Kragujevac J. Math. 31 (2008) 59-68.

BOUNDS FOR THE DISTANCE ENERGY OF A GRAPH

Harishchandra S. Ramane¹, Deepak S. Revankar¹, Ivan Gutman², Siddani Bhaskara Rao³, B. Devadas Acharya⁴ and Hanumappa B. Walikar⁵

¹Department of Mathematics, Gogte Institute of Technology, Udyambag, Belgaum–590008, India (e-mails: hsramane@yahoo.com, revankards@rediffmail.com)

²Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia (e-mail: gutman@kg.ac.yu)

> ³Stat-Math Division, Indian Statistical Institute, 203, Barrackpore Road, Kolkata–700108, India (e-mail: raosb@isical.ac.in)

⁴Department of Science and Technology, Government of India, Technology Bhavan, New Mehrauli Road, New Delhi–110016, India (e-mail: acharyad@alpha.nic.in)

⁵Department of Computer Science, Karnatak University, Dharwad–580003, India (e-mail: walikarhb@yahoo.co.in)

(Received September 17, 2007)

Abstract. The distance energy of a graph G is defined as the sum of the absolute values of the eigenvalues of the distance matrix of G. Recently bounds for the distance energy of

a graph of diameter 2 were determined. In this paper we obtain bounds for the distance energy of any connected graph G, thus generalizing the earlier results.

1. INTRODUCTION

In this paper we are concerned with simple graphs, that is graphs without loops, multiple or directed edges. Let G be such a graph, possessing n vertices and m edges. We say that G is an (n, m)-graph.

Let the graph G be connected and let its vertices be labelled as v_1, v_2, \ldots, v_n . The distance matrix of a graph G is defined as a square matrix $D = D(G) = [d_{ij}]$, where d_{ij} is the distance between the vertices v_i and v_j in G [3,5]. The eigenvalues of the distance matrix D(G) are denoted by $\mu_1, \mu_2, \ldots, \mu_n$ and are said to be the D-eigenvalues of G. Since the distance matrix is symmetric, its eigenvalues are real and can be ordered as $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$.

The characteristic polynomial and eigenvalues of the distance matrix of a graph are considered in [6–8,14,15,18,36].

The distance energy $E_D = E_D(G)$ of a graph G is defined as [18]

$$E_D = E_D(G) = \sum_{i=1}^n |\mu_i|$$
.

The distance energy is defined in analogy to the graph energy [9]

$$E = E(G) = \sum_{i=1}^{n} |\lambda_i|$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of the adjacency matrix A(G) of a graph G [5]. For more results on E(G) see [1,2,4,10–13,16,17,19–25,27–35,37].

If $G = K_n$, the complete graph on *n* vertices, then $A(K_n) = D(K_n)$ and hence $E_D(G) = E(G) = 2(n-1)$.

In a recent paper [18] Indulal, Gutman, and Vijaykumar reported lower and upper bounds for the distance energy of graphs whose diameter (= maximal distance between vertices) does not exceed two. In this paper we obtain bounds for the distance energy of arbitrary connected (n, m)-graphs, which generalize the results obtained in [18].

We first need the following Lemma.

Lemma 1. Let G be a connected (n,m)-graph, and let $\mu_1, \mu_2, \ldots, \mu_n$ be its Deigenvalues. Then

$$\sum_{i=1}^{n} \mu_i = 0$$

and

$$\sum_{i=1}^{n} \mu_i^2 = 2 \sum_{1 \le i < j \le n} (d_{ij})^2 .$$
⁽¹⁾

Proof.

$$\sum_{i=1}^{n} \mu_i = \text{trace}[D(G)] = \sum_{i=1}^{n} d_{ii} = 0 .$$

For i = 1, 2, ..., n, the (i, i)-entry of $[D(G)]^2$ is equal to $\sum_{j=1}^n d_{ij} d_{ji} = \sum_{j=1}^n (d_{ij})^2$. Hence

$$\sum_{i=1}^{n} \mu_i^2 = \operatorname{trace}[D(G)]^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij})^2 = 2 \sum_{1 \le i < j \le n} (d_{ij})^2 .$$

