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Abstract. This paper is concerned with differential equations of the form

...
x +aẍ+ g(ẋ) + h(x) = p(t, x, ẋ, ẍ)

where a is a positive constant and g,h and p are continuous in their respective arguments,
with functions g and h not necessarily differentiable. By introducing a complete Lyapunov
function, as well as restricting the incrementary ratio η−1{h(ξ+ η)− h(ξ)}, (η 6= 0), of h to
a closed sub-interval of the Routh-Hurwitz interval, we prove the convergence of solutions
for this equation. This generalizes earlier results.
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1. INTRODUCTION

This paper considers the convergence of solutions of the third-order nonlinear

differential equations of the form

...
x +aẍ+ g(ẋ) + h(x) = p(t, x, ẋ, ẍ) (1)

in which a > 0 is a constant, functions g, h and p are continuous in their respective

arguments.

Any two solutions x1(t),x2(t) of (1) are said to converge if

x2(t)− x1(t) −→ 0, ẋ2(t)− ẋ1(t) −→ 0, ẍ2(t)− ẍ1(t) −→ 0 (2)

as t→∞. If the relations (2) are true of each (arbitrary) pair of solutions of (1) we

shall describe this by saying that all solutions of (1) converge.

Many results have been obtained on the convergence of solutions of third-order dif-

ferential equations ([2, 5, 7, 9, 10] ). In [10], Tejumola established the convergence

of solutions of (1) assuming that h (of class C ′) and g satisfies the Routh-Hurwitz

condition

h′(x) ≤ c ≤ ab,
h(x2)− h(x1)

x2 − x1

≥ δ > 0, (x1 6= x2), (3)

for some constants b, c and δ, and

0 < b ≤ g(y2)− g(y1)

y2 − y1

≤ b0 <∞, (y1 6= y1) (4)

respectively, with additional conditions that

{h(x2 − x1)− h(x2) + h(x1)}2 ≤ B(x2 − x1)
2, (5)

and

{g(y2 − y1)− g(y2) + g(y1)}2 ≤ C(y2 − y1)
2 (6)

with constants B, C sufficiently small.

In this work, we consider a somewhat different approach to [5] in that we assume

g(ẋ), h(x) are not necessarily differentiable but satisfy (4) and

0 < δ ≤ h(x2)− h(x1)

x2 − x1

≤ kab, (x1 6= x2), (7)
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respectively, where k < 1 is a positive constant whose estimate is given later. More-

over, we do not need additional conditions (5) and (6).

2. MAIN RESULTS

The main results in this paper, which are in some respects generalizations of [4],

are the following :

Theorem 1. Suppose that g(0) = h(0) and that

(i) there are constants b0 > 0, b > 0 such that g(y) satisfies inequalities (4) ;

(ii) there are constants δ > 0, k < 1 such that for any ξ, η, (η 6= 0),the incrementary

ratio for h satisfies

η−1{h(ξ + η)− h(ξ)} lies in I0 (8)

with I0 = [δ, kab];

(iii) there is a continuous function φ(t) such that

|p(t, x2, y2, z2)− p(t, x1, y1, z1)|

≤ φ(t){|x2 − x1|+ |y2 − y1|+ |z2 − z1|} (9)

holds for arbitrary t, x1, y1, z1, x2, y2 and z2.

Then, there exists a constant D1 such that if

∫ t

0
φν(τ)dτ ≤ D1t (10)

for some ν, in the range 1 ≤ ν ≤ 2, then all solutions of (1) converge.

A very important step in the proof of Theorem 1 will be to give estimate for any

two solutions of (1). This in itself , being of independent interest, is giving as:
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Theorem 2. Let x1(t), x2(t) be any two solutions of (1). Suppose that all the

conditions of Theorem 1 are satisfied , then for each fixed ν, in the range 1 ≤ ν ≤ 2,

there exists constants D2, D3 and D4 such that for t2 ≥ t1,

S(t2) ≤ D2S(t1)exp{−D3(t2 − t1) +D4

∫ t2

t1
φν(τ)dτ} (11)

where

S(t) = {[x2(t)− x1(t)]
2 + [ẋ2(t)− ẋ1(t)]

2 + [ẍ2(t)− ẍ1(t)]
2}. (12)

If we put x1(t) = 0 and t1 = 0, we immediately obtain:

Corollary 1. If p = 0 and hypotheses (i) and (ii) of Theorem 1 hold, then the

trivial solution of (1) is exponentially stable in the large.

