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Abstract. The distance energy of a graph G is defined as the sum of the absolute values
of the eigenvalues of the distance matrix of G . Recently bounds for the distance energy of
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a graph of diameter 2 were determined. In this paper we obtain bounds for the distance
energy of any connected graph G , thus generalizing the earlier results.

1. INTRODUCTION

In this paper we are concerned with simple graphs, that is graphs without loops,

multiple or directed edges. Let G be such a graph, possessing n vertices and m edges.

We say that G is an (n,m)-graph.

Let the graph G be connected and let its vertices be labelled as v1, v2, . . . , vn .

The distance matrix of a graph G is defined as a square matrix D = D(G) = [dij],

where dij is the distance between the vertices vi and vj in G [3,5]. The eigenvalues

of the distance matrix D(G) are denoted by µ1, µ2, . . . , µn and are said to be the

D-eigenvalues of G. Since the distance matrix is symmetric, its eigenvalues are real

and can be ordered as µ1 ≥ µ2 ≥ · · · ≥ µn .

The characteristic polynomial and eigenvalues of the distance matrix of a graph

are considered in [6–8,14,15,18,36].

The distance energy ED = ED(G) of a graph G is defined as [18]

ED = ED(G) =
n∑

i=1

|µi| .

The distance energy is defined in analogy to the graph energy [9]

E = E(G) =
n∑

i=1

|λi|

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix A(G) of a graph G

[5]. For more results on E(G) see [1,2,4,10–13,16,17,19–25,27–35,37].

If G = Kn, the complete graph on n vertices, then A(Kn) = D(Kn) and hence

ED(G) = E(G) = 2(n− 1) .

In a recent paper [18] Indulal, Gutman, and Vijaykumar reported lower and upper

bounds for the distance energy of graphs whose diameter (= maximal distance be-

tween vertices) does not exceed two. In this paper we obtain bounds for the distance
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energy of arbitrary connected (n,m)-graphs, which generalize the results obtained in

[18].

We first need the following Lemma.

Lemma 1. Let G be a connected (n,m)-graph, and let µ1, µ2, . . . , µn be its D-

eigenvalues. Then
n∑

i=1

µi = 0

and
n∑

i=1

µ2
i = 2

∑

1≤i<j≤n

(dij)
2 . (1)

Proof.
n∑

i=1

µi = trace[D(G)] =
n∑

i=1

dii = 0 .

For i = 1, 2, . . . , n , the (i, i)-entry of [D(G)]2 is equal to
n∑

j=1
dij dji =

n∑
j=1

(dij)
2 . Hence

n∑

i=1

µ2
i = trace[D(G)]2 =

n∑

i=1

n∑

j=1

(dij)
2 = 2

∑

1≤i<j≤n

(dij)
2 .

2

Corollary 1.1 [18]. Let G be a connected (n,m)-graph, and let diam(G) ≤ 2,

where diam(G) denotes the diameter of a graph G . Then

n∑

i=1

µ2
i = 2[2n2 − 2n− 3m] .

2. BOUNDS FOR THE DISTANCE ENERGY

Theorem 2. If G is a connected (n, m)-graph, then

√
2

∑

1≤i<j≤n

(dij)2 ≤ ED(G) ≤
√

2n
∑

1≤i<j≤n

(dij)2 .
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Proof. Consider the Cauchy–Schwartz inequality

(
n∑

i=1

aibi

)2

≤
(

n∑

i=1

a2
i

) (
n∑

i=1

b2
i

)
.

Choosing ai = 1 and bi = |µi| , we get

(
n∑

i=1

|µi|
)2

≤ n
n∑

i=1

µ2
i

from which

ED(G)2 ≤ 2n
∑

1≤i<j≤n

(dij)
2 .

This leads to the upper bound for ED(G).

Now

ED(G)2 =

(
n∑

i=1

|µi|
)2

≥
n∑

i=1

|µi|2 = 2
∑

1≤i<j≤n

(dij)
2

which straightforwardly leads to the lower bound for ED(G). 2

Corollary 2.1. If G is a connected (n, m)-graph, then ED(G) ≥
√

n(n− 1).

Proof. Since dij ≥ 1 for i 6= j and there are n(n − 1)/2 pairs of vertices in G,

from the lower bound of Theorem 2,

ED(G) ≥
√

2
∑

1≤i<j≤n

(dij)2 ≥
√

2
n(n− 1)

2
=

√
n(n− 1) .2

2

Theorem 3. Let G be a connected (n,m)-graph and let ∆ be the absolute value

of the determinant of the distance matrix D(G). Then

√
2

∑

1≤i<j≤n

(dij)2 + n(n− 1)∆2/n ≤ ED(G) ≤
√

2n
∑

1≤i<j≤n

(dij)2 .

