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Abstract. We prove the Gagliardo–Nirenberg-type multiplicative interpolation inequality

‖v‖L1(Rn) ≤ C‖v‖1/2
Lip′(Rn)

‖v‖1/2BV(Rn) ∀v ∈ Lip′(Rn) ∩ BV(Rn),

where C is a positive constant, independent of v. Here ‖·‖Lip′(Rn) is the norm of the dual to

the Lipschitz space Lip 0(R
n) := C0,1

0 (Rn) = C0,1(Rn) ∩C0(R
n) and ‖ · ‖BV(Rn) signifies the

norm in the space BV(Rn) consisting of functions of bounded variation on R
n. We then use

a local version of this inequality to derive an a posteriori error bound in the L1(Ω′) norm,
with Ω̄′ ⊂ Ω = (0, 1)n, for a finite element approximation to a boundary-value problem for
a first-order linear hyperbolic equation, under the limited regularity requirement that the
solution to the problem belongs to BV(Ω).

1. INTRODUCTION

The aim of this paper is to establish the following Gagliardo–Nirenberg-type mul-

tiplicative interpolation inequality: there exists a constant C > 0, such that

‖v‖L1(Rn) ≤ C‖v‖1/2
Lip′(Rn)

‖v‖1/2BV(Rn) ∀v ∈ Lip′(Rn) ∩ BV(Rn), (1)
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where ‖·‖Lip′(Rn) is the norm of the dual to the Lipschitz space Lip 0(R
n) := C0,1

0 (Rn) =

C0,1(Rn) ∩ C0(R
n) and ‖ · ‖BV(Rn) signifies the norm in the space BV(Rn) consisting

of functions of bounded variation on R
n. Here, for k ∈ N0, Ck

0(R
n) denotes the

set of k-times continuously differentiable functions with compact support in R
n and

C∞
0 (Rn) =

⋂∞
k=0C

k
0(R

n); for the sake of notational simplicity, we write C0(R
n) instead

of C0
0(R

n).

We refer to text of Meyer [8], particularly Theorems 17 and 18 on p.129 in Section

2.2, for the statement and proof of the closely related improved Gagliardo–Nirenberg

inequality due to Cohen, Dahmen, Daubechies and DeVore, according to which there

exists a constant C > 0 such that, for every function v that belongs to the intersection

of the homogeneous Besov space Ḃ−1,∞
∞ (Rn) with BV(Rn),

‖v‖L2(Rn) ≤ C‖v‖1/2
Ḃ−1,∞
∞ (Rn)

‖v‖1/2BV(Rn). (2)

In (2), compared with the inequality (1) established here, instead of ‖ · ‖L1(Rn) the

left-hand side of the inequality includes the L2(Rn) norm, while the right-hand side

contains the norm ‖ · ‖Ḃ−1,∞
∞ (Rn) instead of the dual Lipschitz norm ‖ · ‖Lip′(Rn). We

note in passing that the dual Lipschitz norm also appears in the articles by Tadmor

[11] and Nessyahu & Tadmor [9], for example, in the analysis of numerical methods

for scalar hyperbolic partial differential equations.

We begin, in Section 2, by establishing a local version of (1). We then extend

this local inequality to the whole of R
n in Section 3. In the final section, Section

4, we use the local version of the inequality (1) on Ω′, where Ω̄′ ⊂ Ω = (0, 1)n, to

derive a residual-based a posteriori bound in the L1(Ω′) norm on the error between

the analytical solution of a boundary-value problem for a first-order linear hyperbolic

equation and its finite element approximation, under the limited regularity require-

ment that the analytical solution to the problem belongs to BV(Ω). A posteriori

error bounds are crucial building blocks of adaptive finite element algorithms, aimed

at optimally distributing the computational mesh so as to accurately capture the an-

alytical solution in a certain, prescribed, norm, or a linear or nonlinear functional of

the analytical solution. The mathematics of a posteriori error estimation is an active
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field of research. We shall not attempt to survey this thriving and broad subject here;

instead, we refer the reader to the survey articles and monographs [1, 3, 4, 5, 6, 12]

listed in the bibliography.

2. INTERIOR BOUND

Suppose that Ω ⊂ R
n is either a bounded open set in R

n with Lipschitz continuous

boundary or Ω = R
n. We begin by deriving an interior version of inequality (1).

