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Abstract. The solution of the Dirichlet problem for the Laplace equation is looked for in
the form of the sum of a single layer and a double layer potentials with the same density
f . The original problem is reduced to the solving of the integral equation with an unknown
density f . The solution f of this integral equation is given by the Neumann series.

1. INTRODUCTION

This paper is devoted to the Dirichlet problem for the Laplace equation on a

Lipschitz domain G ⊂ Rm with a boundary condition g ∈ Lp(∂G), where m > 2

and 2 ≤ p < ∞. This problem has been studied for years. B. J. E. Dahlberg

proved in 1979 that there is a Perron-Wiener-Brelot solution u of this problem, the

nontangential maximal function of u is in Lp(∂G) and g(x) is the nontangential limit

of u for almost all x ∈ ∂G (see [2]). Such solutions have been studied by integral

equations method. It was shown for G bounded with connected boundary that for
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each g ∈ Lp(∂G) there is f ∈ Lp(∂G) such that the double layer potential Df with

density f is a solution of the Dirichlet problem with the boundary condition g (see

[11, 6]). This result does not hold for a general G. If G is unbounded or if the

boundary of G is not connected then for each p ∈ 〈2,∞) there is g ∈ Lp(∂G) such

that the solution of the Dirichlet problem with the boundary condition g has not a

form of a double layer potential with a density from Lp(∂G). We look for a solution

in another form. Denote by Sf the single layer potential with density f . We have

proved that for every g ∈ Lp(∂G) there is f ∈ Lp(∂G) such that Df +Sf is a solution

of the Dirichlet problem with the boundary condition g.

We look for a solution of the Dirichlet problem in the form Df +Sf . The original

problem is reduced to the solving of the integral equation Tf = g (see §4). If we look

for a solution of the Neumann problem with the boundary condition g in the form

Sf we get the integral equation τf = g. For G bounded and convex and p = 2 Fabes,

Sand and Seo (see [4]) proved that

f = −2
∞∑

j=0

(2τ + I)jg

is a solution of the problem τf = g. If we look for a solution of the Robin problem

∆u = 0 in G, ∂u/∂n + hu = g in the form of a single layer potential Sf we get the

integral equation τ̃ f = g. The following result was proved in [9]: Let ∂G is locally

a C1-deformation of a boundary of a convex set (i.e. for each x ∈ ∂G there are a

convex domain D(x) in Rm, a neighbourhood U(x) of x, a coordinate system centred

at x and Lipschitz functions Ψ1, Ψ2 defined on {y ∈ Rm−1; |y| < r}, r > 0 such that

Ψ1 −Ψ2 is a function of class C1, (Ψ1 −Ψ2)(0, . . . , 0) = 0, ∂j(Ψ1 −Ψ2)(0, . . . , 0) = 0

for j = 1, . . . , m − 1 and U(x) ∩ ∂G = {[y′, s]; y′ ∈ Rm−1, |y′| < r, s = Ψ1(y
′)},

U(x) ∩ ∂D(x) = {[y′, s]; y′ ∈ Rm−1, |y′| < r, s = Ψ2(y
′)}), 1 < p ≤ 2, α > α0 and

g ∈ Lp(∂G). Then

f = α−1
∞∑

j=0

(I − α−1τ̃)jg

is a solution of the equation τ̃ f = g. (Here α0 depends on h.) Using this result we

prove that for G with boundary which is locally C1-deformation of a boundary of a
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convex domain, 2 ≤ p < ∞ and g ∈ Lp(∂G) the solution f of the equation Tf = g,

corresponding to the Dirichlet problem with the boundary condition g, is given by

f = α−1
∞∑

j=0

(I − α−1T )jg.

Here

α >
1

2
+

1

2
‖Sχ∂G‖L∞(∂G)

and χ∂G is the characteristic function of ∂G.

2. FORMULATION OF THE PROBLEM

Let a domain G ⊂ Rm, m > 2, have a compact nonempty boundary ∂G, which

is locally a graph of a Lipschitz function, and ∂G = ∂(Rm \ cl G). Here cl G denotes

the closure of G. It means that for each x ∈ ∂G there is a coordinate system centred

at x and a Lipschitz function Φ in Rm−1 such that Φ(0, . . . , 0) = 0 and in some

neighbourhood of x the set G lies under the graph of Φ and Rm \ cl G lies above

the graph of Φ. (We do not suppose that ∂G is connected.) Then the outward unit

normal n(x) to G exists at almost any point x of ∂G.

