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Abstract. Considering the hypothesis that there exists a polyhedron with a minimal
triangulation by 2n − 10 tetrahedra, earlier results show that such polyhedra can have
only vertices of order 5, 6 or separated vertices of order 4. Other polyhedra have minimal
triangulation with a smaller number of tetrahedra. This paper presents the examples of
polyhedra with the mentioned property and with the triangulation by 2n− 11 tetrahedra.

1. INTRODUCTION

It is known that it is possible to divide any polygon with n − 3 diagonals into

n − 2 triangles without gaps and overleaps. This division is called triangulation.

Many different practical applications require computer programs, which solve this

problem. Examples of such algorithms are given by Seidel [9], Edelsbrunner [5] and

Chazelle [2]. The most interesting aspect of the problem is to design algorithms,

which are as optimal as possible.

The generalization of this process to higher dimensions is also called a triangu-

lation. It consists of dividing polyhedra (polytop) into tetrahedra (simplices). Be-

sides the fastness of algorithm, there are new problems in higher dimensions. It
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is proved that it is impossible to triangulate some of nonconvex polyhedra [8] in a

three-dimensional space, and it is also proved that different triangulations of the same

polyhedron may have different numbers of tetrahedra [1], [6], [10]. Considering the

smallest and the largest number of tetrahedra in triangulation (the minimal and the

maximal triangulation), these authors obtained values, which linearly, i.e. squarely

depend on the number of vertices. Interesting triangulations are described in the pa-

pers of Edelsbrunner, Preparata, West [6] and Sleator, Tarjan, Thurston [10]. Some

characteristics of triangulation in a three-dimensional space are given by Lee [7], Chin,

Fung, Wang [3], Develin [4] and Stojanović [11, 12]. This problem is also related with

the problems of triangulation of a set of points in a three-dimensional space [1, 6] and

rotatory distance (in a plane) [10].

In this paper we consider polyhedra which have minimal triangulation with a big

number of tetrahedra. Some of the previous results are presented in Section 2 and

new results are given in Section 3. We will consider convex polyhedra in which each

4 vertices are noncoplanar and all faces are triangular. Furthermore, all considered

triangulations are face to face. The number of edges from the same vertex will be

called the order of vertex.

2. PREVIOUS RESULTS

One of the triangulations, which gives a small number of tetrahedra, is the cone

triangulation [8] described as follows.

One of the vertices is the common apex, which builds one tetrahedron with each of

(triangular) faces of the polyhedra, except with these containing it.

By Eulers theorem, a polyhedron with n vertices has 2n − 4 faces if all of them

are triangular. So, the number of tetrahedra in triangulation is at most 2n − 10,

since, for n ≥ 12, each polyhedron has at least one vertex of order 6 or more. Sleator,

Tarjan and Thurston in [10] considered some cases of ”bad” polyhedra, which need a

large number of tetrahedra for triangulation. It is proved, using hyperbolic geometry,

that the minimal number of tetrahedra, necessary for triangulating such polyhedra,
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is close to 2n − 10. That value is tight for one series of polyhedra, which exists for

a sufficiently great n. Computer investigation of the equivalent problem of rotatory

distance confirms, for 12 ≤ n ≤ 18, that there exist polyhedra, with the smallest

necessary number of tetrahedra equal to 2n − 10. This was the reason why the

authors gave a hypothesis that the same statement is true for any n ≥ 12. To prove

this hypothesis, it would be good to check when the cone triangulation of polyhedra

gives the smallest number of tetrahedra and how it is possible to improve it in other

cases. With this aim, in [10] the authors give an example of the polyhedron, which

has vertices of great order and for which there exists a triangulation better than

the cone one. They also give the advice on how to improve the method in this and

some similar cases. The polyhedra with vertices of great order anyway give less than

2n−10 tetrahedra in the cone triangulation, so, vertices of small order are considered

in [11, 12]. The obtained results are as follows:

Theorem 2.1. Let V be one of the vertices of a polyhedron P whose order is

maximal. If the polyhedron P has a vertex of order 3 different and not connected with

V, or a sequence of at least 2 vertices of order 4 connected between themselves into a

chain, each of them different and not connected with V, then the cone triangulation

of P with apex V will not give the smallest number of tetrahedra.

Remark. When V is connected with a vertex at the end of chain the cone trian-

gulation is not the minimal one whenever the chain contains at least 3 vertices.

Theorem 2.2. For n ≥ 14 there exists a polyhedron with n vertices which are

either of order 5 or 6.

3. NEW RESULTS

From everything mentioned before, it is clear that candidates for the minimal

triangulation with the number of tetrahedra equal to 2n− 10, are polyhedra with all

vertices of order 5 or 6 and separated (not connected between themselves) vertices of
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order 4. Here we consider such polyhedra with the aim to prove that this condition

is necessary but not sufficient.