For this purpose we consider a function K ∈ C∞
0 (Rn) such that K(x) ≥ 0 and

K(−x) = K(x) for all x in R
n, supp(K) is the unit ball B1 = {x ∈ R

n : |x| ≤ 1},
and

∫

Rn

K(ξ) dξ = 1.

Let us suppose that Ω′ is a bounded open subset of Ω with Ω̄′ ⊂ Ω, let d ∈ R+∪{∞}
denote the distance between ∂Ω′ and ∂Ω, and suppose that δ ∈ (0, d′). In particular

if Ω = R
n, then d′ =∞; otherwise 0 < d′ <∞.

We consider the function Kδ ∈ C∞
0 (Rn) defined by

Kδ(x) :=
1

δn
K
(x

δ

)

.

For any ψ ∈ L∞(Rn), with supp(ψ) ⊂ Ω̄′, we define

ψδ = ψ ∗Kδ,

where ∗ signifies convolution over R
n. Observe that since

supp(ψδ) ⊂ supp(ψ) + supp(Kδ) ⊂ Ω̄ for all δ ∈ (0, d′),

ψδ belongs to C∞
0 (Rn). Since supp(ψδ) ⊂ Ω̄, it follows that ψδ|Ω̄ ∈ Lip 0(Ω) =

C0,1(Ω̄) ∩ C0(Ω̄), where, for a bounded open set Ω, C0(Ω̄) denotes the set of all

uniformly continuous functions defined on Ω̄ which vanish on ∂Ω. For Ω = R
n,

Lip0(R
n) has been defined above. We begin by showing the following result.
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Lemma 1. Let ψ ∈ L∞(Rn) with supp(ψ) ⊂ Ω̄′, and define ψδ(x) = ψ ∗ Kδ.

Further, let B1 denote the unit ball in R
n centred at 0, and define

C1 :=

∫

B1

|∇K(ξ)| dξ;

then, for any δ in (0, d′),

‖ψδ‖Lip(Ω) ≤ C1δ
−1‖ψ‖L∞(Ω′).

Here ‖ · ‖Lip(Ω) is the norm of the space Lip 0(Ω), defined by

‖w‖Lip(Ω) := sup
x, x′∈Ω; x6=x′

|w(x)− w(x′)|
|x− x′| , w ∈ Lip0(Ω).

Proof. Recalling the definition of convolution, it is immediate that

|ψδ(x)− ψδ(x
′)| ≤ ‖ψ‖L∞(Rn)

∫

Rn

|Kδ(x− y)−Kδ(x
′ − y)| dy

for any pair of points x, x′ in Ω. Noting that Kδ ∈ C∞
0 (Rn) and applying the Integral

Mean Value Theorem it follows that

|Kδ(x− y)−Kδ(x
′ − y)| ≤ |x− x′|

∫ 1

0

|∇Kδ(θ(x
′ − y) + (1− θ)(x− y))| dθ

for any pair of points x, x′ in Ω and any y ∈ R
n. Upon integrating both sides of the

last inequality with respect to y ∈ R
n we deduce that

∫

Rn

|Kδ(x− y)−Kδ(x
′ − y)| dy

≤ |x− x′|
∫

Rn

(
∫ 1

0

|∇Kδ(x− y + θ(x′ − x))| dθ
)

dy,

for any pair of points x, x′ in Ω. Interchanging the order of integration on the right-

hand side and performing the change of variables y 7→ z(y) = x− y + θ(x′ − x) for θ

fixed in [0, 1] and x, x′ fixed in Ω, recalling the translation-invariance of the Lebesgue

measure on R
n we find that
∫

Rn

|Kδ(x− y)−Kδ(x
′ − y)| dy ≤ |x− x′|

∫

Rn

|∇Kδ(z)| dz.



31

Now

∇Kδ(x) = δ−1−n(∇K)
(x

δ

)

,

and therefore, upon noting that supp(K) = B1,

∫

Rn

|∇Kδ(z)| dz = δ−1C1,

with C1 as in the statement of the Lemma. Returning to the first inequality in the

proof and recalling that supp(ψ) ⊂ Ω̄′, we deduce the required result. ¦
Next we prove the following lemma.

