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Abstract. We obtain sharp bounds on the fifth and sixth coefficients of α-close-to-convex
functions introduced in [2].

1. INTRODUCTION

Let A be the class of functions of the form:

f(z) = z + a2z
2 + ...

which are analytic in the unit disk U = {z ∈ C: |z| < 1}. In [2], Chichra considered

functions f ∈ A for which f(z)f ′(z)/z 6= 0 for z ∈ U , and if for some nonnegative

real number α, there exists a starlike function:

φ(z) = z + b2z
2 + ...

such that

Re

{
(1− α)

zf ′(z)

φ(z)
+ α

(zf ′(z))′

φ′(z)

}
> 0.
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The above geometric condition implies that the term in the curly brackets belongs

to the class P of analytic functions:

p(z) = 1 + p1z + ...

which have positive real part in U . He called functions of this type α-close-to-convex

and denoted the class by Cα. Interestingly, the family of functions includes two well

known ones. These are the classes of close-to-convex and convex functions, which

respectively correspond to C0 and C∞ (see [2]). Among others, he proved the following

inequalities:

Theorem 1 [2]. Let f(z) ∈ Cα. Then

|a2| ≤ 2 + α

1 + α
;

|a3| ≤ 9 + 23α + 6α2

3(1 + α)(1 + 2α)
;

|a4| ≤ 4 + 22α + 34α2 + 6α3

4(1 + α)(1 + 2α)(1 + 3α)
.

The inequalities are sharp.

He remarked that his method might not be easily employed to obtain bounds

on higher coefficients in this family of functions. Apart from his efforts, the present

author is not aware of any further development on the higher coefficients of this

important family of functions. And as it is well known, the coefficient problem in

univalent functions theory is ever demanding attention. In this note we visit the old

problem of Chichra and obtain the best possible upper bounds for the fifth and sixth

coefficients of functions of the class Cα. Our results are the following inequalities:

Theorem 2. Let f(z) ∈ Cα. Then

|a5| ≤ 25 + 238α + 755α2 + 902α3 + 120α4

5(1 + α)(1 + 2α)(1 + 3α)(1 + 4α)
;

|a6| ≤ 6 + 83α + 418α2 + 951α3 + 955α4 + 120α5

(1 + α)(1 + 2α)(1 + 3α)(1 + 4α)(1 + 5α)
.
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The inequalities are sharp. Equalities in both cases are attained for the function

f(z) =





∫ z

0

1

α
t−1/α(1− t)2(1/α−1)

(∫ t

0

ξ1/α−1(1 + ξ)2

(1− ξ)2(1/α+1)
dξ

)
dt, if α 6= 0;

∫ z

0

1 + t

(1− t)3
dt, if α = 0.

In our proof, which is presented in the next section, we shall depend on the

well known inequalities (Caratheodory lemma and coefficient functionals for starlike

functions):

|pn| ≤ 2, n ≥ 1; |bn| ≤ n, n ≥ 2; |b3 − λb2
2| ≤ 3− 4λ, λ ≤ 3

4
(1)

(λ real) and the following lemma which concerns bounds on certain other functionals

in the coefficient space of the family of starlike functions.

Lemma 1 [1]. For every starlike function φ(z) and real numbers µ, ρ, σ, τ and

ω, we have the sharp inequalities:

|b4 − µb2b3| ≤ 4− 6µ; µ ≤ 5

9
,

|b4 − µb2b3 − ρb3
2| ≤ 4− 6µ− 8ρ; 5− 9µ− 12ρ ≥ 0,

|b5 − σb2
2b3| ≤ 5− 12σ; σ ≤ 2

9
,

|b5 − τb2b4 − ωb2
3| ≤ 5− 8τ − 9ω; 2− 5τ − 9ω ≥ 0.

The proof of the above lemma, which was presented in [1], made use of the equal-

ity p2 = 1
2
p2

1 + ε(2 − 1
2
|p1|2), |ε| ≤ 1, which is a consequence of the well known

Caratheodory-Toeplitz inequality |p2 − 1
2
p2

1| ≤ 2 − 1
2
|p1|2. The extremal function is

the Koebe function (up to rotation): k(z) = z/(1− z)2.

Now the proof of the main result.
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2. PROOF OF THE MAIN RESULT

Let f ∈ Cα. Then there exists an analytic function p ∈ P and a starlike function

φ(z) such that

(1− α)zf ′(z)φ′(z) + αφ(z)(zf ′(z))′ = p(z)φ(z)φ′(z).

The right hand side of the above equation gives

p(z)φ(z)φ′(z) = z + c2z
2 + ...

where

cn =
n−1∑

k=0

qk+1bn−k; n ≥ 2,

and

qk =
k−1∑

j=0

(k − j)pjbk−j; (p0 = b1 = q1 = 1). (2)

Similarly the left hand side yields

(1− α)zf ′(z)φ′(z) + αφ(z)(zf ′(z))′ = z + d2z
2 + ...

where

dn =
n−1∑

k=0

(n− k)[(n− 2k − 1)α + k + 1]bk+1an−k; n ≥ 2.