If x ∈ ∂G, α > 0, denote the non-tangential approach region of opening α at the

point x

Γα(x) = {y ∈ G; |x− y| < (1 + α) dist(y, ∂G)},

where dist(y, ∂G) is the distance of y from ∂G. If u is a function on G we denote on

∂G the non-tangential maximal function of u

Nα(u)(x) = sup{u(y); y ∈ Γα(x)}.

If

c = lim
y→x,y∈Γα(x)

u(y)

for each α > α0, we say that c is the nontangential limit of u at x.

Since G is a Lipschitz domain there is α0 > 0 such that x ∈ cl Γα(x) for each

x ∈ ∂G, α > α0.
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If g ∈ Lp(∂G), 1 < p < ∞, we define Lp-solution of the Dirichlet problem

∆u = 0 in G, (1)

u = g on ∂G (2)

as follows:

Find a function u harmonic in G, such that Nα(u) ∈ Lp(∂G) for each α > α0, u

has the nontangential limit u(x) for almost all x ∈ ∂G and u(x) = g(x) for almost

all x ∈ ∂G. If G is unbounded require moreover that u(x) → 0 as |x| → ∞.

We will suppose to the end of the paragraph that G is bounded. Let f be a

function defined on ∂G. Denote by Φf the set of all hyperharmonic and bounded

below functions u on G such that

lim inf
y→x,y∈G

u(y) ≥ f(x)

for all x ∈ ∂G. Denote by Ψf the set of all hypoharmonic and bounded above

functions u on G such that

lim sup
y→x,y∈G

u(y) ≤ f(x)

for all x ∈ ∂G. Put Hf(x) = inf{u(x); u ∈ Φf}, Hf(x) = sup{u(x); u ∈ Ψf}.
Then Hf ≤ Hf (see [1], Theorem 6.2.5). If Hf = Hf we write Hf = Hf . If

Hf = Hf then Hf ≡ +∞ or Hf ≡ −∞ or Hf is a harmonic function in G (see

[1], Theorem 6.2.5). A function f is called resolutive if Hf and Hf are equal and

finite-valued. If f is resolutive then Hf is called the PWB-solution (Perron-Wiener-

Brelot solution) of the Dirichlet problem with the boundary condition f . If x ∈ G

then there is a unique probabilistic measure µx supported on ∂G such that

Hf(x) =
∫

∂G
f dµx

for each resolutive function f (see [1], §6.4). The measure µx is called the harmonic

measure.

Let 1 < p < ∞. If G has not boundary of class C1 suppose 2 ≤ p < ∞. Let

g ∈ Lp(∂G) and u be a harmonic function in G. Then u is a PWB-solution of the
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Dirichlet problem with the boundary condition g if and only if u is an Lp-solution of

the problem (1)-(2) (see Theorem 4.2).

For 1 < p < ∞ and 0 < s < 1 the Sobolev space Lp
s is defined by

Lp
s = {(I −∆)−s/2g; g ∈ Lp(Rm)}.

Define

Ssf(x) =
(∫ ∞

0

(∫

|y|<1
|f(x + ry)− f(x)|dy

)2 dr

r1+2s

)1/2

.

Remark that a function f belongs to Lp
s if and only if f ∈ Lp(Rm) and Ssf ∈ Lp(Rm)

(see [5], Theorem 3.4). Define Lp
s(G) as the space of restrictions of functions in Lp

s to

G.

For 0 < s < 1, 1 < p, q < ∞ let us introduce Besov spaces

Bp,q
s ≡

{
f ∈ Lp(Rm);

∫ 1

|y|m+ps

[∫
|f(x)− f(x + y)|pdx

]q/p

dy < ∞
}
.

Define Bp,q
s (G) as the space of restrictions of functions in Bp,q

s to G.

Remark 2.1. Let 2 ≤ p < ∞, G be bounded, g ∈ Lp(∂G). If u is an Lp-solution

of the Dirichlet problem (1), (2) then u ∈ Lp
1/p(G) ∩Bp,p

1/p(G).

