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Abstract. In this manuscript, we establish strong convergence results for the improved
iteration methods introduced by Owojori and Imoru [7], to fixed points of hemicontractive
operators. Our results in this paper are extensions of the results of: Ishikawa [4], Deng and
Ding [3], Chidume [1], Chidume and Osilike [2], Owojori and Imoru [6], Qihou [8], Liu [5] and
Xu [10] from the Mann and Ishikawa iteration methods, (with and without errors), to more
general iteration methods and from Lipschitz or continuous pseudocontractive operators to
slightly more general continuous hemicontractive operators.

1. INTRODUCTION

Xu [10] introduced suitable Mann and Ishikawa iteration schemes with errors for
approximations of fixed points and solutions of nonlinear operators in Banach spaces.
Owojori and Imoru [6] introduced a three-step iteration scheme and obtained some
convergence results to the fixed points of continuous hemicontractive mappings in

Hilbert spaces.
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Owojori and Imoru [7] introduced an improved three-step iteration method which
contains the one introduced earlier by the authors in [6], as well as the Mann and
Ishikawa iteration methods as special cases. It is defined for arbitrary z; € K - a

closed bounded convex subset of a Banach space B , by
Tp+1l = AnTp + bnTyn + Cnsxn
Yo = a7y + b, Sz, + 0, n>1 (1.1)

Zp = a;;xn + b;;Tl‘n + c;;wn
Two special cases of (1.1) are given respectively by:

Tpi1 = Xy + b, Ty, + ¢, Tz,
Yo = @,y + b, T2, + C, vy n>1 (1.2)
Zp = a;xn + b;;Txn + c;lbwn
and
Tyl = ATy + 0, TYn + cruy,
Yn = A + b, T2, + Cpoy, n>1 (1.3)
Zy = a;;a:n + b;;Txn + c;;wn
where S, T are nonlinear uniformly continuous self-mappings of K satisfying some

contractive definitions and {u,}, {v,}, {w,} are bounded sequences in K. Also {a,},
{a,}, {a)}, {b,}, {0}, {0}, {ca}, {c,}, {c.}, are real sequences in [0, 1] satisfying:
19 ap +b,+co=a,+b, +c, =a +b +c, =1,

29) b, = co.

Remark. [t was observed that the iteration schemes given by (1.1), (1.2) and
(1.3) are all well defined and (1.2) is a slight generalization of (1.3).

Let H be a Hilbert space and K a nonempty subset of H. An operator T : K — K
is called hemicontractive if F(T'), the fixed point set of T', is nonempty and for all
x* € F(T), the inequality

1Tz — 2| < |l —2"|* + |z —Ta|? (1.4)

holds for all z € K.
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Our purpose in this manuscript is to establish the convergence of the iteration
methods (1.3), (1.2), and (1.1) to the fixed points and common fixed points of the

general hemicontractive operators in arbitrary Hilbert spaces.

2. MAIN RESULTS

Chidume and Osilike [2] established the following result:

Lemma 2.1. Let B be a uniformly smooth Banach space with modulus of smooth-
ness of power type ¢ > 1. Then for all z,y,z € B and X\ € [0,1], the following

inequality
[Az+(1 =Ny —z[|* < [L=Ag=D)]lly =zl + Acllz = 2[|? = AL = A" ] e —y||* (2.1)
holds, where c 1s a positive constant.

Remark. It is known that for a Hilbert space (which is a special Banach space ),

q =2 and c = 1. Therefore, in a Hilbert space H, say, (2.1) reduces to
Az + (1 =Ny —2l> < [L = Nlly = 2* + Mle — 2P = AL = Alllz —yl*  (2:2)
for all x,y,z € H and X € [0,1] .

Weng [9] established the following fundamental result which has become a useful

tool in obtaining convergence results.

Lemma 2.2. Let {®,,} be a nonnegative sequence of real numbers satisfying:
G, < (1-6,)P, + on (2.3)

where §, € [0,1] , > 6; =00, and 0, = 0(0,,). Then lim &, = 0.

n—oo

Our result is the following.

