
13

Kragujevac J. Math. 30 (2007) 13–26.

ABOUT SOME TYPES OF BOUNDARY VALUE

PROBLEMS WITH INTERFACES
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Abstract. We report results concerning different types of boundary value problems with
interfaces. A broad class of such problems is defined. The corresponding abstract prob-
lems are investigated and some a priori estimates are presented. Intrinsic function spaces
containing solutions of considered problems are introduced.

1. INTRODUCTION

Interface problems occur in many applications in science and engineering [16],

[18]. Let us mention, for example, heat transfer in presence of concentrated capacity,

oscillations with concentrated mass, Pupin’s induction coils etc. Such kind of prob-

lems can be modelled by partial differential equations with discontinuous or singular

input data. First partial derivatives of their solutions have discontinuities across one

or several interfaces, which have lower dimension than the domain where the problem

is defined. Numerical methods designed for the solution of problems with smooth

solutions do not work efficiently for the interface problems.
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In the present work, we report results concerning different types of boundary value

problems with interfaces [5], [7]-[13], [21]. In particular, we analyze different ways to

set an interface problem (strong form of equation with singular coefficients, problem

with conjugation conditions), abstract models, a priori estimates, intrinsic function

spaces containing the solution etc.

2. PARTIAL DIFFERENTIAL EQUATIONS WITH SINGULAR COEFFICIENTS

Let Ω be a bounded domain in R
n with the boundary Γ = ∂Ω. Let S ⊂ Ω be a

hypersurface of dimension n− 1 (interface) dividing Ω into two disjoint parts Ω1 and

Ω2. As a model problem we consider the following elliptic boundary value problem

−

n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ [c(x) + k(x)δS(x)]u = f(x), x ∈ Ω,

u(x) = 0, x ∈ Γ,

(1)

where

aij = aji,
n∑

i,j=1

aijyiyj ≥ c0

n∑

i=1

y2i , c0 > 0,

c(x) ≥ c1 > 0, k(x) ≥ k0 > 0,

and δS(x) is the Dirac distribution [19] concentrated on S.

We also consider analogous initial boundary value problems of parabolic

[c(x) + k(x)δS(x)]
∂u

∂t
−

n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= f(x, t), (x, t) ∈ Q,

u(x, t) = 0, (x, t) ∈ Γ× (0, T ),

u(x, 0) = u0(x), x ∈ Ω

(2)

and hyperbolic types

[c(x) + k(x)δS(x)]
∂2u

∂t2
−

n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= f(x, t), (x, t) ∈ Q,

u(x, t) = 0, (x, t) ∈ Γ× (0, T ),

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω,

(3)

where Q = Ω× (0, T ).
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3. CONJUGATION CONDITIONS

The considered interface problems can be formulated in an alternative manner,

without explicit use of the Dirac distribution. It is well known that for a piecewise

smooth function ϕ ∈ C1[a, ξ] ∩ C1[ξ, b] the derivative in distributional sense can be

expressed in the following way [19]:

ϕ′(x) = {ϕ′(x)}+ [ϕ]ξ δ(x− ξ) (4)

where {ϕ′(x)} is the derivative in the classic sense and [ϕ]ξ = ϕ(ξ + 0)− ϕ(ξ − 0) is

the jump of the function ϕ in the point ξ.

Because of δS(x) = 0 for x 6∈ S from (1) immediately follows

−
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u = f(x), x ∈ Ω1 ∪ Ω2,

u(x) = 0, x ∈ Γ,

(5)

Taking into account (4), we conclude that on the interface S the following conjugation

conditions are satisfied

[u]S = 0,

[
∂u

∂ν

]

S

= ku, x ∈ S, (6)

where ∂u
∂ν

denote the co-normal derivative:

∂u

∂ν
=

n∑

i,j=1

aij(x)
∂u

∂xj

cos(ν, xi).