Comparing the coefficients cn and dn we obtain the recurrence relation:

n[1 + (n− 1)α]an =
n−1∑

k=0

bn−kqk+1 −
n−1∑

k=1

(n− k)[(n− 2k − 1)α + k + 1]bk+1an−k,

with q1 = 1, a1 = b1 = 1 and n ≥ 2. Thus we have

2(1 + α)a2 = (α− 1)b2 + q2, (3)

3(1 + 2α)a3 = 2(α− 1)b3 + b2q2 + q3 − 4a2b2, (4)

4(1 + 3α)a4 = 3(α− 1)b4 + b3q2 + b2q3 + q4 + 2(3− α)a2b3 − 3(2 + α)a3b2 (5)

5(1+4α)a5 = 4(α−1)b5+b4q2+b3q3+b2q4+q5+4(α−2)a2b4−9a3b3−8(1+α)a4b2, (6)
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6(1 + 5α)a6 = 5(α− 1)b6 + b5q2 + b4q3 + b3q4 + b2q5 + q6

+ 2(3α− 5)a2b5 + 3(α− 4)a3b4 − 4(3 + α)a4b3 − 5(2 + 3α)a5b2, (7)

and so on, and where from (2), q2 = 2b2 +p1, q3 = 3b3 +2b2p1 +p2, q4 = 4b4 +3b3p1 +

2b2p2 + p3, q5 = 5b5 +4b4p1 +3b3p2 +2b2p3 + p4 and q6 = 6b6 +5b5p1 +4b4p2 +3b3p3 +

2b2p4 + p5. Using these in (3) - (7) we get

2(1 + α)a2 = (1 + α)b2 + p1, (8)

3(1 + α)(1 + 2α)a3 = (1 + α)(1 + 2α)b3 + (1 + 3α)b2p1 + (1 + α)p2, (9)

4(1 + α)(1 + 2α)(1 + 3α)a4 = (1 + α)(1 + 2α)(1 + 3α)b4

+ (1 + 2α)(1 + 5α)b3p1 + (1 + α)(1 + 5α)b2p2

+ (1 + α)(1 + 2α)p3 + α(α− 1)b2
2p1, (10)

5A0a5 = A0b5 +A1b4p1 +A2b3p2 +A3b2p3 +A4p4 +A5b2b3p1 +A6b
2
2p2 +A7b

3
2p1, (11)

where A0 = (1 + α)(1 + 2α)(1 + 3α)(1 + 4α), A1 = (1 + 2α)(1 + 3α)(1 + 7α),

A2 = (1+α)(1+3α)(1+8α), A3 = (1+α)(1+2α)(1+7α), A4 = (1+α)(1+2α)(1+3α),

A5 = 2α(α− 1)(2 + 5α), A6 = 2α(α2 − 1) and A7 = −A6, and

6B0a6 = B0b6 + B1b5p1 + B2b4p2 + B3b3p3 + B4b2p4 + B5p5 + B6b4b2p1

+ B7b
2
3p1 + B8b

2
2b3p1 + B9b

4
2p1 + B10b3b2p2 + B11b

3
2p2 + B12b

2
2p3, (12)

with B0 = (1+α)(1+2α)(1+3α)(1+4α)(1+5α), B1 = (1+2α)(1+3α)(1+4α)(1+9α),

B2 = (1 + α)(1 + 3α)(1 + 4α)(1 + 11α), B3 = (1 + α)(1 + 2α)(1 + 4α)(1 + 11α),

B4 = (1 + α)(1 + 2α)(1 + 3α)(1 + 9α), B5 = (1 + α)(1 + 2α)(1 + 3α)(1 + 4α),

B6 = 6α(α− 1)(1 + 3α)2, B7 = 4α(α− 1)(1 + 2α)(1 + 4α), B8 = α(1−α)(11 + 45α +

34α2), B9 = 2α(α2 − 1)(2 + 3α), B10 = −10α− 53α2 − 73α3 − 44α4, B11 = −B9 and

B12 = 3α(α2 − 1)(1 + 2α).

From (8) - (10) we can obtain the inequalities of Chichra (Theorem 1) using the

inequalities (1).
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Now for n = 5, if α ∈ [1,∞), we define λ1 = −A6/A2 and λ2 = −A7/A5 and then

write (11) as

5A0a5 = A0b5 + A1b4p1 + A2p2{b3 − λ1b
2
2}+ A3b2p3 + A4p4 + A5b2p1{b3 − λ2b

2
2},

and for α ∈ [0, 1], we define µ = −A5/A1 and rewrite (11) as

5A0a5 = A0b5 + A1p1{b4 − µb2b3}+ A2p2{b3 − λ1b
2
2}+ A3b2p3 + A4p4 + A7b

3
2p1.