Corollary 1.1 [18]. Let G be a connected (n,m)-graph, and let $diam(G) \leq 2$, where diam(G) denotes the diameter of a graph G. Then

$$\sum_{i=1}^{n} \mu_i^2 = 2[2n^2 - 2n - 3m] \; .$$

2. BOUNDS FOR THE DISTANCE ENERGY

Theorem 2. If G is a connected (n, m)-graph, then

$$\sqrt{2\sum_{1 \le i < j \le n} (d_{ij})^2} \le E_D(G) \le \sqrt{2n\sum_{1 \le i < j \le n} (d_{ij})^2} \ .$$

Proof. Consider the Cauchy–Schwartz inequality

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right) \ .$$

Choosing $a_i = 1$ and $b_i = |\mu_i|$, we get

$$\left(\sum_{i=1}^{n} |\mu_i|\right)^2 \le n \sum_{i=1}^{n} \mu_i^2$$

from which

$$E_D(G)^2 \le 2n \sum_{1 \le i < j \le n} (d_{ij})^2$$
.

This leads to the upper bound for $E_D(G)$.

Now

$$E_D(G)^2 = \left(\sum_{i=1}^n |\mu_i|\right)^2 \ge \sum_{i=1}^n |\mu_i|^2 = 2\sum_{1 \le i < j \le n} (d_{ij})^2$$

which straightforwardly leads to the lower bound for $E_D(G)$.

Corollary 2.1. If G is a connected (n,m)-graph, then $E_D(G) \ge \sqrt{n(n-1)}$.

Proof. Since $d_{ij} \ge 1$ for $i \ne j$ and there are n(n-1)/2 pairs of vertices in G, from the lower bound of Theorem 2,

$$E_D(G) \ge \sqrt{2\sum_{1\le i < j\le n} (d_{ij})^2} \ge \sqrt{2\frac{n(n-1)}{2}} = \sqrt{n(n-1)} \ .\Box$$

Theorem 3. Let G be a connected (n,m)-graph and let Δ be the absolute value of the determinant of the distance matrix D(G). Then

$$\sqrt{2\sum_{1 \le i < j \le n} (d_{ij})^2 + n(n-1)\Delta^{2/n}} \le E_D(G) \le \sqrt{2n\sum_{1 \le i < j \le n} (d_{ij})^2} \ .$$

Proof. In view of Theorem 2, we only need to demonstrate the validity of the lower bound. This is done analogously to the way in which a lower bound for graph energy is deduced in [26].

By definition of distance energy and Eq. (1)

$$E_D(G)^2 = \left(\sum_{i=1}^n |\mu_i|\right)^2 = \sum_{i=1}^n \mu_i^2 + 2\sum_{\substack{i \le i < j \le n \\ 1 \le i < j \le n}} |\mu_i| |\mu_j|$$

$$= 2\sum_{\substack{1 \le i < j \le n \\ 1 \le i < j \le n}} (d_{ij})^2 + 2\sum_{\substack{i \le i < j \le n \\ i \ne j \le n}} |\mu_i| |\mu_j|$$

$$= 2\sum_{\substack{1 \le i < j \le n \\ 1 \le i < j \le n}} (d_{ij})^2 + \sum_{\substack{i \ne j \\ i \ne j \le n \\ i \le n \\ i \le j \le n \\ i \le n \\ i \le j \le n \\ i \le j \le n \\ i \le n \\$$

Since for nonnegative numbers the arithmetic mean is not smaller than the geometric mean,

$$\frac{1}{n(n-1)} \sum_{i \neq j} |\mu_i| |\mu_j| \geq \left(\prod_{i \neq j} |\mu_i| |\mu_j| \right)^{1/n(n-1)} = \left(\prod_{i=1}^n |\mu_i|^{2(n-1)} \right)^{1/n(n-1)}$$
$$= \prod_{i=1}^n |\mu_i|^{2/n} = \Delta^{2/n} .$$
(3)

Combining Eqs. (2) and (3) we arrive at the lower bound.

Using Eq. (1), Corollary 1.1 and Theorem 3 we have following result.

Corollary 3.1 [18]. Let G be a connected (n,m)-graph with diam $(G) \leq 2$. Then

$$\sqrt{4n(n-1) - 6m + n(n-1)\Delta^{n/2}} \le E_D(G) \le \sqrt{2n(2n^2 - 2n - 3m)}$$
.