Analogously, the parabolic initial boundary value problem (2) can be represented

in an equivalent form

c(x)
∂u

∂t
−

n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= f(x, t), (x, t) ∈ Q1 ∪Q2,

u(x, t) = 0, (x, t) ∈ Γ× (0, T ),

[u]S = 0,

[
∂u

∂ν

]

S

= k
∂u

∂t
, x ∈ S, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(7)
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where Qi = Ωi × (0, T ), while the hyperbolic problem (3) reduces to

c(x)
∂2u

∂t2
−

n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= f(x, t), (x, t) ∈ Q1 ∪Q2,

u(x, t) = 0, (x, t) ∈ Γ× (0, T ),

[u]S = 0,

[
∂u

∂ν

]

S

= k
∂2u

∂t2
, x ∈ S, t ∈ (0, T ),

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω.

(8)

Our aim is to investigate the relation between differentiable properties of the

solutions of the boundary value problems (1)-(3) and the smoothness of its coefficients

and right hand sides. It will be shown that this task can be resolved using methods of

functional analysis to construct a priori estimates for the solutions of linear equations

and the Cauchy problems for linear differential equations in Hilbert space.

4. ABSTRACT MODELS

Let H be a real separable Hilbert space endowed with the inner product (·, ·) and

norm ‖·‖. Let A be an unbounded, selfadjoint, positive definite linear operator acting

in H, with domain D(A) dense in H. The product (u, v)A = (Au, v) (u, v ∈ D(A))

satisfies the inner product axioms. Reinforcing D(A) in the norm ‖u‖A = (u, u)
1/2
A

we obtain so called energy space HA ⊂ H. The inner product (u, v) continuously

extends to H∗
A × HA, where H∗

A = HA−1 is the adjoint space for HA. The spaces

HA, H and HA−1 form Gel’fand triple: HA ⊂ H ⊂ HA−1 . Operator A extends to a

mapping A : HA → HA−1 . There exists unbounded selfadjoint positive definite linear

operator A1/2 such that D(A1/2) = HA and (u, v)A = (Au, v) = (A1/2u, A1/2v) (see

[15], [17]).

For 1 ≤ p ≤ ∞ we define the Lebesgue space Lp((a, b), H) of functions mapping

real interval (a, b) into H, with the norm
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‖u‖Lp((a,b),H) =
(∫ b

a

‖u(t)‖pdt
)1/p

, 1 ≤ p <∞

‖u‖L∞((a,b),H) = sup
t∈(a,b)

ess ‖u(t)‖

We also introduce the spaces of continuous functions C([a, b], H) and Ck([a, b], H)

with the norms:

‖u‖C([a,b],H) = max
t∈[a,b]

‖u(t)‖, ‖u‖Ck([a,b],H) = max
0≤j≤k

‖u(j)‖C([a,b],H),

where u(j)(t) = dju/dtj, and the Sobolev spaces W k
p ((a, b), H) with the norms [22]:

‖u‖W k
p ((a,b),H)

=
( k∑

j=0

‖u(j)‖pLp((a,b),H)

)1/p
, k = 0, 1, 2, . . . , 1 ≤ p <∞,

‖u‖W k+α
p ((a,b),H) = (‖u‖p

W k
p ((a,b),H)

+ |u(k)|pWα
p ((a,b),H)

)1/p, 0 < α < 1,

|u|Wα
p ((a,b),H) =

(∫ b

a

∫ b

a

‖u(t)− u(t′)‖p

|t− t′|1+αp
dt dt′

)1/p
,

with standard modification for p =∞.

Let B be another unbounded, selfadjoint, positive definite linear operator acting in

H, such that D(A) ⊂ D(B) ⊂ H. In general, A and B are noncommutative. We as-

sume that the quotient ‖u‖A/‖u‖B is unbounded on D(A). Under these assumptions

there exists a countable set of eigenvalues {λi} of the spectral problem

Au = λBu. (9)

All eigenvalues are positive and λi →∞ when i→∞. Further,

‖u‖A ≥
√

λ1 ‖u‖B , ‖u‖AB−1A ≥
√

λ1 ‖u‖A ,

‖u‖(AB−1)nA ≥
√

λ1 ‖u‖(AB−1)n−1A , n = 2, 3, . . .

where λ1 is the first (minimal) eigenvalue of the spectral problem (9).