Theorem 2.3. Let B be an arbitrary Hilbert space and K be a nonempty closed

bounded and convezr subset of B. Suppose T is a continuous hemicontractive self-
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mapping of K. Define sequence {x,} iteratively for arbitrary 1 € K by:
Tpg1 = ATy + 0, TYn + Cpuy,
Yn = a;xn + b;szn + c;lvn n>1
Zp = a’,;xn + b;;T:vn + c;;wn
where {u,}, {v.} and {w,} are bounded sequences in K and {a,}, {a,}, {a,},
(b} b}, {0}, {ca}, {c,}, {c,.}, are real sequences in [0, 1] satisfying
1°) ap+b,+epn=a,+b,+c,=a, +b +c, =1,

2°) Xby =00,
3°)  lim b, = lim b, = lim b, =0,

4°) api=bytcn, Bni=b+ ¢ =0 +¢
5°) Y anfnyn = 00.
Then the sequence {x,} converges strongly to the fixed point of T

Proof. Since T is hemicontractive, then F(T) - the fixed point set of T is
nonempty. Let 2* € F(T'). From the hypothesis we have:
|Zni1 — 2*? = |lann + b Tyn + cpi, — |2
= (1 = an)(zn = 2) + (T — %) = cn(Tyn — ua)|?
< (1= an)ll(zn = 27) = en(Tyn — un)|”
tan[(Tyn — %) = cn(Tyn — un)|I?
—an(1 = o) [[(Tyn — 2%) — (20 — 2")|* -

Since a,(1 — ;) > 0, then we have,
lZnsr =2 * < (1= an)[[ (@0 = 2") = ea(Tyn — un) | + (T — 2") = ca(Tyn —ua)||* -

Expanding further and observing that |la — b||*> < ||a||* + ||b||*, where a,b are real
numbers, we obtain

[n s — 27|

< (= a)lllen — 2|7 + Gl Tyn — unl?]

ton[l|Tyn — 22+ Gl Tyn — unll?] = 20 < Ty — 1, j(Tn — %) >
< (= an)lll(@n — 27 + Gl Ty — wa) 2] + nlllTyn — 27|17 + G| Tyn — unl?]
< (L= an)llwn =277 + anl| Ty — 27 [1* + Gl Tyn — wa) | -

(2.4)



Since T' is hemicontractive, then

1Ty = 2*1* < lyn = 2|7 + lyn — Tyal* -

We also have the following estimates:

IN

9 — ||
la, zn + b, T2, + ¢, 0, — z*||?

11 = Bo)(wn = 2%) + Bu(Tzn — 2*) = (T2 — )|
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(2.5)

(1= Bull(@n = 2%) = (T2 = )1 + Bull(T2n — &%) — ¢ (T2 — va)|I?

—B(L = Bu) (T2 — %) = (xn — 27)||* .

Observe that G(1 — 3,) > 0, therefore
[Yn — x*||2 < (1= 8)ll(zn — x*)HZ + Bn2||TZn - Un)||2]

+Bull| T2 — x*HQ + ﬁVLQHTZn - UnH2]

= (1= 8)llzn — :L‘*||2 + Bull T2 — x*HQ + ﬂRQHTZn - UHHZ .

T is hemicontractive, therefore

T2 — 2")1* < llzn — 271 + 2w — Tzal|* -

Substituting (2.7) into (2.6), yields

Iy — 2> < (1= Bo)llzn — 2| + Bullzn — 27|
+6n2||Tzn — Ul 4 Bullzn — Tz -

Substitute (2.8) into (2.5), we obtain:

[Ty —2*|7 < (1= Bu)llzn — %1 + Ballzn — 2*[?
+ﬁn2||TZn - UnHZ + BnHZn - Tan + ||yn - Tyn“z .