For an *n*-vertex tree T [3,6],

$$\det D(T) = (-1)^{n-1}(n-1)2^{n-2}$$

from which we obtain the following:

Corollary 3.2. For an n-vertex tree T,

$$\sqrt{2\sum_{1\leq i< j\leq n} (d_{ij})^2 + n\left[(n-1)^{n+2}4^{n-2}\right]^{1/n}} \leq E_D(T) \leq \sqrt{2n\sum_{1\leq i< j\leq n} (d_{ij})^2} \ .$$

Theorem 4. If G is a connected (n, m)-graph, then

$$E_D(G) \le \frac{2}{n} \sum_{1 \le i < j \le n} (d_{ij})^2 + \sqrt{(n-1) \left[2 \sum_{1 \le i < j \le n} (d_{ij})^2 - \left(\frac{2}{n} \sum_{1 \le i < j \le n} (d_{ij})^2\right)^2 \right]} .$$
(4)

Proof. Our proof follows the ideas of Koolen and Moulton [22,23], who obtained an analogous upper bound for ordinary graph energy E(G).

By applying the Cauchy–Schwartz inequality to the two (n-1) vectors (1, 1, ..., 1)and $(|\mu_2|, |\mu_3|, ..., |\mu_n|)$, we get

$$\left(\sum_{i=2}^{n} |\mu_i|\right)^2 \leq (n-1) \left(\sum_{i=2}^{n} \mu_i^2\right)$$
$$(E_D(G) - \mu_1)^2 \leq (n-1) \left(2 \sum_{1 \leq i < j \leq n} (d_{ij})^2 - \mu_1^2\right)$$
$$E_D(G) \leq \mu_1 + \sqrt{(n-1) \left(2 \sum_{1 \leq i < j \leq n} (d_{ij})^2 - \mu_1^2\right)}.$$

Define the function

$$f(x) = x + \sqrt{(n-1)\left(2\sum_{1 \le i < j \le n} (d_{ij})^2 - x^2\right)}.$$

We set $\mu_1 = x$ and bear in mind that $\mu_1 \ge 1$. From

$$\sum_{i=1}^{n} \mu_i^2 = 2 \sum_{1 \le i < j \le n} (d_{ij})^2$$

we get

$$x^2 = \mu_1^2 \le 2 \sum_{1 \le i < j \le n} (d_{ij})^2$$
 i. e. $x \le \sqrt{2 \sum_{1 \le i < j \le n} (d_{ij})^2}$.

Now, f'(x) = 0 implies

$$x = \sqrt{\frac{2}{n}} \sum_{1 \le i < j \le n} (d_{ij})^2 .$$

Therefore f(x) is a decreasing function in the interval

$$\sqrt{\frac{2}{n}} \sum_{1 \le i < j \le n} (d_{ij})^2 \le x \le 2\sqrt{\sum_{1 \le i < j \le n} (d_{ij})^2}$$

and

$$\sqrt{\frac{2}{n} \sum_{1 \le i < j \le n} (d_{ij})^2} \le \frac{2}{n} \sum_{1 \le i < j \le n} (d_{ij})^2 \le \mu_1$$

Hence

$$f(\mu_1) \le f\left(\frac{2}{n} \sum_{1 \le i < j \le n} (d_{ij})^2\right)$$

and inequality (4) follows.

From Eq. (1), Corollary 1.1, and Theorem 4 we obtain:

Corollary 4.1. Let G be a connected (n,m)-graph with $diam(G) \leq 2$. Then

$$E_D(G) \le \frac{4n^2 - 4n - 6m}{n} + \sqrt{(n-1)\left[4n(n-1) - 6m - \left(\frac{4n(n-1) - 6m}{n}\right)^2\right]}.$$

References

- [1] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl. 387 (2004), 287–295.
- [2] V. Brankov, D. Stevanović, I. Gutman, *Equienergetic chemical trees*, J. Serb. Chem. Soc. 69 (2004), 549–553.
- [3] F. Buckley, F. Harary, *Distance in Graphs*, Addison–Wesley, Redwood, 1990.
- [4] A. Chen, A. Chang, W. C. Shiu, *Energy ordering of unicyclic graphs*, MATCH Commun. Math. Comput. Chem. 55 (2006), 95–102.
- [5] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Applications, Academic Press, New York, 1980.