We consider the following linear equation of the first kind in H

(A+B)u = f, (10)
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which can be treated as an abstract model for the boundary value problem (1). Its

solution satisfies the following a priori estimates:

‖u‖B ≤ ‖f‖A−1BA−1 , (11)

‖u‖A ≤ ‖f‖A−1 , (12)

‖u‖AB−1A ≤ ‖f‖B−1 , (13)

etc. Note that (11) and (12) also hold even for nonnegative B.

We also consider the following abstract Cauchy problem

Bu′ + Au = f(t), 0 < t < T ; u(0) = u0 (14)

where u(t) is an unknown function from (0,T) into H. Setting B1/2u = v equation

(14) reduces to more simple

v′ + Λv = g(t), 0 < t < T ; v(0) = v0 (15)

where Λ = B−1/2AB−1/2, g = B−1/2f and v0 = B1/2u0. Using the known a priori

estimates for the solution of the problem (15) (see [15], [14], [6])

∫ T

0

‖v(t)‖2 dt ≤M
(
‖v0‖

2
Λ−1 +

∫ T

0

‖Λ−1 g(t)‖2 dt
)
,

∫ T

0

‖v(t)‖2Λ dt+

∫ T

0

∫ T

0

‖v(t)− v(t′)‖2

|t− t′|2
dt dt′ ≤M

(
‖v0‖

2 +

∫ T

0

‖g(t)‖2Λ−1 dt
)
,

∫ T

0

(‖Λv(t)‖2 + ‖v′(t)‖2) dt ≤M
(
‖v0‖

2
Λ +

∫ T

0

‖g(t)‖2 dt
)
, etc.

we immediately obtain the corresponding a priori estimates for the problem (14):

‖u‖2L2((0,T ),HB)
≤M (‖u0‖

2
BA−1B + ‖f‖2L2((0,T ),HA−1BA−1 )

), (16)

‖u‖2L2((0,T ),HA)
+ ‖u‖2

W
1/2
2

((0,T ),HB)
≤M (‖u0‖

2
B + ‖f‖2L2((0,T ),HA−1 )

), (17)

‖u‖2L2((0,T ),HAB−1A)
+ ‖u‖2W 1

2
((0,T ),HB)

≤M (‖u0‖
2
A + ‖f‖2L2((0,T ),HB−1 )

), (18)
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etc. Here and in the sequel M denotes positive generic constant which can take

different values in different formulas. Note that obtained a priori estimates con-

tain whole information about the relation between the differentiability of the so-

lution of Cauchy problem (14) and the smoothness properties of input data. For

example, from (18) immediately follows: if u0 ∈ HA and f ∈ L2(0, T ; HB−1) then

u ∈ L2((0, T ), HAB−1A) ∩W 1
2 ((0, T ), HB). Estimates (16) and (17) are satisfied also

for nonnegative B.

Finally, let us consider the Cauchy problem for the second order abstract differ-

ential equation

Bu′′ + Au = f(t), 0 < t < T ; u(0) = u0; u′(0) = u1. (19)

Similarly as in the previous case one obtains the following a priori estimates for its

solution

‖u‖C([0,T ],HB) ≤M (‖u0‖B + ‖u1‖BA−1B + ‖f‖L1((0,T ),HA−1 )), (20)

‖u‖C([0,T ],HA) + ‖u
′‖C([0,T ],HB) ≤M (‖u0‖A + ‖u1‖B + ‖f‖L1((0,T ),HB−1 )), (21)

etc. Estimate (16) also holds for nonnegative B.

5. IDENTIFICATION OF FUNCTION SPACES AND NORMS

Let us choose H = L2(Ω). Then the boundary value problem (1) reduces to the

abstract form (10), where

Au = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
, Bu = [c(x) + k(x)δS(x)]u.

Analogously, the initial boundary value problem (2) reduces to the abstract Cauchy

problem (14), while the problem (3) reduces to (19).

For u ∈ D(A) = W 2
2 (Ω)∩

◦

W 1
2 (Ω) using partial integration we get

‖u‖2A =

∫

Ω

n∑

i,j=1

aij(x)
∂u

∂xi

∂u

∂xj

dx.
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For aij ∈ L∞(Ω) under the assumption of strong ellipticity one immediately obtains

‖u‖A ³ ‖u‖W 1
2
(Ω) i.e. M1 ‖u‖W 1

2
(Ω) ≤ ‖u‖A ≤M2 ‖u‖W 1

2
(Ω)...

