Kragujevac J. Math. 31 (2008) 5–16.

CONVERGENCE OF SOLUTIONS OF CERTAIN NON-HOMOGENEOUS THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS

A. U. Afuwape 1 and M.O. Omeike 2

¹Departmento de Matemáticas, Universidad de Antioquia, Calle 67, No. 53-108, AA1226 Medellín, Colombia. (e-mail: aafuwape@yahoo.co.uk)

²Department of Mathematics, University of Agriculture, Abeokuta, Nigeria. (e-mail: moomeike@yahoo.com)

(Received November 1, 2006)

Abstract. This paper is concerned with differential equations of the form

 $\ddot{x} + a\ddot{x} + g(\dot{x}) + h(x) = p(t, x, \dot{x}, \ddot{x})$

where a is a positive constant and g,h and p are continuous in their respective arguments, with functions g and h not necessarily differentiable. By introducing a complete Lyapunov function, as well as restricting the incrementary ratio $\eta^{-1}\{h(\xi + \eta) - h(\xi)\}, (\eta \neq 0)$, of h to a closed sub-interval of the Routh-Hurwitz interval, we prove the convergence of solutions for this equation. This generalizes earlier results.

¹Research supported by Universidad de Antioquia grant from SUI No. IN10095CE

1. INTRODUCTION

This paper considers the convergence of solutions of the third-order nonlinear differential equations of the form

$$\ddot{x} + a\ddot{x} + g(\dot{x}) + h(x) = p(t, x, \dot{x}, \ddot{x}) \tag{1}$$

in which a > 0 is a constant, functions g, h and p are continuous in their respective arguments.

Any two solutions $x_1(t), x_2(t)$ of (1) are said to *converge* if

$$x_2(t) - x_1(t) \longrightarrow 0, \quad \dot{x}_2(t) - \dot{x}_1(t) \longrightarrow 0, \quad \ddot{x}_2(t) - \ddot{x}_1(t) \longrightarrow 0$$
 (2)

as $t \to \infty$. If the relations (2) are true of each (arbitrary) pair of solutions of (1) we shall describe this by saying that all solutions of (1) *converge*.

Many results have been obtained on the convergence of solutions of third-order differential equations ([2, 5, 7, 9, 10]). In [10], Tejumola established the convergence of solutions of (1) assuming that h (of class C') and g satisfies the Routh-Hurwitz condition

$$h'(x) \le c \le ab, \quad \frac{h(x_2) - h(x_1)}{x_2 - x_1} \ge \delta > 0, \quad (x_1 \ne x_2),$$
(3)

for some constants b, c and δ , and

$$0 < b \le \frac{g(y_2) - g(y_1)}{y_2 - y_1} \le b_0 < \infty, \quad (y_1 \ne y_1)$$
(4)

respectively, with additional conditions that

$$\{h(x_2 - x_1) - h(x_2) + h(x_1)\}^2 \le B(x_2 - x_1)^2,$$
(5)

and

$$\{g(y_2 - y_1) - g(y_2) + g(y_1)\}^2 \le C(y_2 - y_1)^2 \tag{6}$$

with constants B, C sufficiently small.

In this work, we consider a somewhat different approach to [5] in that we assume $g(\dot{x}), h(x)$ are not necessarily differentiable but satisfy (4) and

$$0 < \delta \le \frac{h(x_2) - h(x_1)}{x_2 - x_1} \le kab, \quad (x_1 \ne x_2), \tag{7}$$

respectively, where k < 1 is a positive constant whose estimate is given later. Moreover, we do not need additional conditions (5) and (6).

2. MAIN RESULTS

The main results in this paper, which are in some respects generalizations of [4], are the following :

Theorem 1. Suppose that g(0) = h(0) and that

- (i) there are constants $b_0 > 0$, b > 0 such that g(y) satisfies inequalities (4);
- (ii) there are constants $\delta > 0$, k < 1 such that for any $\xi, \eta, (\eta \neq 0)$, the incrementary ratio for h satisfies

$$\eta^{-1}\{h(\xi+\eta) - h(\xi)\}$$
 lies in I_0 (8)

with $I_0 = [\delta, kab];$

(iii) there is a continuous function $\phi(t)$ such that

$$|p(t, x_2, y_2, z_2) - p(t, x_1, y_1, z_1)| \le \phi(t) \{ |x_2 - x_1| + |y_2 - y_1| + |z_2 - z_1| \}$$
(9)

holds for arbitrary $t, x_1, y_1, z_1, x_2, y_2$ and z_2 .