Proof. According to [5], Theorem 5.15 there is v ∈ Lp
1/p(G) which is an Lp-

solution of the problem (1), (2). The uniqueness of an Lp-solution of the Dirichlet

problem (see [6], Corollary 2.1.6 or [5], Theorem 5.3) gives that u = v ∈ Lp
1/p(G).

Since u ∈ Lp
1/p(G) we get u ∈ Bp,p

1/p(G) by [5], Theorem 4.1 and [5], Theorem 4.2. 2

Remark 2.2. Let G be a bounded domain with boundary of class C1. Let 1 <

p ≤ 2, g ∈ Lp(∂G). If u is an Lp-solution of the Dirichlet problem (1), (2) then

u ∈ Bp,2
1/p(G).

Proof. According to [5], Theorem 5.15 there is v ∈ Bp,2
1/p(G) which is an Lp-

solution of the problem (1), (2). The uniqueness of an Lp-solution of the Dirichlet

problem (see [5], Theorem 5.3) gives that u = v ∈ Bp,2
1/p(G). 2
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3. POTENTIALS

The solution of the Dirichlet problem has been looked for in the form of a double

layer potential.

Denote by Ωr(x) the open ball with the center x and the radius r and by Hk the

k-dimensional Hausdorff measure normalized so that Hk is the Lebesque measure in

Rk.

Fix f ∈ Lp(∂G), 1 < p < ∞. Define

Df(x) =
1

Hm−1(∂Ω1(0))

∫

∂G
f(y)

n(y) · (x− y)

|x− y|m dHm−1(y)

the double layer potential with density f and

Sf(x) =
1

(m− 2)Hm−1(∂Ω1(0))

∫

∂G
f(y)|x− y|2−m dHm−1(y)

the single layer potential with density f whenever these integrals have a sense.

The potentials Df , Sf are harmonic functions in G, Nα(Df) ∈ Lp(∂G), Nα(Sf) ∈
Lp(∂G) and Sf(x) is the nontangential limit of Sf at x for almost all x ∈ ∂G (see

[6], Theorem 2.2.13 and [11], Lemma 2.18).

For ε > 0, x ∈ ∂G define

Kεf(x) =
1

Hm−1(Ω1(0))

∫

∂G\Ωε(x)

n(y) · (x− y)

|y − x|m f(y) dHm−1(y),

K∗
ε f(x) =

1

Hm−1(Ω1(0))

∫

∂G\Ωε(x)

n(x) · (y − x)

|y − x|m f(y) dHm−1(y).

Then for almost all x ∈ ∂G there are

Kf(x) = lim
ε→0+

Kεf(x), K∗f(x) = lim
ε→0+

K∗
ε f(x).

Moreover, 1
2
f(x) + Kf(x) is the nontangential limit of Df at x for almost all x ∈ ∂G

(see [6], Theorem 2.2.13). The operators K, K∗ are bounded operators in Lp(∂G) (see

[6], Theorem 2.2.13). The operator K in Lp(∂G) and the operator K∗ in Lp/(p−1)(∂G)

are adjoint operators.
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4. SOLVABILITY OF THE PROBLEM

We will look for an Lp-solution of the Dirichlet problem (1), (2) in a form

u = Df + Sf (3)

with f ∈ Lp(∂G). Then u is an Lp-solution of the problem (1), (2) if and only if

Tf = g (4)

where

Tf =
1

2
f + Kf + Sf. (5)

Denote by T ∗ the adjoint operator of T . Then T ∗f = 1
2
f + K∗f + Sf for f ∈

Lp/(p−1)(∂G).

Lemma 4.1. Let 1 < p < ∞. If G has not boundary of class C1 suppose that

p ≥ 2. Then T is a continuously invertible operator in Lp(∂G).

Proof. The operator T ∗ is continuously invertible in Lp/(p−1)(∂G) by [9], The-

orem 5.2, [9], Theorem 5.3 and [9], Theorem 6.3. Therefore T is a continuously

invertible operator in Lp(∂G) (see [12], Chapter VIII, §6, Theorem 2). 2

Theorem 4.2. Let 1 < p < ∞. If G has not boundary of class C1 suppose

that p ≥ 2. If g ∈ Lp(∂G) then D(T−1g) + S(T−1g) is a unique Lp-solution of the

Dirichlet problem for the Laplace equation with the boundary condition g. If G is

bounded then D(T−1g) + S(T−1g) is a PWB-solution of the Dirichlet problem for the

Laplace equation with the boundary condition g.