Further estimates gives the following,

IA AN

Iz — 2|2

la, 2, + b, Ty, + ¢ w, — z*||?
(1 =) 2%) 4 (T2 — %) = Ty — wy)||?
(1 =)l )+ vl T2y — 27|

+9 (1 = Y) 1720 — wall? + %yl T2 — wa®

(1 = )l[(@n — ) 1* + Yl Tzn — 2*|1° + 3?(| T2n — wall* -

(2.6)

(@n —
(1- 771)”(1:71 —a*) — C;;(Txn - wn)Hz + VnH(Txn —a*) — C;(Txn - WN)“2
(xn -

(2.10)
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By continuity of 7" and boundedness on K, there exists a real numbers M; < oo such
that
|Tx, — z*||> < My and || Tz, — w,|* < My .

Observe that ¢, < 7, and v, < 7, for all n. Then (2.10) reduces to:
12 = 271" < (1= )l (@n — ) + 29 M1 - (2.11)

We now substitute (2.11) into (2.9), to get:
[Ty —2*? < (L= Bo)llwn — ¥ + Bul(1 — ) |20 — ¥ + 27, M)]
_’_ﬁnQHTZn - UnHQ + Bnll2zn — TZnH2 + Hyn - Tyn||2
S (1 - 5n7n)||xn - $*||2 + 25717an
+ﬁn2HTzn - UnH2 + Ballzn — Tan2 + [[yn — TynH2 .

(2.12)

By continuity of T" on the bounded set K, there exists a real number My < oo such
that

lzn = Tznll® < Ma, |y — Tynl> < My and [Tz, — 0> < Mo .
Therefore, (2.12) reduces to:

Ty, — w*Hz < (1= Boy)llen — a:*H2 + 2B,y My + [26, + 1] M; . (2.13)

Substitute (2.13) into (2.4), we have :

[zner —2*[* < (1= an)llan — 2*[* + (1 = Bayn) l2n — 27|12
+20,7u My + [28, + 1) Ma] + ¢ [ Tyn — ua) |12
=1 — anBoyalllzn — 2||* + 200 By My + [200, 8, + ) My
e[ Tyn — ua)|? -

(2.14)

Continuity of 7' on K also implies that there exists real numbers M3 < oo , such that
Ty — un||> < Ms. Let Mg = max[My, My, M3]. Therefore, from (2.14) and the fact

that ¢2 < o, < a,, we have:
|Zni1 — 21> < [1 = anBuVull|lTn — 2|7 + [20080Yn + 20080 + 200, ] Mg . (2.15)
Now, put ®,, = ||z, — z*||* and 6, = a,, 8,7, and

Op = [20571571771 + 2anﬁn + 2an]M6 .
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Then, (2.15) becomes:

Clearly, o, = 0(d,,) , >0, = 00 and 0 < ¢,, < 1. Hence, by Weng [13], ®,, — 0 as

n — oo. This implies that {x,} converges strongly to z*. This completes the proof.

Remark. Theorem 2.5. above is an extension of the result of Ishikawa [4] to the
larger class of hemicontractive operators and to the more general three-step iteration

scheme (1.3). Theorem 2.3 also generalizes those of Chidume [1], Deng and Ding [3].

Observe that the condition imposed on the parameters is simple and less compli-
cated. For a prototype for parameters, we may consider:
an:%7 671:%“ and /Yn:%

which obviously satisfy the conditions of our result.

We now investigate the convergence the slightly more general iteration scheme

(1.2) for fixed points of continuous hemicontractive operators in Hilbert spaces.