It is easily verified that for all α ≥ 0, the real numbers λ1, λ2 ≤ 3
4

in the two

equations above. So also µ ≤ 5
9
. Thus using the inequalities (1) and the first of

Lemma 1, the two equations above both yield the first inequality of our theorem,

that is, the upper bound for a5. Next we proceed to compute the bound for a6. We

define λ1 = −B12/B3, λ2 = −B9/B8, µ = −B10/B2, ρ = −B11/B2, σ = −B8/B1,

τ = −B6/B1, and ω = −B7/B1, and if α ∈ [1,∞) we write (12) as

6B0a6 = B0b6 + B1p1{b5 − σb2
2b3}+ B2p2{b4 − µb2b3 − ρb3

2}
+ B3b3p3 + B4b2p4 + B5p5 + B6b4b2p1 + B7b

2
3p1 + B9b

4
2p1 + B12b

2
2p3,

and for α ∈ [0, 1], we rewrite (12) as

6B0a6 = B0b6 + B1p1{b5 − τb2b4 − ωb2
3}+ B2p2{b4 − µb2b3}

+ B3p3{b3 − λ1b
2
2}+ B4b2p4 + B5p5 + B8b

2
2p1{b3 − λ2b

2
2}+ B11b

3
2p2.

It is again easy to verify that for all α ≥ 0, the real numbers λ1, λ2, µ, ρ, σ, τ , and

ω defined in the preceding two equations all satisfy (as appropriate) the conditions

of Lemma 1 and the inequalities (1). Thus the bound for a6 follows by appropriately

applying the inequalities (1) and Lemma 1.

The extremal function is obtained by choosing φ(z) = z/(1 − z)2 and

p(z) = (1 + z)/(1− z) in the integral representation formulae:

f(z) =





∫ z

0

1

α
t−1[φ(t)](1/α−1)

(∫ t

0
[φ(ξ)](1/α−1)φ′(ξ)p(ξ)dξ

)
dt if α 6= 0,

∫ z

0
t−1φ(t)p(t)dt if α = 0.

(see [2]). This completes the proof.
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3. REMARK

Here we guide readers to the computation of the coefficients of the given extremal

function. After simple calculation, we can write the extremal function in series form

as:

f(z) = z +
∞∑

n=2

(
ηn−1

n
+

c + 1

c + 2

ηn−2G1

n
+ ... +

c + 1

c + n

η1Gn−2

n
+

c + 1

c + n

Gn−1

n

)
zn

where

c =
1

α
− 1,

ηn =
(−1)n

n!

n∏

j=1

(2c− j + 1),

G1 = 2 + m1, Gn = mn−2 + 2mn−1 + mn, n ≥ 2;

with

mn =
1

n!

n∏

j=1

(2c + j + 3), m0 = 1.

By careful computation, we find that

a5 =
c(c− 1)(2c− 1)(2c− 3)

30
− c(2c− 1)(2c− 2)(c + 1)(2c + 6)

15(c + 2)

+
c(2c− 1)(c + 1)(2c2 + 13c + 19)

5(c + 3)
− 2c(c + 1)(4c3 + 42c2 + 134c + 132)

15(c + 4)

+
(c + 1)(4c4 + 60c3 + 311c2 + 669c + 510)

30(c + 5)
.

This gives

a5 =
A− 2B + 6C − 4D + E

30(c + 2)(c + 3)(c + 4)(c + 5)

where

A = 4c8 + 44c7 + 127c6 − 85c5 − 629c4 + 41c3 + 858c2 − 360c,

B = 8c8 + 116c7 + 596c6 + 1160c5 + 32c4 − 1996c3 − 636c2 − 720c,

C = 4c8 + 72c7 + 509c6 + 1769c5 + 3029c4 + 1979c3 − 482c2 − 760c,

D = 4c8 + 86c7 + 760c6 + 3572c5 + 9628c4 + 14846c3 + 12072c2 + 3960c,
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and

E = 4c8 + 100c7 + 1051c6 + 6079c5 + 21181c4 + 45505c3 + 58764c2 + 41556c + 12240

so that

a5 =
25c4 + 338c3 + 1619c2 + 3226c + 2040

5(c + 2)(c + 3)(c + 4)(c + 5)

and finally, setting c = 1/α− 1, we have

a5 =
25 + 238α + 755α2 + 902α3 + 120α4

5(1 + α)(1 + 2α)(1 + 3α)(1 + 4α)
.

As above, a6 can be computed mutatis mutandis. Bounds on the higher coefficients

of functions in the class Cα can also be found using the recurrence relation we have

obtained, after the determination of bounds on relevant emerging functionals in the

family of starlike functions, which are associated with the desired higher coefficients.
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