Let us define the following:

• A circle of p vertices of the polyhedron P is a space p−gon A1, A2, ..., Ap where

Ai (i = 1, . . . , p) are different vertices of P and AiAi+1 (i = 1, . . . , p− 1), ApA1

are edges of P.

• Let c be a circle of p vertices Ai (i = 1, . . . , p) on the polyhedron P, and M and

N two vertices of P different from Ai . If all paths on P with end points M and

N pass through some of the vertices Ai then we say that the circle c separates

vertices M and N and call it the separating circle. We also say that M and N

are on the different sides of c. If the circle c does not separate the vertices M

and N, they are on the same side of the circle.

Theorem 3.1. If a polyhedron contains a circle of p vertices, separates vertices A

and B of order ν(A) and ν(B), where ν(A) ≥ ν(B) > p, then the cone triangulation

with the apex A is not the minimal one.

Proof. In this case the cone triangulation has Tcone = 2n − 4− ν(A) tetrahedra.

Let us call bicone triangulation, the one which consists of tetrahedra obtained in cone

triangulation of the subpolyhedra PA and PB, with the apices A and B, respectively,

where PA (i.e. PB) contains vertices of the separating circle, all the vertices on the

same side of the circle as the apex A (i.e. B) and vertex B (i.e. A). Observe that

the bipyramid with vertices A, B and these one of the circle, is the common part of

polyhedra PA and PB. So, if nA is the number of vertices of PA and nB of PB, the

number of tetrahedra in the bicone triangulation is Tbicone = [2nA−4−ν(A)]+[2nB−
4− ν(B)]− p. Since n = nA + nB − p − 2, it holds that

Tbicone = 2n − 4− ν(A)− ν(B) + p > 2n − 4− ν(A) = Tcone .

When p = 3 there exists even better triangulation T ∗, because p is splitting the

polyhedron into two subpolyhedra PA∗ and PB∗ with only one common (triangular)

face. The triangulation T ∗ is the union of cone triangulation of polyhedra PA∗ and

PB∗ with 2nA∗ − 4− ν(A) and 2nB∗ − 4− ν(B) tetrahedra, respectively. In this case
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n = nA∗ + nB∗ − 3 so, Tcone = 2nA∗ + 2nB∗ − 4 − ν(A) − 6 and T ∗ = 2nA∗ + 2nB∗ −
4− ν(A)− 4− ν(B). Since ν(B) ≥ 4, it holds that Tcone ≥ T ∗ + 2.

Lemma 3.2. For each n ≥ 13 there exists a polyhedron with n vertices, containing

a circle of 5 vertices, which separates two vertices of order 6, such that all the vertices

of polyhedron are of order 5 or 6, or separated vertices of order 4.

Proof. There are considered three different arrangements R1, R2 and R3 of ver-

tices on one side of the circle of 5 vertices. The vertices of the external circles of all

arrangements are noted with A1, A2, A3, A4, A5.

In the case of the arrangement R1 (Figure 1.a) vertices B1, B2, B3, B4 are connected

between themselves by edges B1B2, B2B3, B3B4, B4B1, B1B3 and with the circle by

A1B1, A2B1, A2B2, A3B2, A3B3, A4B3, A4B4, A5B4, A5B1. Here, the vertices B2

and B4 are of order 4.

Figure 1

In the case of the arrangement R2 (Figure 1.b) vertices B1, B2, B3, B4, B5 are

connected between themselves by B5B1, B5B2, B5B3, B5B4, B1B2, B2B3, B3B4,

B4B1 and with the circle by A1B1, A2B1, A2B2, A3B2, A3B3, A4B3, A4B4, A5B4,

A5B1. The vertex B5 is of order 4.

In the case of the arrangement R3 (Figure 1.c) vertices B1, B2, B3, B4, B5, B6, B7

are connected between themselves by B1B2, B2B3, B3B4, B4B5, B5B1, B6B1, B6B4,
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B6B5, B6B7, B7B1, B7B2, B7B3, B7B4 and with the circle by A1B1, A1B2, A2B2,

A2B3, A3B3, A3B4, A4B4, A4B5, A5B5, A5B1. Here vertex B6 is of order 4.

In all cases the vertex B1 and the vertex B4 in arrangement R3 are of order 6. All

other non-mentioned vertices Bi are of order 5.

Combining Ri and Rj , i , j ∈ {1, 2, 3} as different sides of the same circle, or adding

new circles of 5 vertices between themselves, it is possible to obtain a polyhedron P

with n vertices of order 5 or 6, or separated vertices of order 4, for each n ≥ 13.