Proof. In view of Theorem 2, we only need to demonstrate the validity of the

lower bound. This is done analogously to the way in which a lower bound for graph

energy is deduced in [26].
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By definition of distance energy and Eq. (1)

ED(G)2 =

(
n∑

i=1

|µi|
)2

=
n∑

i=1

µ2
i + 2

∑

i≤i<j≤n

|µi||µj|

= 2
∑

1≤i<j≤n

(dij)
2 + 2

∑

i≤i<j≤n

|µi||µj|

= 2
∑

1≤i<j≤n

(dij)
2 +

∑

i6=j

|µi||µj| . (2)

Since for nonnegative numbers the arithmetic mean is not smaller than the geometric

mean,

1

n(n− 1)

∑

i6=j

|µi||µj| ≥

∏

i 6=j

|µi||µj|



1/n(n−1)

=

(
n∏

i=1

|µi|2(n−1)

)1/n(n−1)

=
n∏

i=1

|µi|2/n = ∆2/n . (3)

Combining Eqs. (2) and (3) we arrive at the lower bound. 2

Using Eq. (1), Corollary 1.1 and Theorem 3 we have following result.

Corollary 3.1 [18]. Let G be a connected (n, m)-graph with diam(G) ≤ 2 . Then

√
4n(n− 1)− 6m + n(n− 1)∆n/2 ≤ ED(G) ≤

√
2n(2 n2 − 2n− 3m) .

For an n-vertex tree T [3,6],

det D(T ) = (−1)n−1(n− 1)2n−2

from which we obtain the following:

Corollary 3.2. For an n-vertex tree T ,

√
2

∑

1≤i<j≤n

(dij)2 + n [(n− 1)n+24n−2]1/n ≤ ED(T ) ≤
√

2n
∑

1≤i<j≤n

(dij)2 .

2
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Theorem 4. If G is a connected (n, m)-graph, then

ED(G) ≤ 2

n

∑

1≤i<j≤n

(dij)
2 +

√√√√√√(n− 1)


2

∑

1≤i<j≤n

(dij)2 −

2

n

∑

1≤i<j≤n

(dij)2




2

 . (4)

Proof. Our proof follows the ideas of Koolen and Moulton [22,23], who obtained

an analogous upper bound for ordinary graph energy E(G).

By applying the Cauchy–Schwartz inequality to the two (n−1) vectors (1, 1, . . . , 1)

and (|µ2|, |µ3|, . . . , |µn|) , we get

(
n∑

i=2

|µi|
)2

≤ (n− 1)

(
n∑

i=2

µ2
i

)

(ED(G)− µ1)
2 ≤ (n− 1)


2

∑

1≤i<j≤n

(dij)
2 − µ2

1




ED(G) ≤ µ1 +

√√√√√(n− 1)


2

∑

1≤i<j≤n

(dij)2 − µ2
1


 .

Define the function

f(x) = x +

√√√√√(n− 1)


2

∑

1≤i<j≤n

(dij)2 − x2


 .

We set µ1 = x and bear in mind that µ1 ≥ 1 . From

n∑

i=1

µ2
i = 2

∑

1≤i<j≤n

(dij)
2

we get

x2 = µ2
1 ≤ 2

∑

1≤i<j≤n

(dij)
2 i. e. x ≤

√
2

∑

1≤i<j≤n

(dij)2 .

Now, f ′(x) = 0 implies

x =

√√√√ 2

n

∑

1≤i<j≤n

(dij)2 .
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Therefore f(x) is a decreasing function in the interval

√√√√ 2

n

∑

1≤i<j≤n

(dij)2 ≤ x ≤ 2
√ ∑

1≤i<j≤n

(dij)2

and √√√√ 2

n

∑

1≤i<j≤n

(dij)2 ≤ 2

n

∑

1≤i<j≤n

(dij)
2 ≤ µ1 .

Hence

f(µ1) ≤ f


2

n

∑

1≤i<j≤n

(dij)
2




and inequality (4) follows. 2

From Eq. (1), Corollary 1.1, and Theorem 4 we obtain:

Corollary 4.1. Let G be a connected (n, m)-graph with diam(G) ≤ 2 . Then

ED(G) ≤ 4n2 − 4n− 6m

n
+

√√√√√(n− 1)


4n(n− 1)− 6m−

(
4n(n− 1)− 6m

n

)2

 .

2
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