2
t dx+ n

∫
M1

(1 − ψ)y2
t dx+ (n− 2)

∫
M1

(ψ − 1)|∇y|2dx

+
∫
M1\M0

m∇ψ|∇y|2 dx− 2
n∑

i,k=0

∫
M1\M0

mi
∂ψi

∂xk

· ∂y
∂xk

· ∂y
∂xi

dx

− θ
∫

Ω
y.a(x)g(yt) dx−

∫
Ω

2(h.∇y)a(x)g(yt) dx

+ 2
∫

Ω
h.∇y|y|p−2y dx+ θ

∫
Ω

|y|p dx.
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Proof. Taking the derivative of ρ(t) with respect to t,

ρ′(t) =2
∫

Ω
ytt(h∇y) dx+ 2

∫
Ω
yt(h∇yt) dx+ θ

∫
Ω
ytty dx+ θ

∫
Ω
y2

t dx(4.10)

=2
∫

Ω
yt(h∇yt) dx+ +θ

∫
Ω
ytty dx+ 2

∫
Ω
h.∇y.∆y dx

− 2
∫

Ω
h.∇y.a(x)g(yt) dx+ 2

∫
Ω
h.∇y|y|py dx+ θ

∫
Ω

|yt|2 dx.

Using (1.1)–(1.4), (4.2), (4.5) and Green formulas the first term of the right hand side
of (4.10), we have

2
∫

Ω
yt(h∇yt)dx = −

∫
Ω

div(h)y2
t dx

= −
∫

Ω\M1
div(ψ.m)y2

t dx−
∫
M1

div(ψ.m)y2
t dx

= −n
∫

Ω\M1
y2

t dx−
∫
M1\M0

m∇ψy2
t dx− n

∫
M1
ψy2

t dx.

Then

(4.11) 2
∫

Ω
yt(h∇yt) = −n

∫
Ω
y2

t dx+ n
∫
M1

(1 − ψ)y2
t dx−

∫
M1\M0

m∇ψy2
t dx.

Using the first equation of (1.5) and applying the Green formula, the second term of
the right hand side of (4.10), we obtain

(4.12) θ
∫

Ω
ytty dx = −θ

∫
Ω

|∇y|2 dx− θ
∫

Ω
a(x)yg(yt) dx+ θ

∫
Ω

|y|p dx.

We have ∂y
∂xk

= ∂y
∂ν
νk, which implies

h∇y = (h.ν)∂y
∂ν

and |∇y|2 =
(
∂y

∂ν

)2

on Γ.

From the above expressions and using Green’s formulas, the third term of the right
hand side of (4.10) can be rewritten as follows

2
∫

Ω
(h∇y)∆y dx(4.13)

=2
∫

Γ
(h.ν)|∇y|2 dΓ −2

n∑
i,k=1

∫
Ω

∂hi

∂xk

· ∂y
∂xk

· ∂y
∂xi

dx− 2
∫

Ω
h(∇y)∇(∇y) dx

=2
∫

Γ
(h.ν)

(
∂y

∂ν

)2

dΓ − 2
n∑

i,k=1

∫
Ω

∂hi

∂xk

· ∂y
∂xk

· ∂y
∂xi

dx−
∫

Ω
h∇(|∇y|2) dx

=
∫

Γ
(h.ν)

(
∂y

∂ν

)2

dΓ − 2
n∑

i,k=1

∫
Ω

∂hi

∂xk

· ∂y
∂xk

· ∂y
∂xi

dx+
∫

Ω
div(h)|∇y|2 dx.
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So, by using (1.2), (4.2) and (4.5), the second term of (4.13) gives

− 2
n∑

i,k=1

∫
Ω

∂hi

∂xk

· ∂y
∂xi

· ∂y
∂xk

dx(4.14)

= − 2
n∑

i,k=1

∫
M1

∂y

∂xi

· ∂y
∂xk

· ∂(miψi)
∂xk

dx− 2
n∑

i,k=1

∫
Ω\M1

∂y

∂xi

· ∂y
∂xk

· ∂(miψi)
∂xk

dx

= − 2
n∑

i,k=0

∫
M1

∂y

∂xi

· ∂y
∂xk

ψi
∂mi

∂xk

dx− 2
n∑

i,k=0

∫
M1
mi

∂ψi

∂xk

· ∂y
∂xi

· ∂y
∂xk

dx

− 2
n∑

i,k=0

∫
Ω\M1

∂y

∂xi

∂y

∂xk

dx

= − 2
∫
M1
ψ|∇y|2 dx− 2

n∑
i,k=0

∫
M1\M0

mi
∂ψi

∂xk

· ∂y
∂xi

· ∂y
∂xk

dx− 2
∫

Ω\M1
|∇y|2 dx.