Then, there exists a constant D_1 such that if

$$\int_0^t \phi^{\nu}(\tau) d\tau \le D_1 t \tag{10}$$

for some ν , in the range $1 \leq \nu \leq 2$, then all solutions of (1) converge.

A very important step in the proof of Theorem 1 will be to give estimate for any two solutions of (1). This in itself, being of independent interest, is giving as:

Theorem 2. Let $x_1(t), x_2(t)$ be any two solutions of (1). Suppose that all the conditions of Theorem 1 are satisfied, then for each fixed ν , in the range $1 \le \nu \le 2$, there exists constants D_2 , D_3 and D_4 such that for $t_2 \ge t_1$,

$$S(t_2) \le D_2 S(t_1) exp\{-D_3(t_2 - t_1) + D_4 \int_{t_1}^{t_2} \phi^{\nu}(\tau) d\tau\}$$
(11)

where

$$S(t) = \{ [x_2(t) - x_1(t)]^2 + [\dot{x}_2(t) - \dot{x}_1(t)]^2 + [\ddot{x}_2(t) - \ddot{x}_1(t)]^2 \}.$$
 (12)

If we put $x_1(t) = 0$ and $t_1 = 0$, we immediately obtain:

Corollary 1. If p = 0 and hypotheses (i) and (ii) of Theorem 1 hold, then the trivial solution of (1) is exponentially stable in the large.

Further, if we put $\xi = 0$ in (2.1) with $\eta(\eta \neq 0)$ arbitrary, we obtain :

Corollary 2. If $p \neq 0$ and hypotheses (i) and (ii) of Theorem 1 hold for arbitrary $\eta(\eta \neq 0)$, and $\xi = 0$, then there exists a constant $D_5 > 0$ such that every solution x(t) of (1) satisfies

$$|x(t)| \le D_5$$
 ; $|\dot{x}(t)| \le D_5$; $|\ddot{x}(t)| \le D_5$. (13)

3. PRELIMINARY RESULTS

By setting $\dot{x} = y, \, \dot{y} = z$, the equation (1) may be replaced with the system

$$\dot{x} = y, \qquad \dot{y} = z, \qquad \dot{z} = -az - g(y) - h(x) + p(t, x, y, z)$$
 (14)

Let $(x_i(t), y_i(t), z_i(t))$, (i = 1, 2), be any two solutions of (3.1) such that

$$b \le \frac{g(y_2) - g(y_1)}{y_2 - y_1} \le b_0 \quad (y_2 \ne y_1); \tag{15}$$

and

$$\delta \le \frac{h(x_2) - h(x_1)}{x_2 - x_1} \le kab, \quad (x_2 \ne x_1), \tag{16}$$

where b_0 , b, δ and k are finite constants, k will be determined later.

Our main tool in the proof of the convergence theorems will be the following function, $W = W(x_2 - x_1, y_2 - y_1, z_2 - z_1)$ defined by

$$2W = \beta (1-\beta)b^2 (x_2 - x_1)^2 + \beta b(y_2 - y_1)^2 + \alpha ba^{-1} (y_2 - y_1)^2 + \alpha a^{-1} (z_2 - z_1)^2 + \{(z_2 - z_1) + a(y_2 - y_1) + (1-\beta)b(x_2 - x_1)\}^2, \quad (17)$$

where $0 < \beta < 1$ and $\alpha > 0$ are constants.

This is an adaptation of the function V used in [6].

Following the argument used in [5], we can easily verify the following for W.

Lemma 1.

