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Abstract. The distance energy of a graph G is defined as the sum of the absolute values
of the eigenvalues of the distance matrix of G . Recently bounds for the distance energy of
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a graph of diameter 2 were determined. In this paper we obtain bounds for the distance
energy of any connected graph GG, thus generalizing the earlier results.

1. INTRODUCTION

In this paper we are concerned with simple graphs, that is graphs without loops,
multiple or directed edges. Let G be such a graph, possessing n vertices and m edges.
We say that G is an (n, m)-graph.

Let the graph G be connected and let its vertices be labelled as vy, vs,... v, .
The distance matrix of a graph G is defined as a square matrix D = D(G) = [d,}],
where d;; is the distance between the vertices v; and v; in G [3,5]. The eigenvalues
of the distance matrix D(G) are denoted by pq, pa, ..., i, and are said to be the
D-eigenvalues of GG. Since the distance matrix is symmetric, its eigenvalues are real
and can be ordered as p; > g > -+ > Uy -

The characteristic polynomial and eigenvalues of the distance matrix of a graph
are considered in [6-8,14,15,18,36].

The distance energy Ep = Ep(G) of a graph G is defined as [18]

Ep = Ep(G) =) _ |l .
=1

The distance energy is defined in analogy to the graph energy [9]

E=EG) =Y |\

i=1
where Aj, Ao, ..., A, are the eigenvalues of the adjacency matrix A(G) of a graph G
[5]. For more results on E(G) see [1,2,4,10-13,16,17,19-25,27-35,37].
If G = K, the complete graph on n vertices, then A(K,) = D(K,) and hence
Ep(G)=FE(G)=2(n—-1).
In a recent paper [18] Indulal, Gutman, and Vijaykumar reported lower and upper
bounds for the distance energy of graphs whose diameter (= maximal distance be-

tween vertices) does not exceed two. In this paper we obtain bounds for the distance
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energy of arbitrary connected (n, m)-graphs, which generalize the results obtained in
[18].
We first need the following Lemma.

Lemma 1. Let G be a connected (n,m)-graph, and let py, po, ..., p, be its D-

ergenvalues. Then

and

Proof.

n

> i = trace[D(G)] = Z:L:d“ =0.

i=1

Fori=1,2,...,n, the (i,4)-entry of [D(G)]? is equal to 5 dij dji = 3 (dij)*. Hence
J=1 j

> i = trace[D(G)]? =Y

=1 =17

(dy)?=2 > (dy)?.

n n n
=1 1<i<j<n

O

Corollary 1.1 [18]. Let G be a connected (n,m)-graph, and let diam(G) < 2,
where diam(G) denotes the diameter of a graph G . Then

> i =2[2n" —2n —3m] .

2. BOUNDS FOR THE DISTANCE ENERGY

Theorem 2. If G is a connected (n, m)-graph, then

2 Y. (di)?<Ep(G)< [2n > (dy)?.
1<i<j<n 1<i<j<n
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Proof. Consider the Cauchy-Schwartz inequality

(Gon) = () (£4)

Choosing a; = 1 and b; = |p;|, we get

n 2 n
(Zw) <3
=1 =1

from which
ED(G)2 S 2n Z (dij)z .
1<i<j<n

This leads to the upper bound for Ep(G).

Now )
Bo(GP = (Slnl) =X luP =2 ¥ (@)
i=1 i=1 1<i<j<n
which straightforwardly leads to the lower bound for Ep(G). O

Corollary 2.1. If G is a connected (n,m)-graph, then Ep(G) > \/n(n —1).

Proof. Since d;; > 1 for ¢ # j and there are n(n — 1)/2 pairs of vertices in G,

from the lower bound of Theorem 2,

Ep(G) > /21§;§n(dij)2 > 2”(”2_1) — J/n(n—1) .0

Theorem 3. Let G be a connected (n,m)-graph and let A be the absolute value
of the determinant of the distance matriz D(G). Then

O

1<i<j<n 1<i<j<n

Proof. In view of Theorem 2, we only need to demonstrate the validity of the
lower bound. This is done analogously to the way in which a lower bound for graph

energy is deduced in [26].
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By definition of distance energy and Eq. (1)

n 2 n
En(G) — (Zw) S e Yl
=1 =1

i<i<j<n

=2 Y @)*+2 X |l

1<i<j<n i<i<j<n
= 2 Y (dy)?+ > |mallwy] - (2)
1<i<j<n it

Since for nonnegative numbers the arithmetic mean is not smaller than the geometric

mean,

1 Un(n-1) Ln(n-1)
- Moyl > Ay, _ |2(n—1)
s Sl (H mmm) (L)

i#] i#]
=TTl = % ®)
i=1
Combining Egs. (2) and (3) we arrive at the lower bound. O

Using Eq. (1), Corollary 1.1 and Theorem 3 we have following result.

Corollary 3.1 [18]. Let G be a connected (n, m)-graph with diam(G) < 2. Then

\/4n(n —1)—6m+n(n—1)A"2 < Ep(G) < \/Qn(2n2 —2n —3m) .

For an n-vertex tree T' [3,6],
det D(T) = (—1)""*(n — 1)2"2
from which we obtain the following:

Corollary 3.2. For an n-vertex tree T,

2 Y (dy)+nln— a2t < ERT) < o Y (dy)?

1<i<j<n 1<i<j<n
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Theorem 4. If G is a connected (n, m)-graph, then

2
E < =
D(G)_n

Z (n—1) [2 > ( —(2 > (dij)2)]. (4)

<i<j 1<i<j<n N <ici<n

Proof. Our proof follows the ideas of Koolen and Moulton [22,23], who obtained
an analogous upper bound for ordinary graph energy E(G).

By applying the Cauchy—Schwartz inequality to the two (n—1) vectors (1,1,...,1)
and (|pal, |pal, - - -, [pal) , we get

> w)Q < (-n(3)

Define the function

f(a:)x—i—Jnl (2 Z —xQ).

We set p1 = = and bear in mind that gy > 1. From

we get

r® = pi <2 Z (dij)* L e. r< 2 Z (dij)? -

1<i<j<n 1<i<j<n

Now, f'(z) = 0 implies
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Therefore f(z) is a decreasing function in the interval

2
= Y (dy)P<e<2 ) Y (dy)?
N <ici<n 1<i<j<n
and
2 2
=0 ()<= Y (dy)’ < m
N <ici<n N <ici<n
Hence
2
fl) < f (n Z (dij>2)
1<i<j<n
and inequality (4) follows. O

From Eq. (1), Corollary 1.1, and Theorem 4 we obtain:

Corollary 4.1. Let G be a connected (n,m)-graph with diam(G) < 2. Then

Ep(G) < 4”2_4”_67”+J(n1) [4n(n—1>—6m— (4”(”‘”‘6”‘) ] |

n n
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