Proof. Since there is T−1g by Lemma 4.1 the function D(T−1g) + S(T−1g) is an

Lp-solution of the problem.

Suppose now that G is bounded. Let u be an Lp-solution of the problem (1), (2).

According to [2], Theorem 3 there is f ∈ Lp(∂G) such that

lim
y→x

|Hf(y)− u(y)| = 0
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for each x ∈ ∂G, where Hf is the PWB-solution of the Dirichlet problem with the

boundary condition f . Then the nontangential limit of Hf at x is g(x) at almost

all x ∈ ∂G. Let {fn} be a sequence of functions from C(∂G) such that fn → f in

Lp(∂G) as n → ∞. We can suppose that fn(x) → f(x) as n → ∞ for almost all

x ∈ ∂G (compare [13], Theorem 1.6.1). Let α > 0 be such that x ∈ cl Γα(x) for each

x ∈ ∂G. According to [2], Theorem 2 there is a constant Cα such that

∫

∂G
[Nα(Hf −Hfn)(x)]p dHm−1(x) ≤ Cα

∫

∂G
|f(x)− fn(x)|p dHm−1(x). (6)

We can suppose that

∫

∂G
|f(x)− fn(x)|p dHm−1(x) ≤ n−2p. (7)

Denote Kn = {x ∈ ∂G; Nα(Hf − Hfn)(x)] ≥ 1/n}. According to (6), (7) we have

Hm−1(Kn) ≤ Cαn−p. Put

K =
∞⋃

k=1

∞⋂

n=k

Kn.

Then Hm−1(K) = 0. Fix now x ∈ ∂G \K such that fn(x) → f(x) as n → ∞. Fix

ε > 0. Fix n0 ≥ 3/ε such that |f(x)− fn(x)| < ε/3 for each n ≥ n0. Fix now n ≥ n0

such that x 6∈ Kn. Since fn ∈ C(∂G) there is δ > 0 such that |Hfn(y)− fn(y)| < ε/3

for each y ∈ G, |y − x| < δ (see [1], Theorem 6.6.15). If y ∈ Γα(x), |x− y| < δ then

|Hf(y) − f(x)| ≤ |Hf(y) − Hfn(y)| + |Hfn(y) − fn(x)| + |fn(x) − f(x)| < ε. This

gives

lim
y→x,y∈Γα(x)

Hf(y) = f(x). (8)

Since g(x) is the nontangential limit of Hf at x and (8) holds for almost all x ∈ ∂G

we deduce that f = g almost everywhere in ∂G. Since the harmonic measure for G is

absolutely continuous with respect to the surface measure on ∂G (see [3], Theorem 1)

we have that u = Hf = Hg.

Let now g ≡ 0 and u be an Lp-solution of the problem (1), (2). If G is bounded

then u is a PWB-solution of the Dirichlet problem with zero boundary condition.

Since 0 ≤ Hg = u = Hg ≤ 0 we deduce u ≡ 0. Suppose now that G is unbounded.

Fix R > 0 such that ∂G ⊂ ΩR(0). Put GR = G ∩ ΩR(0), gR = 0 on ∂G, gR = u
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on ∂ΩR(0). Since the set GR is regular (see [1], Theorem 6.6.15) there is a classical

solution of the Dirichlet problem for GR with the boundary condition gR. Since u is

an Lp-solution of the Dirichlet problem for GR with the boundary condition gR we

deduce from the uniqueness of an Lp-solution of the Dirichlet problem that u is a

classical solution of the Dirichlet problem, i.e. that u ∈ C(cl GR). Since u ∈ C(cl G),

u = 0 on ∂G and u(x) → 0 as |x| → ∞ we get from the maximum principle that

u ≡ 0. 2

5. SOLUTION OF THE PROBLEM

Definition 5.1. For a real vector space Y denote by compl Y = {x+ iy; x, y ∈ Y }
its complexification. If R is a linear operator in Y define R(x + iy) = Rx + iRy its

extension onto compl Y . Let Q be a bounded linear operator on the complex Banach

space X. The operator Q is called Fredholm if α(Q), the dimension of the kernel of

Q, is finite, the range of Q is a closed subspace of X and β(Q), the dimension of the

kernel of the adjoint of Q, is finite. The number i(Q) = α(Q)− β(Q) is the index of

Q. Denote by re(Q) = sup{|λ|; λI − Q is not a Fredholm operator with index 0} the

essential spectral radius of Q.