Further, if we put ξ = 0 in (2.1) with η(η 6= 0) arbitrary, we obtain :

Corollary 2. If p 6= 0 and hypotheses (i) and (ii) of Theorem 1 hold for arbitrary

η(η 6= 0) , and ξ = 0, then there exists a constant D5 > 0 such that every solution

x(t) of (1) satisfies

|x(t)| ≤ D5 ; |ẋ(t)| ≤ D5 ; |ẍ(t)| ≤ D5. (13)

3. PRELIMINARY RESULTS

By setting ẋ = y, ẏ = z , the equation (1) may be replaced with the system

ẋ = y, ẏ = z, ż = −az − g(y)− h(x) + p(t, x, y, z) (14)

Let (xi(t), yi(t), zi(t)), (i = 1, 2), be any two solutions of (3.1) such that

b ≤ g(y2)− g(y1)

y2 − y1

≤ b0 (y2 6= y1); (15)

and

δ ≤ h(x2)− h(x1)

x2 − x1

≤ kab, (x2 6= x1), (16)
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where b0, b, δ and k are finite constants, k will be determined later.

Our main tool in the proof of the convergence theorems will be the following

function, W = W (x2 − x1, y2 − y1, z2 − z1) defined by

2W = β(1− β)b2(x2 − x1)
2 + βb(y2 − y1)

2 + αba−1(y2 − y1)
2

+αa−1(z2 − z1)
2 + {(z2 − z1) + a(y2 − y1) + (1− β)b(x2 − x1)}2, (17)

where 0 < β < 1 and α > 0 are constants.

This is an adaptation of the function V used in [6].

Following the argument used in [5], we can easily verify the following for W .

Lemma 1.

(i) W (0, 0, 0) = 0; and

(ii) there exist finite constants D6 > 0, D7 > 0 such that

D6{(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2}

≤ W ≤ D7{(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2}. (18)

If we define the function W (t) by

W (x2(t)− x1(t), y2(t)− y1(t), z2(t)− z1(t))

and using the fact that the solutions (xi, yi, zi), (i = 1, 2), satisfy (14), then S(t) as

defined in (12) becomes

S(t) = {[x2(t)− x1(t)]
2 + [y2(t)− y1(t)]

2 + [z2(t)− z1(t)]
2}. (19)

We can then prove the following result on the derivative of W (t) with respect to

t.

Lemma 2. Let the hypotheses (i) and (ii) of Theorem 1 hold. Then, there exist

positive finite constants D8 and D9 such that

dW

dt
≤ −2D8S +D9S

1
2 |θ| (20)
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where θ = p(t, x2, y2, z2)− p(t, x1, y1, z1).

Proof of Lemma 2. On using (3.1), a direct computation of dW
dt

gives after

simplification

dW

dt
= −W1 −W2 −W3 −W4 −W5 +W6 (21)

where

W1 =
1

4
b(1− β)H(x2, x1)(x2 − x1)

2 +
1

4
α(z2 − z1)

2

+
1

4
a[G(y2, y1)− b(1− β)](y2 − y1)

2;

W2 =
1

4
b(1− β)H(x2, x1)(x2 − x1)

2 +
1

4
α(z2 − z1)

2

+(1 + αa−1)H(x2, x1)(x2 − x1)(z2 − z1);

W3 =
1

4
b(1− β)H(x2, x1)(x2 − x1)

2

+
1

4
a[G(y2, y1)− b(1− β)](y2 − y1)

2

+aH(x2, x1)(x2 − x1)(y2 − y1);

W4 =
1

4
b(1− β)H(x2, x1)(x2 − x1)