In such a way, we conclude that HA =
◦

W 1
2 (Ω). Consequently, HA−1 = H∗

A = (
◦

W 1
2

(Ω))∗ = W−1
2 (Ω) and

‖u‖A−1 ³ ‖u‖W−1

2
(Ω).

If c ∈ L∞(Ω), k ∈ L∞(S), c(x) ≥ c1 > 0 and k(x) ≥ k0 > 0 then

‖u‖2B =

∫

Ω

c(x)u2(x) dx+

∫

S

k(x)u2(x) dS ³ ‖u‖2L2(Ω)
+ ‖u‖2L2(S)

.

In such a way HB = L2(Ω) ∩ L2(S), HB−1 = (L2(Ω) ∩ L2(S))
∗ and

‖u‖B−1 ³ sup
v∈L2(Ω)∩L2(S)

|HB−1
〈u, v〉HB

|

(‖v‖2L2(Ω)
+ ‖v‖2L2(S)

)1/2
.

Here HB−1
〈u, v〉HB

denotes the duality pairing in HB−1 ×HB.

In addition to the previous assumptions, let aij ∈ W 1
∞(Ω). Then

‖u‖2AB−1A ³ |u|
2
W 2

2
(Ω1)

+ |u|2W 2
2
(Ω2)

+ ‖u‖2W 1
2
(Ω).

In such a way HAB−1A = W 2
2 (Ω1) ∩ W 2

2 (Ω2)∩
◦

W 1
2 (Ω), HA−1BA−1 = (W 2

2 (Ω1) ∩

W 2
2 (Ω2)∩

◦

W 1
2 (Ω))

∗ and

‖u‖A−1BA−1 ³ sup

v∈W 2
2
(Ω1)∩W 2

2
(Ω2)∩

◦

W 1
2
(Ω)

|HA−1BA−1
〈u, v〉HAB−1A

|

(|u|2
W 2

2
(Ω1)

+ |u|2
W 2

2
(Ω2)

+ ‖u‖2
W 1

2
(Ω)

)1/2
.

Finally, the norm ‖u‖BA−1B can be estimated as

‖u‖BA−1B = ‖Bu‖A−1 ³ ‖u+ u δS‖W−1

2
(Ω) .
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6. DEFINITION OF INTRINSIC FUNCTION SPACES

A priori estimates (11)-(13), (16)-(18) and (20)-(21) implicitly define intrinsic

function spaces containing the solutions of considered interface problems. In the el-

liptic case, such spaces are Sobolev-like spaces W̃ k
2 (Ω) defined in the following manner:

W̃ 0
2 (Ω) = L̃2(Ω) = L2(Ω) ∩ L2(S),

W̃ 1
2 (Ω) =

◦

W 1
2 (Ω),

W̃ k
2 (Ω) = W k

2 (Ω1) ∩W k
2 (Ω2)∩

◦

W 1
2 (Ω), k = 2, 3, . . .

In the parabolic case we define anisotropic Sobolev-like spaces

W̃
k,k/2
2 (Q) = L2((0, T ), W̃

k
2 (Ω)) ∩W

k/2
2 ((0, T ), L̃2(Ω)), k = 0, 1, 2, . . .

The a priori estimates (11)-(13) can now be rewritten as

‖u‖L̃2(Ω)
≤M ‖f‖(W̃ 2

2
(Ω))

∗ , (22)

‖u‖W̃ 1
2
(Ω) ≤M ‖f‖(W̃ 1

2
(Ω))

∗

(
i.e. ‖u‖ ◦

W 1
2
(Ω)
≤M ‖f‖W−1

2
(Ω)

)
, (23)

‖u‖W̃ 2
2
(Ω) ≤M ‖f‖(L̃2(Ω))

∗ . (24)

Analogously, the estimates (16)-(18) reduce to

‖u‖2
W̃ 0,0

2
(Q)
≤M (‖u0 + u0δS‖

2
W−1

2
(Ω)