Proposition 5.2. Let 1 < p < ∞, ∂G is of class C1. Then re(T − 1
2
I) = 0 in

compl Lp(∂G).

Proof. Since T − 1
2
I is a compact operator by [6], Corollary 2.2.14 and [9],

Lemma 3.1 we obtain re(T − 1
2
I) = 0 in compl Lp(∂G) (see [10], Theorem 4.12). 2

Proposition 5.3. Let 2 ≤ p < ∞. Suppose that for each x ∈ ∂G there are a

convex domain D(x) in Rm, a neighbourhood U(x) of x, a coordinate system centred

at x and Lipschitz functions Ψ1, Ψ2 defined on {y ∈ Rm−1; |y| < r}, r > 0 such that

Ψ1−Ψ2 is a function of class C1, (Ψ1−Ψ2)(0, . . . , 0) = 0, ∂j(Ψ1−Ψ2)(0, . . . , 0) = 0

for j = 1, . . . , m − 1 and U(x) ∩ ∂G = {[y′, s]; y′ ∈ Rm−1, |y′| < r, s = Ψ1(y
′)},

U(x) ∩ ∂D(x) = {[y′, s]; y′ ∈ Rm−1, |y′| < r, s = Ψ2(y
′)}. Then re(T − 1

2
I) < 1

2
in

compl Lp(∂G).
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Proof. re(T
∗ − 1

2
I) < 1

2
in compl Lp/(p−1)(∂G) by [9], Theorem 7.8. Using argu-

ment for adjoint operators (see [10], Theorem 7.19 and [10], Theorem 7.22) we get

re(T − 1
2
I) < 1

2
in compl Lp(∂G). 2

Theorem 5.4. Let 1 < p < ∞ and re(T − 1
2
I) < 1

2
in compl Lp(∂G). Put

α0 =
1

2
+

1

2
sup
x∈∂G

Sχ∂G(x) =
1

2
+ sup

x∈∂G

∫

∂G

|x− y|2−m

2(m− 2)Hm−1(∂Ω1(0))
dHm−1(y), (9)

where χ∂G is the characteristic function of the set ∂G. Then α0 < ∞. Fix α ∈
(α0,∞). Then there are constants d ∈ 〈1,∞), q ∈ (0, 1) such that for each natural

number n

‖(I − α−1T )n‖Lp(∂G) ≤ dqn (10)

and

T−1 = α−1
∞∑

n=0

(I − α−1T )n (11)

in Lp(∂G). If g ∈ Lp(∂G) then u = D(T−1g) + S(T−1g) is an Lp-solution of the

Dirichlet problem (1), (2) with the boundary condition g.

Proof. Since re(T − 1
2
I) < 1

2
in compl Lp(∂G) we get by [10], Theorem 7.19 and

[10], Theorem 7.22 that re(T
∗ − 1

2
I) < 1

2
in compl Lp/(p−1)(∂G). According to [9],

Theorem 8.2 there are constants d ∈ 〈1,∞), q ∈ (0, 1) such that for each natural

number n

‖(I − α−1T ∗)n‖Lp/(p−1)(∂G) ≤ dqn.

Since

‖(I − α−1T )n‖Lp(∂G) = ‖(I − α−1T ∗)n‖Lp/(p−1)(∂G) ≤ dqn

by [10],Theorem 3.3 we get (10). Easy calculation gives (11). The rest is a consequence

of the paragraph 4. 2

6. SUCCESSIVE APPROXIMATION METHOD

Let 1 < p < ∞ be such that re(T − 1
2
I) < 1

2
in compl Lp(∂G). (This is true if

G is a bounded convex domain and p ≥ 2.) Let g ∈ Lp(∂G). Put ϕ = T−1g (see
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Theorem 5.4). Then Dϕ+Sϕ is an Lp-solution of the Dirichlet problem (1), (2). We

construct ϕ by the successive approximation method.