Theorem 2.4. Let K be a closed bounded convexr nonempty subset of a Hilbert
space H. LetT be a completely continuous hemicontractive selfmapping of K . Define

a sequence {x,} iteratively for arbitrary 1 € K by:

Tpt1 = QnZp + 0, Ty, + ¢, T,

Yn = a;azn + b;szn + C;Ivn n>1

Zp = a;;xn + b’,'LT:cn + c’,;wn
where {v,}, {wn} are bounded sequences in K and {a,}, {a,,}, {a.}, {b,},{b.}, {b.},
{c}, {c,}, {c.}, are real sequences in [0,1] satisfying the following conditions:

1°) ap+b,+ecn=a,+b +c =a +b +c, =1,

2°) Y b, =00
3°)  lim b, = lim b, = lim b, =0

40) an:bn+cnvﬁn:b;¢+c;77n:b;;+c;;
50) Zanﬁn'%z = 0.
Then the sequence {x,} converges strongly to the fixed point of T.
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Proof. T is hemicontractive implies that F(T') - the fixed point set of T - is
nonempty. Let z* € F(T'). Then from our hypothesis we have the following estimates:
[zns1 — 2*||?
lanzn + 0, Ty + T, — x*||?

11 = ) (@0 — &%) + an(Tyn — %) = Ca(Tyn — Tn)|”
(1 = an)ll(2n = 2%) = ca(Tyn — Twn)|I” + anl(Tyn — 2°) = cn(Tyn — ua)|®
—an(1 = ) |[(Tyn — @) — (20 — 2")|1? .
Expanding further and observing that «, (1 — a;) > 0, we have
[z =27 < (1= aw)lll(@n — @)1 + Al Tyn — Taa) ]
tan[|Tyn — 2*[1* + Al Tyn — T |?]

IN

< (1 —an)llzn — 2*)1* + anl| Ty — 2% + | Ty — T -
Since 2 < a,,? < a,, we have
[zni1 — 27 < (1= an)llzn — 2| + anllyn — 27|12

+O‘n||yn - Tyn||2 + an || Tyn — TanQ .

T is completely continuous on the bounded set K implies that there exists a real

(2.16)

number M, < oo such that :
Ty, — Tx,||*> < My and  |lyn — Tynll* < My .
Substituting into (2.16) yields

lns = 2" |7 < (1= an) 2w — 2"|* + anllyn — 27|* + 200 M, . (2.17)

From our hypothesis, we also have the following,
1y — z*|?
= a,z, + b, Tz, + v, — z*|?

11 = Bo)(wn = 2%) + Bu(Tzn — 2%) = €, (Tzn — i)

< (1= Bll(@n = 2%) = (T = va) P + Bull (T2 — %) = (T2 — va)|I?
—B(1L = Bu) (T2 — &%) = (0 — 27)||?

< (1= Blllzn = 217 + B 1T 20 — vall?] + Bulll Tz — 2117 + Ba® | T 20 — vl ]
(1= Ba)llwn = @I1P + Ball Tzn = 2*[1% + Ba® 1T 20 — vall?

< (U= B)llzn — 2P + Ballzn — 2117 + Ballzn — Tzall* + I T2 — val® -

(2.18)
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Continuity of 7" on K implies that there exists a real number M5 < oo such that

|z — T2, ||> < M5 and || Tz, — v,||*> < Ms. Then (2.18) reduces to :
lyn = 21 < (1 = Ba)llzn — 2|1* + Bullza — 2™||* + 26, M5 . (2.19)
By similar estimates, we have:
l2n = 2"[1* < (1 = yu)llwn — 2"[1* + 290 M7 (2.20)
for some real number M; < oc.

Substituting (2.20) into (2.19) yields :

1y — 217 < (1= Ba)llzn — 2> + Bl — 7a) |20 — 2*|?
2By My + 26, Ms (2.21)

where Mg = max [2Ms5 , 2M-] .
Substitute (2.21) into (2.17), we obtain:

lznsr — 2| < (1 = an)llzn — %7 + (1 = Boyn)ll2n — 27|17

+0tn On (1 + ) Ms + 200, My

Let My = max([2M, , Mg]. Then we have:
Jnss = 27 < (1= auBus)lon — 21 + anll + Bl + )My . (2:22)
Now, put
®, = ||z, — 2*||* and 6, = B -

Also let
On = [l + Bu(1 4+ v,) | My .