- (i) W(0,0,0) = 0; and
- (ii) there exist finite constants $D_6 > 0$, $D_7 > 0$ such that

$$D_{6}\{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + (z_{2} - z_{1})^{2}\}$$

$$\leq W \leq D_{7}\{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + (z_{2} - z_{1})^{2}\}.$$
(18)

If we define the function W(t) by

$$W(x_2(t) - x_1(t), y_2(t) - y_1(t), z_2(t) - z_1(t))$$

and using the fact that the solutions (x_i, y_i, z_i) , (i = 1, 2), satisfy (14), then S(t) as defined in (12) becomes

$$S(t) = \{ [x_2(t) - x_1(t)]^2 + [y_2(t) - y_1(t)]^2 + [z_2(t) - z_1(t)]^2 \}.$$
 (19)

We can then prove the following result on the derivative of W(t) with respect to t.

Lemma 2. Let the hypotheses (i) and (ii) of Theorem 1 hold. Then, there exist positive finite constants D_8 and D_9 such that

$$\frac{dW}{dt} \le -2D_8 S + D_9 S^{\frac{1}{2}} |\theta| \tag{20}$$

where $\theta = p(t, x_2, y_2, z_2) - p(t, x_1, y_1, z_1).$

Proof of Lemma 2. On using (3.1), a direct computation of $\frac{dW}{dt}$ gives after simplification

$$\frac{dW}{dt} = -W_1 - W_2 - W_3 - W_4 - W_5 + W_6 \tag{21}$$

where

$$W_1 = \frac{1}{4}b(1-\beta)H(x_2,x_1)(x_2-x_1)^2 + \frac{1}{4}\alpha(z_2-z_1)^2 + \frac{1}{4}a[G(y_2,y_1) - b(1-\beta)](y_2-y_1)^2;$$

$$W_2 = \frac{1}{4}b(1-\beta)H(x_2,x_1)(x_2-x_1)^2 + \frac{1}{4}\alpha(z_2-z_1)^2 + (1+\alpha a^{-1})H(x_2,x_1)(x_2-x_1)(z_2-z_1);$$

$$W_{3} = \frac{1}{4}b(1-\beta)H(x_{2},x_{1})(x_{2}-x_{1})^{2} + \frac{1}{4}a[G(y_{2},y_{1})-b(1-\beta)](y_{2}-y_{1})^{2} + aH(x_{2},x_{1})(x_{2}-x_{1})(y_{2}-y_{1});$$

$$W_{4} = \frac{1}{4}b(1-\beta)H(x_{2},x_{1})(x_{2}-x_{1})^{2} + \frac{1}{4}a[G(y_{2},y_{1})-b(1-\beta)](y_{2}-y_{1})^{2} + b(1-\beta)[G(y_{2},y_{1})-b](x_{2}-x_{1})(y_{2}-y_{1});$$

$$W_5 = \frac{1}{4}a[G(y_2, y_1) - b(1 - \beta)](y_2 - y_1)^2 + \frac{1}{4}\alpha(z_2 - z_1)^2 + (\alpha a^{-1} + 1)[G(y_2, y_1) - b](y_2 - y_1)(z_2 - z_1);$$

$$W_6 = \{b(1-\beta)(x_2-x_1) + a(y_2-y_1) + (1+\alpha a^{-1})(z_2-z_1)\}\theta(t);$$

with

$$G(y_2, y_1) = \frac{g(y_2) - g(y_1)}{y_2 - y_1}, \quad (y_2 \neq y_1);$$
(22)

and

$$H(x_2, x_1) = \frac{h(x_2) - h(x_1)}{x_2 - x_1}, \quad (x_2 \neq x_1).$$
(23)

Further, let us denote $H(x_2, x_1)$ and $G(y_2, y_1)$ simply by H and G, respectively.

For strictly positive constants k_1 , k_2 , k_3 , and k_4 conveniently chosen later, we have

$$(\alpha a^{-1} + 1)H(x_2 - x_1)(z_2 - z_1)$$

= $\{k_1(\alpha a^{-1} + 1)^{\frac{1}{2}}H^{\frac{1}{2}}(x_2 - x_1) + \frac{1}{2}k_1^{-1}(\alpha a^{-1} + 1)^{\frac{1}{2}}H^{\frac{1}{2}}(z_2 - z_1)\}^2$
 $-k_1^2(\alpha a^{-1} + 1)H(x_2 - x_1)^2 - \frac{1}{4}k_1^{-2}(\alpha a^{-1} + 1)H(z_2 - z_1)^2;$