2

+
1

4
a[G(y2, y1)− b(1− β)](y2 − y1)

2

+b(1− β)[G(y2, y1)− b](x2 − x1)(y2 − y1);

W5 =
1

4
a[G(y2, y1)− b(1− β)](y2 − y1)

2 +
1

4
α(z2 − z1)

2

+(αa−1 + 1)[G(y2, y1)− b](y2 − y1)(z2 − z1);

W6 = {b(1− β)(x2 − x1) + a(y2 − y1) + (1 + αa−1)(z2 − z1)}θ(t);

with

G(y2, y1) =
g(y2)− g(y1)

y2 − y1

, (y2 6= y1); (22)
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and

H(x2, x1) =
h(x2)− h(x1)

x2 − x1

, (x2 6= x1). (23)

Further, let us denote H(x2, x1) and G(y2, y1) simply by H and G, respectively.

For strictly positive constants k1, k2, k3, and k4 conveniently chosen later, we

have

(αa−1 + 1)H(x2 − x1)(z2 − z1)

= {k1(αa
−1 + 1)

1
2H

1
2 (x2 − x1) +

1

2
k−1

1 (αa−1 + 1)
1
2H

1
2 (z2 − z1)}2

−k2
1(αa−1 + 1)H(x2 − x1)

2 − 1

4
k−2

1 (αa−1 + 1)H(z2 − z1)
2;

aH(x2 − x1)(y2 − y1) = {k2a
1
2H

1
2 (x2 − x1) +

1

2
k−1

2 a
1
2H

1
2 (y2 − y1)}2

−k2
2aH(x2 − x1)

2 − 1

4
k−2

2 aH(y2 − y1)
2;

b(1− β)(G− b)(x2 − x1)(y2 − y1)

= {k3b
1
2 (1− β)

1
2 (G− b) 1

2 (x2 − x1) + 1
2
k−1

3 b
1
2 (1− β)

1
2 (G− b) 1

2 (y2 − y1)}2

−k2
3b(1− β)(G− b)(x2 − x1)

2 − 1
4
k−2

3 b(1− β)(G− b)(y2 − y1)
2;

(αa−1 + 1)(G− b)(y2 − y1)(z2 − z1)

= {k4(αa
−1 + 1)

1
2 (G− b) 1

2 (y2 − y1)

+1
2
k−1

4 (αa−1 + 1)
1
2 (G− b) 1

2 (z2 − z1)}2

−k2
4(αa−1 + 1)(G− b)(y2 − y1)

2 − 1
4
k−2

1 (αa−1 + 1)(G− b)(z2 − z1)
2;

Thus,

W2 = {k1(αa
−1 + 1)1/2H1/2(x2 − x1) +

1

2
k−1

1 (αa−1
1 + 1)1/2H1/2(z2 − z1)}2

+{1
4
b(1− β)H − k2

1(αa−1 + 1)H}(x2 − x1)
2

+{1
4
α− 1

4
k−2

1 (αa−1 + 1)H}(z2 − z1)
2;
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W3 = {k2a
1/2H1/2(x2 − x1) +

1

2
k−1

2 a1/2H1/2(y2 − y1)}2

+{1
4
a[G− b(1− β)]− 1

4
k−2

2 aH}(y2 − y1)
2

+{1
4
b(1− β)H − k2

2aH}(x2 − x1)
2;

W4 = {k3b
1/2(1− β)1/2(G− b)1/2(x2 − x1)

+1
2
k−1

3 b1/2(1− β)1/2(G− b)1/2(y2 − y1)}2

+{1
4
b(1− β)H − k2

3b(1− β)(G− b)}(x2 − x1)
2

+{1
4
a[G− b(1− β)]− 1

4
k−2

3 b(1− β)(G− b)}(y2 − y1)
2;

W5 = {k1(αa
−1 + 1)1/2(G− b)1/2(y2 − y1)

+1
2
k−1

4 (αa−1
1 + 1)1/2(G− b)1/2(z2 − z1)}2

+{1
4
a[G− b(1− β)]− k2

4(αa−1 + 1)(G− b)}(y2 − y1)
2

+{1
4
α− 1

4
k−2

4 (αa−1 + 1)(G− b)}(z2 − z1)
2.

