Kragujevac J. Math. 31 (2008) 53-57.

AN INEQUALITY FOR THE LEBESGUE MEASURE AND ITS FURTHER APPLICATIONS

Ivan D. Aranđelović¹ and Dojčin S. Petković²

¹Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Beograd, Serbia (e-mail: iarandjelovic@mas.bg.ac.yu)

²Faculty of Science and Mathematics, Knjaza Miloša 7, 28220 Kosovska Mitrovica, Serbia

(Received May 26, 2008)

Abstract. In [*Univ. Beograd Publ. Elektrotehn. Fak. Ser. Math.* **15** (2004), 85–86], the first author of this paper proved a new inequality for the Lebesgue measure and gave some applications. Here, we present a new application of this inequality.

1. INTRODUCTION

If λ is the Lebesgue measure on the set of real numbers **R** and $\{A_n\}$ sequences of Lebesgue measurable sets in \mathcal{R} , then we have the following inequality:

 $\lambda(\underline{\lim}A_n) \leq \underline{\lim}\lambda(A_n).$

But for the inequality

 $\overline{\lim}\lambda(A_n) \le \lambda(\overline{\lim}A_n)$

we must suppose that $\lambda(\bigcup_{i=n}^{\infty} A_n) < \infty$ for at least one value of n (see [7], p 40.). Example: for a family of intervals $I_n = [n, n+1), n = 0, 1, \ldots$, we have: $\overline{\lim} \lambda(A_n) = 1$ and $\lambda(\overline{\lim} A_n) = 0$.

In [3] first author present the following inequality, and as its applications short and simple proofs of two famous Steinhaus' results.

Proposition 1. Let A be a measurable set of a positive measure and $\{x_n\}$ a bounded sequence of real numbers. Then

$$\lambda(A) \le \lambda(\overline{\lim}(x_n + A)).$$

Further applications of this inequality was given in [4].

2. RESULTS

Now we prove the following additive form of the Aljančić -Aranđelović [1] Uniform convergence theorem, which is one the fundamental results in the theory of \mathcal{O} - regularly varying functions (see also [2], [5] or [6]).

Proposition 2. (S. Aljančić and D. Aranđelović [1]) Let $f, g : \mathbf{R} \to \mathbf{R}$ be a measurable functions such that

$$\overline{\lim_{s \to \infty}} (f(t+s) - f(s)) = g(t) < +\infty,$$

for all $t \in \mathbf{R}$. Then

$$\overline{\lim_{s \to \infty}} \sup_{t \in [a,b]} (f(t+s) - f(s)) < +\infty,$$

for any $a, b \in \mathbf{R}$, (a < b).

Proof. Let

$$g_r(t) = \sup_{x \ge r} (f(t+x) - f(x)).$$

Hence

$$\lim_{r \to \infty} g_r(t) = g(t) < +\infty$$

$$\overline{\lim_{s \to \infty}} \sup_{t \in A} (f(t+s) - f(s)) < +\infty.$$

Assume now that convergence is not uniform on [a, b]. Then there exists $\{x_n\} \subseteq [a, b]$ and $\{y_n\} \subseteq \mathbf{R}$ such that $\lim y_n = \infty$ and

$$\lim(f(x_n + y_n) - f(y_n)) = \infty.$$

By Proposition 1, it follows that

$$\lambda(\overline{\lim}(A - x_n)) \ge \lambda(A) > 0,$$

which implies that there exists $t \in \mathbf{R}$ and subsequence $\{x_{n_j}\} \subseteq \{x_n\}$ such that $\{t + x_{n_j}\} \subseteq A$. Then

$$|f(x_{n_j} + y_{n_j}) - f(y_{n_j})| \le |f(x_{n_j} + t + y_{n_j} - t) - f(y_{n_j} - t)| + |f(y_{n_j} - t) - f(y_{n_j})|.$$

Now

$$\overline{\lim}|f(x_{n_j}+t+y_{n_j}-t)-f(y_{n_j}-t)|<\infty$$

because $\{t + x_{n_j}\} \subseteq A$ and $\lim(y_{n_j} - t) = \infty$. From

$$\overline{\lim}(f(y_{n_j}-t)-f(y_{n_j}))<\infty$$

follows

$$\underline{\lim}(f(x_n+y_n)-f(y_n))<\infty,$$

which is a contradiction.

3. ADDITIONAL COMMENTS

Condition g is measurable can not be omitted because it apply Egoroff's theorem to function g which introduce assumption that g is measurable.

Proposition 3. There exists measurable function $f : \mathbf{R} \to \mathbf{R}$ such that

$$\overline{\lim}_{s \to \infty} (f(t+s) - f(s)) = g(t) < +\infty$$

and g is non measurable.

Proof. Let $A \subseteq \mathbf{R}$ be a measurable set such that:

- 1°) A = -A;
- $2^{\circ}) A + 4 = A;$
- 3°) A A is the non measurable set;
- $4^{\circ}) A \cap (A+2) = \emptyset.$

For existence of such set see [8].

Let φ_B denote characteristic function of set B. The function $f : \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \varphi_A(x) - \varphi_{A+2}(x) = \begin{cases} -1, & x \in (A+2); \\ 0, & x \notin A \cup (A+2); \\ 1, & x \in A, \end{cases}$$

is measurable. But function g defined by

$$g(t) = \overline{\lim_{x \to \infty}} (f(x+t) - f(x)),$$

is non measurable because such is the set

$$\{t \mid g(t) = 2\} = A - (A + 2) = A - A - 2.$$

References

- S. Aljančić and D. Aranđelović, O Regularly varying functions, Publ. Inst. Math. (Beograd) 22 (36) (1977), 5-22.
- [2] D. Aranđelović, O Regularly variation and uniform convergence, Publ. Inst.
 Math. (Beograd) 48 (62) (1990), 25-40.

- [3] I. Aranđelović, An inequality for the Lebesgue measure, Univ. Beog. Publ. Elek.
 Fak. ser. Math. 15 (2004) 85-86.
- [4] I. Aranđelović and D. Petković, An inequality for the Lebesgue measure and its applications, Facta Universitatis 22 (2007) 11 - 14.
- [5] N. H. Bingham, C. M. Goldie and J. L. Teugels, *Regular Variation*, Cambridge Univ. Press 1987.
- [6] J. L. Geluk and L. de Haan, Regular variation, extensions and Tauberian theorems, CWI Tract 40, Amsterdam 1987.
- [7] P. Halmos, *Measure theory*, Van Nonstrand, Princeton 1950.
- [8] L. A. Rubel, A pathological Lebesgue-measurable function, J. London Math. Soc. 38 (1963) 1-4.