+ ‖f‖2
L2((0,T ),(W̃ 2

2
(Ω))∗)

), (25)

‖u‖2
W̃

1,1/2
2

(Q)
≤M (‖u0‖

2
L̃2(Ω)

+ ‖f‖2
L2((0,T ),W

−1

2
(Ω))

), (26)

‖u‖2
W̃ 2,1

2
(Q)
≤M (‖u0‖

2
◦

W 1
2
(Ω)

+ ‖f‖2
L2((0,T ),(L̃2(Ω))∗)

), (27)

while the estimates (20)-(21) reduce to

‖u‖C([0,T ],L̃2(Ω))
≤M (‖u0‖L̃2(Ω)

+‖u1 + u1δS‖W−1

2
(Ω) + ‖f‖L1((0,T ),W

−1

2
(Ω))),

(28)

‖u‖
C([0,T ],

◦

W 1
2
(Ω))

+
∥∥∥∂u
∂t

∥∥∥
C([0,T ],L̃2(Ω))

≤

≤M (‖u0‖ ◦

W 1
2
(Ω)

+ ‖u1‖L̃2(Ω)
+ ‖f‖L1((0,T ),(L̃2(Ω))∗)

).
(29)



22

7. SOME OTHER INTERFACE PROBLEMS

Initial boundary value problems with dynamical boundary conditions of the fol-

lowing type

d(x)
∂ku

∂tk
=

∂u

∂ν
, x ∈ Γ1 ⊂ Γ, t ∈ (0, T ), k = 1, 2

have similar properties as the previously investigated interface problems. Let us

consider, for the sake of simplicity, the simplest one-dimensional parabolic problem

with dynamical boundary condition

c(x)
∂u

∂t
−

∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t), (x, t) ∈ Q = (0, 1)× (0, T ),

K
∂u

∂t
(0, t) = a(0)

∂u

∂x
(0, t) , u(1, t) = 0,

u(x, 0) = u0(x), x ∈ (0, 1)

(30)

The problem (30) can be reduced to a problem of the type (2) using even extension of

the input data: c(x) = c(−x), a(x) = a(−x), u0(x) = u0(−x), and f(x, t) = f(−x, t)

for x ∈ (−1, 0). It easily follows that the solution u(x, t) can also be evenly extended

on (−1, 0)× (0, T ) and it satisfies the conditions

[c(x) + 2Kδ(x)]
∂u

∂t
−

∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t), (x, t) ∈ (−1, 1)× (0, T ),

u(−1, t) = 0 , u(1, t) = 0,

u(x, 0) = u0(x), x ∈ (−1, 1).

(31)

Analogous results hold for the corresponding hyperbolic problem with dynamical

boundary condition.

Finally, let us mention so called “weakly” evolution problems, i.e. the initial

boundary value problems of the form (2) and (3) where c(x) = 0. In this case the

operator B reduces to

Bu = k(x)δS(x)u(x)

and it is only nonnegative. Consequently, the inverse operator B−1 is not defined and

the a priori estimates (18) and (21) are meaningless. We have

‖u‖B ³ ‖u‖L2(S)
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and HB = L2(S), therefore the a priori estimate (26) reduces to

‖u‖2
W̃

1,1/2
2

(Q)
≡ ‖u‖2

L2((0,T ),
◦

W 1
2
(Ω))

+ |u|2
W

1/2
2

((0,T ),L2(S))

≤ M (‖u0‖
2
L2(S)

+ ‖f‖2
L2((0,T ),W

−1

2
(Ω))

),
(32)

Note that in this case the initial conditions (2) and (3) are determined only on inter-

face S.

8. FINITE DIFFERENCE APPROXIMATION

For the finite difference analogues of (10), (14) and (19) similar results hold. For

example, the discrete analogues of the a priori estimates (16)-(18) are obtained in

[7], [8], while the discrete analogues of the a priori estimates (20)-(21) are obtained

in [9]. In particular, convergence of finite difference schemes approximating interface

problems in a natural way can be proved in the discrete version of norms appearing in

(22)-(29) (see [7]-[13], [21]). Numerical methods for the solution of different interface

problems are also investigated in [1], [2], [3], [20], [4], [23] etc.
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