$$aH(x_2 - x_1)(y_2 - y_1) = \{k_2 a^{\frac{1}{2}} H^{\frac{1}{2}}(x_2 - x_1) + \frac{1}{2}k_2^{-1} a^{\frac{1}{2}} H^{\frac{1}{2}}(y_2 - y_1)\}^2 - k_2^2 aH(x_2 - x_1)^2 - \frac{1}{4}k_2^{-2} aH(y_2 - y_1)^2;$$

$$\begin{split} b(1-\beta)(G-b)(x_2-x_1)(y_2-y_1) \\ &= \{k_3 b^{\frac{1}{2}}(1-\beta)^{\frac{1}{2}}(G-b)^{\frac{1}{2}}(x_2-x_1) + \frac{1}{2}k_3^{-1}b^{\frac{1}{2}}(1-\beta)^{\frac{1}{2}}(G-b)^{\frac{1}{2}}(y_2-y_1)\}^2 \\ &-k_3^2 b(1-\beta)(G-b)(x_2-x_1)^2 - \frac{1}{4}k_3^{-2}b(1-\beta)(G-b)(y_2-y_1)^2; \\ (\alpha a^{-1}+1)(G-b)(y_2-y_1)(z_2-z_1) \\ &= \{k_4(\alpha a^{-1}+1)^{\frac{1}{2}}(G-b)^{\frac{1}{2}}(y_2-y_1) \\ &+ \frac{1}{2}k_4^{-1}(\alpha a^{-1}+1)^{\frac{1}{2}}(G-b)^{\frac{1}{2}}(z_2-z_1)\}^2 \\ &-k_4^2(\alpha a^{-1}+1)(G-b)(y_2-y_1)^2 - \frac{1}{4}k_1^{-2}(\alpha a^{-1}+1)(G-b)(z_2-z_1)^2; \end{split}$$

Thus,

$$W_{2} = \{k_{1}(\alpha a^{-1} + 1)^{1/2}H^{1/2}(x_{2} - x_{1}) + \frac{1}{2}k_{1}^{-1}(\alpha a_{1}^{-1} + 1)^{1/2}H^{1/2}(z_{2} - z_{1})\}^{2} + \{\frac{1}{4}b(1 - \beta)H - k_{1}^{2}(\alpha a^{-1} + 1)H\}(x_{2} - x_{1})^{2} + \{\frac{1}{4}\alpha - \frac{1}{4}k_{1}^{-2}(\alpha a^{-1} + 1)H\}(z_{2} - z_{1})^{2};$$

$$\begin{split} W_{3} &= \{k_{2}a^{1/2}H^{1/2}(x_{2} - x_{1}) + \frac{1}{2}k_{2}^{-1}a^{1/2}H^{1/2}(y_{2} - y_{1})\}^{2} \\ &+ \{\frac{1}{4}a[G - b(1 - \beta)] - \frac{1}{4}k_{2}^{-2}aH\}(y_{2} - y_{1})^{2} \\ &+ \{\frac{1}{4}b(1 - \beta)H - k_{2}^{2}aH\}(x_{2} - x_{1})^{2}; \end{split}$$

$$\begin{split} W_{4} &= \{k_{3}b^{1/2}(1 - \beta)^{1/2}(G - b)^{1/2}(x_{2} - x_{1}) \\ &+ \frac{1}{2}k_{3}^{-1}b^{1/2}(1 - \beta)^{1/2}(G - b)^{1/2}(y_{2} - y_{1})\}^{2} \\ &+ \{\frac{1}{4}b(1 - \beta)H - k_{3}^{2}b(1 - \beta)(G - b)\}(x_{2} - x_{1})^{2} \\ &+ \{\frac{1}{4}a[G - b(1 - \beta)] - \frac{1}{4}k_{3}^{-2}b(1 - \beta)(G - b)\}(y_{2} - y_{1})^{2}; \end{split}$$