Then, (2.22), reduces to:
q)n+1 = (1 — 5TL>(I)TL + o, .-

Observe that
0<), <1 and Yd,=00 and o,=0(,).
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Therefore, by Lemma 2.2, ®,, — 0 as n — oo. This implies that the sequence {z,}

converges strongly to z*. This completes the proof.

Remark. Theorem 2.4 is slightly more general than Theorem 2.3. Hence it also
generalizes the results of Liu [5], Xu [10], Deng [3], Chidume [1], Chidume and Osilike

[2] and others to the generalized three-step iteration procedure.

We now investigate the convergence of the generalized Ishikawa type iteration
procedure for fixed points of hemicontractive operators in Hilbert spaces. Our result

is the following.

Theorem 2.5. Let K be a nonempty closed bounded convex subset of a Hilbert
space H. Suppose S, T are uniformly continuous selfmappings of K and T is hemi-

contractive on K. Define sequence {x,} iteratively for arbitrary x; € K by:

Tna1 = @pXp + b, Ty, + ¢, STy,
Yn = a;lajn + b;lSzn + clnvn n>1

" " "
Zn = Q, Ty + 0, TT, + c w,

where {v,}, {wn} are bounded sequences in K and {a,}, {a,}, {a,}, {bn}, {b.}, {b.},
{ca}, {c,}, {c.}, are real sequences in [0,1] satisfying the following:
1°) ap+by+co=a,+b,+c,=a,+b, +c, =1,

%) $h, = oo
3) g o = lim b, = lim b, =0,

4°) ap =: by + Cn, Bp =1 b+ Y =: b, +C,
5°) ¥ anf, = .

Then the sequence {x,} converges strongly to the fixed point of T

Proof. Since T' is hemicontractive, then F(7T') is nonempty. Let z* € F(T).

Then, from our hypothesis, we have:

[Zn1 — 2|
= |lanzn + 0. TYn + Sty — |2
= (1 = an)(@n — %) + an(Tyn — 77) _Cn<Tyn_an)||2
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IN

(1 = an)ll(@n = %) = ca(Tyn = Szn)lI* + anll(Tyn — 27) = ca(Tyn — Sz ||?
—on(1 = an)[[(Tyn — 2*) = (20 — 27)|?

(1 = an)lllzn = 2% + Gl Tyn — Stal?] + anlTyn — 27[1° + 2 Tyn — Sza?]
= (L= an)llzn — 2*I* + 0l Ty — 21> + G| Ty — S |?

= (L= om)llzn — 21" + anllgn — 27 [1* + anllgn — Tynll* + 0n® || Ty — Sza|* .

(2.23)
Continuity of S, T implies that there exists real numbers ¢, ¢s < oo such that :
19 = Tyul* <@ and [Ty — Szul* < g2 -
Let g3 = max[qy, go]. Then (2.23) yields:
Joss =272 = (1= an)llzn — 22+ aullyn — 2|2 + 20005 (2:24)

We also have the following estimates:
1y — =77
@, z, + b, Sz, + v, — 2*||?

(1= Bo)(xn — %) + Bu(S2, — %) — C’IIZ(SZTL - Un)”2

< (1= Bull(@n — %) = ,(Szn = v)I” + Bl (T2 — %) = ¢,(Sz — 0|
=B = B)(Sz — %) = (20 — 27)|1?
< (1=8)llzn - Jj*“2 + ﬂn2||Szn - UHHZ] + BulllSzn — x*Hg + 5712”*9211 - UnHQ]

(1= B)l|rn — x*HZ + Ball Sz — x*HZ + ﬁn2“SZn - UnHz .