If the polyhedron P is a combination of Ri and Rj with the common circle then

gluing the vertex noted with A1 of the external circle of Ri with the vertex A1 of Rj ,

i , j ∈ {1, 2} is giving the vertex of order 4 of the common circle. Gluing the vertex

A1 of Ri , i ∈ {1, 2} with Ak , k 6= 1 of Rj , j ∈ {1, 2}, or with any Al of R3 is giving

the vertex of order 5. All other vertices of the common circle of P, are of order 6. So,

the common circle (with five vertices) is separating the vertices noted with B1 in the

arrangements Ri , Rj , i , j ∈ {1, 2, 3} which are of order 6. In such polyhedra there

are no connected vertices of order 4, even when the vertices of the common circle are

such, since the vertex A1 of R1 (i.e. R2) is not connected with the vertices B2, B4

(i.e. B5) of order 4. Also the vertices B2 and B4 of R1 are not connected.

The polyhedron P obtained as mentioned has n vertices where:

• n = 13 if P is a combination of two R1;

• n = 14 if P is a combination of R1 and R2;

• n = 15 if P is a combination of two R2;

• n = 16 if P is a combination of R1 and R3;

• n = 17 if P is a combination of R2 and R3;

The external circles A0
1A

0
2A

0
3A

0
4A

0
5 of Ri and A1

1A
1
2A

1
3A

1
4A

1
5 of Rj , i , j ∈ {1, 2, 3}

can be connected between themselves, instead of gluing, by e.g. edges A0
1A

1
1, A0

1A
1
2,

A0
2A

1
2, A0

2A
1
3, A0

3A
1
3, A0

3A
1
4, A0

4A
1
4, A0

4A
1
5, A0

5A
1
5, A0

5A
1
1. Such new vertices A0

k , A1
l are of

order 6, except A0
1 for i ∈ {1, 2} and A1

1 for j ∈ {1, 2} which are of order 5. So, the

polyhedron is then with n ∈ {18, 19, 20, 21, 22} vertices. Between the external circles

it is possible to add the new circle A2
1, A2

2, A2
3, A2

4, A2
5 with 5 vertices, connected with
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both external circles in such a way that polyhedron P has edges Ak
1A

2
1, Ak

1A
2
2, Ak

2A
2
2,

Ak
2A

2
3, Ak

3A
2
3, Ak

3A
2
4, Ak

4A
2
4, Ak

4A
2
5, Ak

5A
2
5, Ak

5A
2
1, k ∈ {0, 1}. Similarly, it is possible to

add more circles with 5 vertices. Orders of new vertices are 6. In such a way, it is

possible to obtain the polyhedron P with n vertices for each n ≥ 13.

Lemma 3.3. For n = 22 + 5k, k ∈ N there exists a polyhedron P with n vertices

of order 5 or 6, containing circle of 5 vertices, which separates two vertices of order

6.

Proof. Here, for k = 1 P is a combination of two arrangements R (Figure 2.),

for k = 2 the external circles of the arrangements are connected as in the previous

lemma and for k ≥ 3 we add k − 2 new circles as before. The arrangement R

besides the external circle with vertices A1, A2, A3, A4, A5 has 11 inside vertices Bi

(i ∈ {1, . . . , 11}). The inside vertices are connected between themselves by BiBi+1

for i ∈ {1, 2, 3, 4} ∪ {6, 7, 8, 9}, B5B1, B10B6, BjBj+5, BjBj+6 for j ∈ {1, 2, 3, 4},
B5B10, B5B6, B11Bk for k ∈ {6, 7, 8, 9, 10}, and with the circle by AlBl , AlBl+1 for

l ∈ {1, 2, 3, 4}, A5B5, A5B1.

Figure 2

After ”gluing” and adding circles, all vertices Aj
i , i ∈ {1, . . . , 5}, j ∈ {0, 1, . . . , k −

1} are of order 6. The vertices Bi , i ∈ {1, . . . , 5} are of order 6 and Bj , j ∈ {6, . . . , 11}
of order 5.

The consequence of theorem 3.1. is that for the polyhedra P in lemma 3.2. and
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lemma 3.3. the cone triangulation is not the minimal one, since their bicone triangu-

lation gives 2n− 11 tetrahedra. So, we will state the following theorems.

Theorem 3.4. For each n ≥ 13 there exists a polyhedron with n vertices of order

5 or 6, or separated vertices of order 4, whose minimal triangulation has less than

2n− 10 tetrahedra.

Theorem 3.5. For n = 22 + 5k there exists a polyhedron with n vertices of order

5 or 6, whose minimal triangulation has less than 2n− 10 tetrahedra.
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