$$\begin{split} W_{5} &= \{k_{1}(\alpha a^{-1} + 1)^{1/2}(G - b)^{1/2}(y_{2} - y_{1}) \\ &+ \frac{1}{2}k_{4}^{-1}(\alpha a_{1}^{-1} + 1)^{1/2}(G - b)^{1/2}(z_{2} - z_{1})\}^{2} \\ &+ \{\frac{1}{4}a[G - b(1 - \beta)] - k_{4}^{2}(\alpha a^{-1} + 1)(G - b)\}(y_{2} - y_{1})^{2} \\ &+ \{\frac{1}{4}a[G - b(1 - \beta)] - k_{4}^{2}(\alpha a^{-1} + 1)(G - b)\}(y_{2} - y_{1})^{2} \\ &+ \{\frac{1}{4}\alpha - \frac{1}{4}k_{4}^{-2}(\alpha a^{-1} + 1)(G - b)\}(z_{2} - z_{1})^{2}. \end{split}$$

Furthermore, by using (15), we obtain for all x_i , z_i (i=1,2) in \mathbb{R} ,

$$W_2 \ge 0, \tag{24}$$

if

$$k_1^2 \leq \frac{(1-\beta)ab}{4(a+\alpha)} \quad \text{with} \quad H \leq \frac{\alpha(1-\beta)a^2b}{16(a+\alpha)^2},$$

and for all x_i, y_i (i=1,2) in \mathbb{R} ,

$$W_3 \ge 0 \tag{25}$$

if

$$k_2^2 \le \frac{b(1-\beta)}{4a}$$
 with $H \le \frac{\beta(1-\beta)b^2}{4a}$.

Combining all the inequalities in (24) and (25), we have for all x_i,y_i,z_i (i=1,2) in $I\!\!R$,

$$W_2 \ge 0$$
 and $W_3 \ge 0$

if

$$H \leq kab$$
 with $k = \min\{\frac{\alpha(1-\beta)ab}{16(a+\alpha)^2}; \frac{\beta(1-\beta)b}{4a^2}\} < 1.$ (26)

Also, for all x_i, y_i (i=1,2) in \mathbb{R} ,

$$W_4 \ge 0 \tag{27}$$

if

$$\frac{(1-\beta)(b_0-b)}{a\beta} \le k_3^2 \le \frac{\delta}{b_0-b},$$

and for all y_i, z_i (i=1,2) in \mathbb{R} ,

$$W_5 \ge 0, \tag{28}$$

if

$$\frac{(a+\alpha)(b_0-b)}{a\alpha} \le k_4^2 \le \frac{a^2b\beta}{4(a+\alpha)(b_0-b)}.$$

We are now left with estimates W_1 and W_6 . There exists a positive constant D_{10} such that

$$W_1 \ge D_{10}\{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2\}$$
(29)

where $D_{10} = \frac{1}{4} \min\{b\delta(1-\beta); ab\beta; \alpha\}$ while

$$W_6 \le D_{11} \{ (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 \}^{1/2} |\theta(t)|$$
(30)

where

 $D_{11} = 2 \max\{b(1-\beta); \ a; \ (1+\alpha a^{-1})\}.$

Thus, combining (24), (25), (27) in (21) and using (19) we have that

$$\frac{dW}{dt} \leq -D_{10}S(t) + D_{11}S^{\frac{1}{2}}(t)|\theta(t)|.$$
(31)

This completes the proof of Lemma 2.

4. PROOF OF THEOREM 2

This follows directly from [5], on using inequality (31). Let ν be any constant in the range $1 \leq \nu \leq 2$. Set $2\mu = 2 - \nu$, so that $0 \leq 2\mu \leq 1$. We re-write (31) in the form

$$\frac{dW}{dt} + D_{10}S \le D_{11}S^{\mu}W^* \tag{32}$$

where

$$W^* = (|\theta| - D_{10}D_{11}^{-1}S^{\frac{1}{2}})S^{\frac{1}{2}-\mu}.$$

Considering the two cases

- (i) $|\theta| \leq D_{10} D_{11}^{-1} S^{\frac{1}{2}}$ and
- (ii) $|\theta| > D_{10} D_{11}^{-1} S^{\frac{1}{2}}$

separately, we find that in either case, there exists some constant D_{12} such that $W^* \leq D_{12} |\theta|^{2(1-\mu)}$. Thus, using (9), inequality (32) becomes