(2.25)
Continuity of S on K implies there exists a real number g4 < oo such that
”SZH—"E*“2 < and ||Szn_vn||2 < qa.
Then, from (2.25), we have:
lyn = 2" < (1= Ba)llzn — 2| + 28,qs - (2.26)
Substituting (2.26) into (2.24), we have
* |2
Tpi1 — X
[ 201 — 27| (2.27)

= (1= an)l[(xn —2)? + anl(1 = Bo)lzn — %> 4 280q4] + 2003 -

Let g5 = max[qs, q4]. Then

|Znt1 — "E*HQ = (1 — anfn)|[(z0n — x*)HQ + 200, (B0 + 1)gs - (2.28)
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Putting

o =l — 2P
and
On = nfny 0n = 20,(8n + 1)gs .
Then (2.28) reduces to:
Prnr1 = (1=06n)pn + o0 .

Clearly,
0<6,<1,>0,=00,and g, =0(d,).
Hence by Lemma 2.2, p,, — 0 as n — oo . This implies that {z,} converges strongly

to z*. This completes the proof.

We now consider the situation when the operators 7" and S are both hemicon-
tractive and investigate the convergence of the sequence generated by (1.1) to the

common fixed point of 7" and S, when it exists. We have the following result.

Theorem 2.6. Let K be a nonempty closed bounded convexr subset of a Hilbert
space H. Suppose S, T are uniformly continuous hemicontractive selfmappings of K.
Define sequence {z,} iteratively for arbitrary x, € K by

Tpa1 = @pXp + b, Ty, + STy,

Yo = a, T + b, Sz, + C 0, n>1

Zn = Tp 4+ b, T, + € why
where {v,}, {wn} are arbitrary sequences in K and {a,}, {a,}, {a,}, {b,}, {b,},
(b}, {cn}, {c,}, {c.}, are real sequences in [0, 1] satisfying
1°) a,+b,+co=a,+b, +c, =a,+b +c =1,
2°) Yby=0c0 and limb, = lim b, = lim b, =0,
3°) ani=by4cn, Bpi=b,+c, ,Ymi=0b.+c, and X By = oo.
If S, T have a common fixed point in K, then the sequence {x,} converges strongly to

the common fixed point of S and T.

Proof. Since S, T are hemicontractive, then the fixed point sets F'(S) and F(T)
are nonempty. Let p be a common fixed point of S and 7. By our hypothesis and
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Lemma 2.2., we have the following estimates:

[Zn41 — plI?

lan®n + buTyn + c0ST, — pl|?

= [I(1 = o) (@n — p) + a(TYn — p) = ca(Tyn — S |2

(1 = ) ll(@n = p) = en(Tyn — Swn)[I* + @l (Ty — p) — ca(Tyn — S)|?
— an(l = ap)|(Tyn — p) — (zn —p)|I* -

Observe that a,(1 — «,,) > 0 and cn? < a,? < a,. Therefore, expanding the above

IN

further, yields
[z = pI* < (1= an)ll(zn — p) = a(Tyn — S)
+anl[(Tyn = p) — en(Tyn — Sza) |
< (1= an)llzn = plI” + 4| Tyn — Szal?]
+ [l Tyn = plIP + Gl Tyn — Sanll’] (2.29)
= (1= an)llzn = plI* + clTyn — plI* + 2 Ty — S|

I

< (1= an)llwn = plI* + anllyn — pl®
+ anHyn - TynH2 + a’nHTyn - anHQ :
Since S, T are uniformly continuous on the bounded set K, there exists a positive

real number M; < oo such that
1y = Tynll* < My and || Ty, — Swa||* < M .
Therefore, (2.29) yields
l2ns1 = plI* < (1 = aw)llzn = plI* + anllyn — plI* + 200, M, . (2.30)

We also have the following estimates,
lyn = 2* 11> = llanzn + 0,2 + cuvn — pl?
= (1 = Ba)(@n = p) + Bu(Szn — p) = ,(Sz — va)|?
< (1= Bu)ll(@wn = p) = €, (Sza = va) |* + Ball (S2n = p) = €, (Sz0 — v)|I?
— Bu(1 = Ba)I(Szn — p) — (0 — P)II” -
Since 5,(1 — (,) > 0, expanding further, we have
lyn = 2> < (1= Ba)lllzn = plI* + (1 = Ba)enll Sz — val[?]
+ BalllSzn = Pl + Bucyl|Sza — val[?] (2.31)
= (1= Bu)llwn = pI* + BallSz — plI* + cll Sz — vall* -



124

Observe that ¢, < 3, and S is hemicontractive. Also, continuity of S on K implies

that there exist a positive real number My < oo such that
|20 — Szn|? < My and ||Sz, —v,]|> < My .