- [6] M. Edelberg, M. R. Garey, R. L. Graham, On the distance matrix of a tree, Discrete Math. 14 (1976), 23–39.
- [7] R. L. Graham, L. Lovász, Distance matrix polynomial of trees, Adv. Math. 29 (1978), 60–88.
- [8] R. L. Graham, H. O. Pollak, On the addressing problem for loop switching, Bell System Tech. J. 50 (1971), 2495–2519.
- [9] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978), 1–22.
- [10] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005), 441–456.
- [11] I. Gutman, B. Furtula, H. Hua, Bipartite unicyclic graphs with maximal, second maximal and third maximal energy, MATCH Commun. Math. Comput. Chem. 58 (2007), 85–92.
- [12] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Spriger-Verlag, Berlin, 1986.
- [13] I. Gutman, S. Zare Firoozabadi, J. A. de la Peña, J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57 (2007), 435–442.
- [14] A. J. Hoffman, M. H. McAndrew, The polynomial of a directed graph, Proc. Amer. Math. Soc. 16 (1965), 303–309.
- [15] H. Hosoya, M. Murakami, M. Gotoh, Distance polynomial and characterization of a graph, Natur. Sci. Rept. Ochanumizu Univ. 24 (1973), 27–34.
- [16] H. Hua, On minimal energy of unicyclic graphs with prescribed girth and pendant vertices, MATCH Commun. Math. Comput. Chem. 57 (2007), 351–361.

- [17] H. Hua, Bipartite unicyclic graphs with large energy, MATCH Commun. Math. Comput. Chem. 58 (2007), 57–83.
- [18] G. Indulal, I. Gutman, A. Vijaykumar, On the distance energy of a graph, MATCH Commun. Math. Comput. Chem. 60 (2008), 461–472.
- [19] G. Indulal, A. Vijaykumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 55 (2006), 83–90.
- [20] G. Indulal, A. Vijaykumar, *Energies of some non-regular graphs*, J. Math. Chem.
 42 (2007), 377–386.
- [21] G. Indulal, A. Vijaykumar, Equienergetic self-complementary graphs, Czechoslovak Math. J., to appear.
- [22] J. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001), 47–52.
- [23] J. Koolen, V. Moulton, Maximal energy bipartite graphs, Graph. Combin. 19 (2003), 131–135.
- [24] W. Lin, X. Guo, H. Li, On the extremal energies of trees with a given maximum degree, MATCH Commun. Math. Comput. Chem. 54 (2005), 363–378.
- [25] F. Li, B. Zhou, Minimal energy of bipartite unicyclic graphs of a given bipartition, MATCH Commun. Math. Comput. Chem. 54 (2005), 379–388.
- [26] B. J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies, J. Chem. Phys. 54 (1971), 640–643.
- [27] H. S. Ramane, H. B. Walikar, Construction of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007), 203–210.
- [28] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S.R. Jog, I. Gutman, *Equienergetic graphs*, Kragujevac J. Math. 26 (2004), 5–13.

- [29] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S.R. Jog, I. Gutman, Spectra and energies of iterated line graphs of regular graphs, Appl. Math. Lett. 18 (2005), 679–682.
- [30] H. B. Walikar, H. S. Ramane, I. Gutman, S. B. Halkarni, On equienergetic graphs and molecular graphs, Kragujevac J. Sci. 29 (2007), 73–84.
- [31] W. Yan, L. Ye, On the maximal energy of trees with a given diameter, Appl. Math. Lett. 18 (2005), 1046–1052.
- [32] A. Yu, M. Lu, F. Tian, New upper bound for the energy of graphs, MATCH Commun. Math. Comput. Chem. 53 (2005), 441–448.
- [33] L. Ye, X. Yuan, On the minimal energies of trees with a given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 57 (2007), 193–201.
- [34] B. Zhou, Energy of a graph, MATCH Commun. Math. Comput. Chem. 51 (2004), 111–118.
- [35] B. Zhou, Lower bounds for the energy of quandrangle-free graphs, MATCH Commun. Math. Comput. Chem. 55 (2006), 91–94.
- [36] B. Zhou, On the largest eigenvalue of the distance matrix of a tree, MATCH Commun. Math. Comput. Chem. 58 (2007), 657–662.
- [37] B. Zhou, I. Gutman, J. A. de la Peña, J. Rada, L. Mendoza, On spectral moments and energy of graphs, MATCH Commun. Math. Comput. Chem. 57 (2007), 183– 191.