$$\frac{dW}{dt} + D_{10}S \le D_{13}S^{\mu}\phi^{2(1-\mu)}S^{1-\mu}$$
(33)

where $D_{13} \ge 2D_{11}D_{12}$. This immediately gives

$$\frac{dW}{dt} + (D_{14} - D_{15}\phi^{\nu}(t))W \le 0$$
(34)

after using Lemma 1 on W, with D_{14} and D_{15} as some positive constants. On integrating (34) from t_1 to t_2 , $(t_2 \ge t_1)$, we obtain

$$W(t_2) \le W(t_1) \exp\{-D_{14}(t_2 - t_1) + D_{15} \int_{t_1}^{t_2} \phi^{\nu}(\tau) d\tau\}.$$
(35)

Again, using Lemma 1, we obtain (11), with $D_2 = D_7 D_6^{-1}, D_3 = D_{14}$ and $D_4 = D_{15}$. This completes the proof of Theorem 2.

5. PROOF OF THEOREM 1

This follows from the estimate (11) and the condition (10) on $\phi(t)$. Choose $D_1 = D_3 D_4^{-1}$ in (10). Then, as $t = (t_2 - t_1) \longrightarrow \infty$, $S(t) \longrightarrow 0$, which proves that as $t \longrightarrow \infty$,

$$x_2(t) - x_1(t) \longrightarrow 0, \quad \dot{x}_2(t) - \dot{x}_1(t) \longrightarrow 0, \quad \ddot{x}_2(t) - \ddot{x}_1(t) \longrightarrow 0.$$

This completes the proof of Theorem 1.

Remark: As remarked in [5], the results remain valid if we replace $\phi(t)$ in (10) by a constant $D_{16} > 0$.

References

- A. U. Afuwape, M. O. Omeike, Further Ultimate Boundedness of Solutions of some System of Third Order Nonlinear Ordinary Differential Equations, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 43 (2004) 7-20. MR. 2006e: 34115.
- [2] A. U. Afuwape, M. O. Omeike, Convergence of solutions of certain system of third-order nonlinear ordinary differential equations, Ann. of Diff. Eqs. 21: 4 (2005), 533-540.
- [3] J. Andres, *Recent Results On Third Order Non-Linear ODEs*, J. Nig. Math. Soc.
 Vol. 14/15, (1995/96), 41-66. MR.2001c:34001
- [4] J. O. C. Ezelio, A note on the convergence of solutions of certain second order differential equations, Portugaliae Mathematica, 24 (1965), 49-58. MR. 34 # 4597.

- [5] J. O. C. Ezelio, New properties of the equation x'''+ax''+bx'+h(x) = p(t, x, x', x'') for certain special values of the incrementary ratio y⁻¹{h(x + y) h(x)}. Equations differentielles etfunctionalles non-lineares, edited by P. Janssens, J. Mawhin and N. Rouche, Hermann Publishing, Paris (1973), 447-462. MR. 55 # 3418.
- [6] F. W. Meng, Ultimate boundedness results for a certain system of third order nonlinear differential equations, J. Math. Anal. Appl. 177, (1993), 496-509.
 MR. 94e # 34053.
- [7] M. O. Omeike Qualitative study of solutions of certain n-system of third order non-linear ordinary differential equations, Ph.D Thesis, University of Agriculture, Abeokuta,(2005).
- [8] R. Reissig, G. Sansome and R. Conti, Non-linear Differential Equations of Higher Order, No-ordhoff International Publishing (1974). MR. 49 # 9295.
- [9] H. O. Tejumola, On the convergence of solutions of certain third order differential equaitons, Ann. Mat. Pura Appl. (IV) LXXVIII (1968), 377-386. MR. 37 # 3107.
- [10] H. O. Tejumola, Convergence of solutions of certain ordinary third order differential equations, Ann. Mat. Pura e Appl. (IV), 94 (1972), 243-256. MR. 47 # 3763.
- [11] C. Tunç, Boundedness of solutions of a third-order nonlinear differential equation, J. Inequality. Pure and Appl. Math., 6(1) Art. 3 (2005), 1-6.
- [12] T. Yoshizawa, Stability Theory by Lyapunov's Second Method, Math. Soc. Japan, (1966). MR. 34 # 7896.