Then from (2.31) we have:

lyn —pll < (1= Ba)llzn — plI? + Bullzn — pII?
+Bnllzn — Szall? + |S2n — val)? (2.32)

= (1= Bu)llzn = plI* + Bullzn — plI* + 28, Ms .
We also have the following estimates:
2w = pII* = llayzn + b, T + cpwn — pl?
= (1 = 7)) (@0 = p) + 3 (Tn — p) = (T2 — wi)||?
< (1= 7)ll(zn = p) = c(Tan —wi)|?
+ [Ty —p) = (T — wa) I

Expanding further, we have

|20 — p”2 < (1= y)[l|zn — pH2 + C;;”T-fn - WnH2]
+ Wl Tzn — pl* + el T2 — wpl?]
=(1- '7n)||xn - pH2 + 'Vn”Txn - p||2 + Clv;”Tzn - wn||2 .

Continuity of T' on the bounded set K implies that there exists a positive real number

M3 < oo such that
Tz, — %> < M3 and ||Twz, —w,|]* < Ms .
Therefore, since c;; < Yn, we have
120 = pII* < (1 = va)llzn = pI* + 290 M5 . (2.33)

Substituting (2.33) into (2.32) yields,

lyn = 2lI* < (1= Bo)llzn = plI* + Bu(l = va)llzn = pII* + 28070 Ms + 26, Mo

= (1= Buy)llzn — p“2 + 280 (Y M My)
(2.34)
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Substitution (2.34) into (2.30), we have
|z = plI? < (1= aw)llzn = plI* + an(l = Baya) |20 — pII?
+200, O (Y M3 + Ms) + 20, M,y (2.35)
= (1 = anfBnyn)|Tn — plI* + 200, My + 200, 3y (Y M3 + M) .
Let M = max [2M,2M,, 2M3], then we have

Hxn—&-l _p”2 <(1- anﬁn%)ﬂﬂﬁn - p”2 + an[l + BV + 1>]M . (2'36)

Now, setting

Pn = ”xn - x*HQa On = O ByYn, On = O‘n[l + ﬁn(%L + 1)]M7

then (2.36) reduces to:
Pnt1 = (1 —=0n)pn + 0on
Clearly,
0<0, <1, Yo0,=00 and o, =0(3,) .
Hence by Lemma 2.2, p, — 0 as n — oo. This implies that {z,} converges strongly

to p - the common fixed point of S and T'. This completes the proof.

Remark. Theorem 2.6. is a refinement of some previous relevant results for
hemicontractions including the result of Owojori and Imoru [6], to common fized

points of hemicontractive operators in Hilbert spaces.

We now consider the situation when in (1.1) the operator S is nonexpansive and

T is hemicontractive. Our result is the following ...

Theorem 2.7. Let B, K, T and the sequence {x,} be as defined in Theorem 2.6.
Suppose S : K — K is nonexpansive. Replace the condition 3°) on the parameters
replaced with

S anByre = 00 and 20,% < (14 ap)nfBeyn < 1+ 20,2
And suppose all other conditions are satisfied. If S, T have a common fixed point in

K, then the sequence {x,} converges strongly to the common fixed point of T and S.