Similarly, the third term of (4.13) can be rewritten as follows

∫
Ω
(divh)|∇y|2 dx =

∫
Ω\M1

div(ψm)|∇y|2 dx+
∫
M1

div(ψm)|∇y|2 dx
(4.15)

= n
∫

Ω\M1
|∇y|2 dx+

∫
M1\M0

m∇ψ|∇y|2 dx+ n
∫
M1
ψ|∇y|2 dx.

Inserting (4.14) and (4.15) in (4.13), we arrive at

2
∫

Ω
(h∇y)∆y dx =

∫
Γ
(h.ν)

(
∂u

∂ν

)2

dΓ + (n− 2)
∫

Ω
|∇y|2 dx(4.16)

+ (n− 2)
∫
M1

(ψ − 1)|∇y|2 dx

− 2
n∑

i,k=0

∫
M1\M0

mi
∂ψi

∂xk

· ∂y
∂xk

· ∂y
∂xi

dx

+
∫
M1\M0

m∇ψ|∇y|2 dx.

Simple substitution of (4.11), (4.12) and (4.16) give (4.9) ends the proof of Lemma 4.2.
□

Lemma 4.3. We have

|ρ′(t)| ≤ −KnE(t) +B
∫

Ω
|∇y|2 dx+ A

∫
ω

|yt|2 dx(4.17)

− θ
∫

Ω
a(x)yg(yt) dx− 2

∫
Ω
(h∇y)a(x)g(yt) dx

+ 2
∫

Ω
h.∇y|y|p−2y dx+

(
θ + Kn

p

)∫
Ω

|y|pdx,
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where

Kn = min
{

2(n− θ), 2(θ − n+ 2)
}
, A = R(x0) max

x∈Ω
|∇ψ(x)| + n

and
B = 3R(x0) max

x∈Ω
|∇ψ(x)| + (n− 2).

Proof. Next, we estimate some terms on the RHS of identity (4.9).
Taking (1.1)–(1.4), (4.2) and (4.5), we have

∫
Γ
(h.ν)

(
∂y

∂ν

)2

dΓ =
∫

Γ(x0)
(m.ν)ψ

(
∂y

∂ν

)2

dΓ +
∫

Γ\Γ(x0)
(m.ν)ψ

(
∂y

∂ν

)2

dΓ ≤ 0,

(4.18)

(4.19)
∫
M1\M0

m∇ψ|yt|2 dx ≤ R(x0) max
x∈Ω

|∇ψ(x)|
∫

ω
|yt|2 dx,

(4.20) n
∫
M1

(1 − ψ)|yt|2 dx ≤ n
∫

ω
|yt|2 dx,

(4.21) 2

∣∣∣∣∣∣
n∑

i,k=0

∫
M1\M0

∂y

∂xk

· ∂y
∂xi

mi
∂ψi

∂xi

dx

∣∣∣∣∣∣ ≤ 2R(x0) max
x∈Ω

|∇ψ(x)|
∫

Ω
|∇y|2 dx,

(4.22)
∫
M1\M0

m∇ψ|∇y|2 dx ≤ R(x0) max
x∈Ω

|∇ψ(x)|
∫

Ω
|∇y|2 dx

and

(4.23) (n− 2)
∫
M1

(ψ − 1)|∇y|2 dx ≤ (n− 2)
∫

Ω
|∇y|2 dx.

Taking into account (4.18)–(4.23) into (4.9) we obtain (4.17). The proof of Lemma
4.3 is completed. □

Proof. (of Theorem 4.1) Taking the derivative of (4.3) with respective to t, we have

Ê ′(t) = M E ′(t) + µE ′(t)Eµ−1(t)ρ(t) + Eµ(t)ρ′(t).

Using (2.2) and (4.17), we have

Ê ′(t) ≤M E ′(t) + CµE
µ(0)|E ′(t)| −Kn.E

µ+1(t)(4.24)

+ AEµ(t)
∫

ω
|yt|2 dx+BEµ(t)

∫
Ω

|∇y|2 dx

+ 2Eµ(t)
∫

Ω
(h∇y)a(x)g(yt) dx− θEµ(t)

∫
Ω
y a(x)g(yt) dx

+ 2Eµ(t)
∫

Ω
h∇y|y|p−2y dx+

(
θ + Kn

p

)
Eµ(t)

∫
Ω

|y|pdx.
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Next, we will estimate some terms on the right-hand side of identity (4.24). Using
(2.3), we get

AEµ(t)
∫

ω
|yt|2 dx ≤ 1

τ1

A

a0
Eµ(t)

∫
Ω
a(x)ytg(yt) dx ≤ CEµ(t)(−E ′(t))(4.25)

≤CEµ(0)|E ′(t)|.