Fix α > α0 where α0 is given by (9). We can rewrite the equation Tϕ = g as

ϕ = (I − α−1T )ϕ + α−1g. Put

ϕ0 = α−1g,

ϕn+1 = (I − α−1T )ϕn + α−1g

for nonnegative integer n. Then

ϕn+1 = α−1
n∑

k=0

(I − α−1T )kg

and limn→∞ ϕn = ϕ by Theorem 5.4. Since

ϕ− ϕn = α−1
∞∑

k=n+1

(I − α−1T )kg

there are constants q ∈ (0, 1) and d ∈ 〈1,∞) depending only on G, p and α such that

‖ϕ− ϕn‖Lp(∂G) ≤ dqn‖g‖Lp(∂G).

We need to estimate α0. The following lemma might help us.

Lemma 6.1. Let G1, . . . , Gk be bounded convex domains with the diameters

R1, . . . , Rk. If ∂G ⊂ ∂G1 ∪ . . . ∂Gk then

sup
x∈∂G

Sχ∂G ≤ m(m− 1)

m− 2
(R1 + . . . + Rk).

Proof. Let H be a bounded convex domain with the diameter R. We estimate

Hm−1(∂H). Put

Pi(H) = sup
{∫

H
∂iv; v ∈ C∞(Rm), |v| ≤ 1

}

for i = 1, . . . , m. Since

Hm−1(∂H)) = sup{
∫

H

m∑

i=1

∂ivi; v1, . . . , vm ∈ C∞(Rm),
m∑

i=1

v2
i ≤ 1}
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by [7], p. 355 we obtain

Pi(H) ≤ Hm−1(∂H) ≤ P1(H) + . . . + Pm(H)

for i = 1, . . . , m. If y ∈ Rm−1 and G ∩ {[y, t]; t ∈ R1} 6= ∅ then G ∩ {[y, t]; t ∈ R1} =

{[y, t]; t1(y) < t < t2(y)}. Since the diameter of H is R

Pm(H) = sup
{∫

{y∈Rm−1;{[y,t];t∈R1}∩G 6=∅}
[v(y, t1(y))− v(y, t2(y))] dHm−1(y);

v ∈ C∞(Rm), |v| ≤ 1
}

= 2Hm−1({y ∈ Rm−1, {[y, t]; t ∈ R1} ∩G 6= ∅})

≤ 2Hm−1({[y, 0]; y ∈ Rm−1, |y| < R}) = Pm(ΩR(0)) ≤ Hm−1(∂ΩR(0)).

Similarly Pi(H) ≤ Rm−1Hm−1(∂Ω1(0)) for i = 1, . . . , m and thus

Hm−1(∂H) ≤ mRm−1Hm−1(∂Ω1(0)). (12)

Put c = (m− 2)−1(Hm−1(∂Ω1(0)))−1, d = mHm−1(∂Ω1(0)),

uj(x) = c
∫

∂Gj

|x− y|2−m dHm−1(y)

for x ∈ Rm, j = 1, . . . , k. If x ∈ ∂Gj we get using [13], Lemma 1.5.1 and (12)

uj(x) =
∫ ∞

0
Hm−1({y ∈ ∂Gj; c|x− y|2−m > t}) dt

= cR2−m
j Hm−1(∂Gj) +

∫ ∞

cR2−m
j

Hm−1(∂Gj ∩ {y; |x− y| < c1/(m−2)t2−m}) dt

≤ dcRj +
∫ ∞

cR2−m
j

dc(m−1)/(m−2)t−(m−1)/(m−2) dt =
m(m− 1)

m− 2
Rj.

Since uj is a harmonic function in Rm\∂Gj, continuous in Rm (see [8], Corollary 2.17

and [8], Lemma 2.18) and uj(x) → 0 as |x| → ∞ the maximum principle gives that

uj ≤ Rjm(m− 1)/(m− 2) in Rm. Hence

sup
x∈∂G

Sχ∂G(x) ≤ sup
x∈∂G

(u1(x) + . . . uk(x)) ≤ m(m− 1)

m− 2
(R1 + . . . + Rk).

2
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