Proof. Since K is uniformly convex and S is nonexpansive, then, F(S) is

nonempty. Also, T is hemicontractive implies that F(T) is nonempty. Let z* be
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the common fixed point of S and T. From our hypothesis and by Lemma 2.1, we
have the following estimates,
21 = 2|7 = llan®n + baTyn + cnSzn — 2|
= [I(1 = an) (@ — 2%) + an(Ty — 2*) = ca(Tyn — Sz4) |
< (1= an)l|(@n = 2P + ol Tyn — 27| + | Ty — Sza)|I* -
But T is hemicontractive and ¢? < «,,?. Therefore,
[z = 27 < (1= an)llen — 2*|° + anllyn — 2*||?
+ anllyn = Tynll® + @n®||Tyn — S ®
= (1= an)llzn — 2" + anllyn — 27|
+ ol — Tynll* + [Ty — 2%) = (Szn — 27)|1?
< (L= an)llan — 2P + anllyn = 277 + anllyn — Tyall®
+ 0?[|Tyn — 27|° + || Sz — 27) || -
Since T is hemicontractive and S is nonexpansive, we have
[ = 2|7 < (1= an)llzn = 2*[1* + anllyn — 2711 + anllgn — Tyall®

+ a"2||yn o $*||2 + an2|lyn - T'ynH2 + an2||xn - $*||2

(2.37)
= [1 — an(l — o)l — ‘T*HZ + an (1 + an)[|yn — :E*||2
+ O‘n(l + an)”iyn - Tyn||2 .
Estimate (2.31) is also valid here. Observing that ¢, < 3, we have
yn — 37*H2 < (1 =Bu)llzn — x*HQ + Bl Szn — x*HQ + Bl Szn — Un”z . (2.38)

Since S is nonexpansive, then
1Sz — 2*[|* < [z — 27| .

Also continuity of S on the bounded set K implies that there exists a real number

Ry < oo such that ||Sz, — u,]|* < Re. Substituting into (2.38) yields
g — 2I1* < (1 = Bo)llzn — 2"[1* + Ballzn — 2™||* + B Rz - (2.39)
Substituting the equation (2.33) i.e.

“Zn - JZ*||2 <(1- Vn)Hmn - x*Hz + 27, M3
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(which also holds in this case) into (2.39), we obtain

lyn = 271* < (1= Bo)llzn — 2|1 + Bu(L = o) |20 — 27(|° + 2807 Ms + S Ry

(2.40)

where R, < oo is a real number such that Ry = max [Mj3, Ry].
Substitute (2.40) into (2.37) and observing that 7" is continuous on the bounded set K
implies that there exists a positive real number Rs < oo such that ||y, — Ty.||* < Rs
we have
Jnss — 22 < [(1 = an(1 = @)z — o2
+ an(1+ an)[(1 = B ln — 2 + Buln + D]
+ a,(1+ a,)Rs
= [1—an(l = an) + an(l+ o) (1 = Boya)llzn — %[> (2.41)
+ an (14 ) [Bn(ym + 1) + 1| R
= [1 = an{(1 + ) Buyn — 200 }[Jzn — 22
+a, (14 ay) [Ba(ym + 1) + 1] R

where Rg < oo is a real number such that Rg = max[Ry4, Rs] .

Now, set

D, = ||z, — 2*||*, 0p = n{(1+ an)Buym — 200}

and

on = (14 a,)[Bn(ym + 1)+ 1]Rs .

Then (2.14) reduces,

Observe that 0 < d,, < 1 and o,, = 0(d,,). Also 30, = oo from hypothesis.
Hence by Lemma 2.2, ®,, — 0 as n — oo. This implies that {z,} converges strongly

to z* - the common fixed point of S and 7. This completes the proof.

Remark We observe that our results in this manuscript can be readily extended
to uniformly smooth Banach spaces, especially the L, spaces, p > 2. This is evident
by adopting similar techniques as in our proofs above and applying the equivalence of

the inequality in Lemma 1.1 for L, spaces in the expansions of expressions which are
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likely to occur in the appropriate proofs. The equivalent inequality in L, spaces, p > 2

s given by

Az + (1= Ny — 2" < [L=Nlly = 2" + AMp = Dllz — 2* = AL = Alflz — y|?

for all z,y,z € L, and \ € [0,1].
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