By (2.2), we have

(4.26) B.Eµ(t)
∫

Ω
|∇y|2 dx ≤ BEµ+1(t).

Using Cauchy-Schwarz inequality, we get

2.Eµ(t)
∫

Ω
h.a(x)∇yg(yt) dx ≤ 2R(x0)Eµ(t)∥∇y∥

( ∫
Ω
a2(x)g2(yt) dx

) 1
2

≤ 2cR(x0)
√

∥a∥∞E
µ+ 1

2 (t)
( ∫

ω
a(x)yt(t)g(yt) dx

) 1
2

≤ 2cR(x0)
√

∥a∥∞E
µ+ 1

2 (t)(−E ′(t)) 1
2 .

Applying Young’s inequality, we obtain

2.Eµ(t)
∫

Ω
h.a(x)∇yg(yt) dx ≤ cR(x0)∥a∥∞E

2µ+1(t) + cR(x0)|E ′(t)|(4.27)

≤ cR(x0)∥a∥∞E
µ(0)Eµ+1(t) + cR(x0)|E ′(t)|

≤ Kn

6 Eµ+1(t) + cR(x0)|E ′(t)|.

Using Cauchy-Schwarz, Young’s and Sobolev-Poincares inequalities, we get

θEµ(t)
∫

Ω
y.a(x)g(yt) dx ≤ θC ′

sE
µ(t)∥∇y∥

(∫
ω
a2(x)g2(yt) dx

) 1
2

(4.28)

≤ C
∥a∥∞

2 Eµ(0)Eµ+1(t) + C ′ ∥a∥∞

2 |E ′(t)|

≤ Kn

6 Eµ+1(t) + C ′ ∥a∥∞

2 |E ′(t)|.

By Cauchy-Schwarz and Young’s inequalities, we find

2Eµ(t)
∫

Ω
h.∇y|y|p−2y dx ≤ 2.Eµ(t)R(x0)∥∇u∥

(∫
Ω

|y|2(p−1) dx
) 1

2

≤ 2cR(x0)Eµ+ 1
2 (t)∥y∥p−1

2(p−1)

≤ 2cR(x0)Eµ+ 1
2 (t)∥∇y∥p−1

2 ,

where
p ≤ 2n− 2

n− 2 ,
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we obtain
2.Eµ(t)

∫
Ω
h∇y|y|p−2y dx ≤ 2cR(x0)Eµ+ 1

2 (t)E
p−1

2 (t)(4.29)

≤ 2cR(x0)Eµ+ p
2 (t)

≤ 2cR(x0)Eµ+1(t)E
p−2

2 (0).
Using Sobolev-Poincaré and Young’s inequalities, we get(

θ + Kn

p

)
Eµ(t)

∫
Ω

|y|p dx ≤ Cp
s

(
θ + Kn

p

)
Eµ(t)∥∇y∥p,

where
p ≤ 2n

n− 2 ,

we obtain (
θ + Kn

p

)
Eµ(t)

∫
Ω

|y|p dx ≤2Cp
s

(
θ + Kn

p

)
Eµ(t)E

Kn
p (t)(4.30)

≤Cp
s

(
θ + Kn

p

)
Eµ+1(t)E

p−2
2 (t)

≤Cp
s

(
θ + Kn

p

)
Eµ+1(t)E

p−2
2 (0).

Combining (4.26), (4.29) and (4.30), we get

2.Eµ(t)
∫

Ω
h.∇y|y|p−2y dx+BEµ(t)

∫
Ω

|∇y|2 dx+
(
θ + Kn

p

)
Eµ(t)

∫
Ω

|y|p dx

(4.31)

≤2cR(x0)Eµ+1(t)E
p−2

2 (0) +BEµ+1(t) + Cp
s

(
θ + Kn

p

)
Eµ+1(t)E

p−2
2 (0)

≤Kn

6 E(µ+1).

Reporting (4.25), (4.27), (4.28) and (4.31) in (4.24), we find

Ê ′(t) ≤ M.E ′(t) + CEµ(0)|E ′(t)| + C|E ′(t)| − Kn

2 Eµ+1(t).

Choosing µ = 0 and M large enough to obtain

Ê ′(t) ≤ −Kn

2 E(t) ≤ −Kn

2λ1
Ê(t).(4.32)

Finally, by combining (4.6) and (4.32) we obtain (4.1), which complete the proof. □
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