Furthermore, by using (15), we obtain for all xi, zi (i=1,2) in IR,

W2 ≥ 0, (24)

if

k2
1 ≤

(1− β)ab

4(a+ α)
with H ≤ α(1− β)a2b

16(a+ α)2
,

and for all xi, yi (i=1,2) in IR,

W3 ≥ 0 (25)

if

k2
2 ≤

b(1− β)

4a
with H ≤ β(1− β)b2

4a
.

Combining all the inequalities in (24) and (25), we have for all xi, yi, zi (i=1,2) in

IR ,

W2 ≥ 0 and W3 ≥ 0
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if

H ≤ kab with k = min{α(1− β)ab

16(a+ α)2
;
β(1− β)b

4a2
} < 1. (26)

Also, for all xi, yi (i=1,2) in IR,

W4 ≥ 0 (27)

if

(1− β)(b0 − b)
aβ

≤ k2
3 ≤

δ

b0 − b
,

and for all yi, zi (i=1,2) in IR,

W5 ≥ 0, (28)

if

(a+ α)(b0 − b)
aα

≤ k2
4 ≤

a2bβ

4(a+ α)(b0 − b)
.

We are now left with estimates W1 and W6. There exists a positive constant D10

such that

W1 ≥ D10{(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2} (29)

where D10 = 1
4

min{bδ(1− β); abβ; α}
while

W6 ≤ D11{(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2}1/2|θ(t)| (30)

where

D11 = 2 max{b(1− β); a; (1 + αa−1)}.

Thus, combining (24), (25), (27) in (21) and using (19) we have that

dW

dt
≤ −D10S(t) +D11S

1
2 (t)|θ(t)|. (31)

This completes the proof of Lemma 2. 2
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4. PROOF OF THEOREM 2

This follows directly from [5], on using inequality (31) . Let ν be any constant

in the range 1 ≤ ν ≤ 2. Set 2µ = 2 − ν , so that 0 ≤ 2µ ≤ 1. We re-write (31) in

the form

dW

dt
+D10S ≤ D11S

µW ∗ (32)

where

W ∗ = (|θ| −D10D
−1
11 S

1
2 )S

1
2
−µ.

Considering the two cases

(i) |θ| ≤ D10D
−1
11 S

1
2 and

(ii) |θ| > D10D
−1
11 S

1
2

separately, we find that in either case, there exists some constant D12 such that

W ∗ ≤ D12|θ|2(1−µ) . Thus, using (9), inequality (32) becomes

dW

dt
+D10S ≤ D13S

µφ2(1−µ)S1−µ (33)

where D13 ≥ 2D11D12. This immediately gives

dW

dt
+ (D14 −D15φ

ν(t))W ≤ 0 (34)

after using Lemma 1 on W , with D14 and D15 as some positive constants. On inte-

grating (34) from t1 to t2 , (t2 ≥ t1), we obtain

W (t2) ≤ W (t1) exp{−D14(t2 − t1) +D15

∫ t2

t1
φν(τ)dτ}. (35)

Again, using Lemma 1, we obtain (11), with D2 = D7D
−1
6 ,D3 = D14 and D4 = D15.

This completes the proof of Theorem 2. 2



15

5. PROOF OF THEOREM 1

This follows from the estimate (11) and the condition (10) on φ(t). Choose

D1 = D3D
−1
4 in (10). Then, as t = (t2 − t1) −→ ∞, S(t) −→ 0, which proves that

as t −→∞,

x2(t)− x1(t) −→ 0, ẋ2(t)− ẋ1(t) −→ 0, ẍ2(t)− ẍ1(t) −→ 0.

This completes the proof of Theorem 1. 2

Remark: As remarked in [5], the results remain valid if we replace φ(t) in (10) by

a constant D16 > 0.
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