Lemma 2. Suppose that ϕ ∈ W1,1(Ω); then, there exists a positive constant C2

such that, for any δ in (0, d′),

‖ϕ− ϕδ‖L1(Ω′) ≤ C2δ|ϕ|W1,1(Ω),

where ϕδ := ϕ ∗ Kδ, with ϕ defined to be identically zero over the set R
n \ Ω̄, and

C2 := |B1|maxξ∈B1
K(ξ), with |B1| denoting the Lebesgue measure of the unit ball B1

in R
n.

Proof. Suppose, to begin with, that ϕ ∈ W1,1(Ω) ∩ C∞(Ω). Given x ∈ Ω′, we

have the following sequence of equalities:

ϕ(x)− ϕδ(x) = ϕ(x)−
∫

Rn

ϕ(y)Kδ(x− y) dy

= ϕ(x)−
∫

Rn

ϕ(x− y)Kδ(y) dy

=

∫

Rn

[ϕ(x)− ϕ(x− y)]Kδ(y) dy

= δ−n

∫

|y|<δ

[ϕ(x)− ϕ(x− y)]K(y/δ) dy

=

∫

B1

[ϕ(x)− ϕ(x− δξ)]K(ξ) dξ.

The last equality implies that

|ϕ(x)− ϕδ(x)| ≤ C3

∫

B1

|ϕ(x)− ϕ(x− δξ)| dξ, x ∈ Ω′,
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where C3 = maxξ∈B1
K(ξ). Upon integration over Ω′ we deduce that

‖ϕ− ϕδ‖L1(Ω′) ≤ C3

∫

Ω′

∫

B1

|ϕ(x)− ϕ(x− δξ)| dξ dx

= C3

∫

B1

‖ϕ(·)− ϕ(· − δξ)‖L1(Ω′) dξ. (3)

In order to further bound the right-hand side in (3), observe that

ϕ(x)− ϕ(x− δξ) = δξ ·
∫ 1

0

(∇ϕ)(θx+ (1− θ)(x− δξ)) dθ

for any x in Ω′ and any ξ ∈ B1. Consequently,

|ϕ(x)− ϕ(x− δξ)| ≤ δ

∫ 1

0

|∇ϕ(x− (1− θ)δξ)| dθ

so that

‖ϕ(·)− ϕ(· − δξ)‖L1(Ω′) ≤ δ

∫ 1

0

∫

Ω′
|∇ϕ(x− (1− θ)δξ)| dx dθ. (4)

Upon performing the change of variables x 7→ z(x) = x− (1− θ)δξ for fixed θ in [0, 1]

and ξ ∈ B1, it follows from (4) that

‖ϕ(·)− ϕ(· − δξ)‖L1(Ω′) ≤ δ

∫ 1

0

∫

Ω′−(1−θ)δξ

|∇ϕ(z)| dz dθ

≤ δ

∫

Ω

|∇ϕ(z)| dz = δ|ϕ|W1,1(Ω). (5)

Substituting (5) into (3) gives

‖ϕ− ϕδ‖L1(Ω′) ≤ C2δ|ϕ|W1,1(Ω),

where C2 = C3|B1|. This proves the desired inequality for ϕ ∈ W1,1(Ω) ∩ C∞(Ω).

For ϕ ∈ W1,1(Ω) the inequality then follows by density of W1,1(Ω) ∩ C∞(Ω) in the

Sobolev space W1,1(Ω). ¦
Now we extend this result to functions of bounded variation. Let us suppose for

this purpose that u ∈ L1(Ω); we then put

∫

Ω

|Du| := sup

{
∫

Ω

u div v dx : v = (v1, . . . , vn) ∈ [C1
0(Ω)]

n, |v(x)| ≤ 1 for x ∈ Ω

}

.
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A function u ∈ L1(Ω) is said to be of bounded variation on Ω if

|u|BV(Ω) :=

∫

Ω

|Du| <∞.

The linear space of functions of bounded variation of Ω is denoted by BV(Ω) and is

equipped with the norm ‖ · ‖BV(Ω) defined by

‖u‖BV(Ω) := ‖u‖L1(Ω) + |u|BV(Ω).

Thus, BV(Ω) is the set of functions u ∈ L1(Ω) whose weak gradient Du is a bounded

(vector-valued) Radon measure with finite total variation |u|BV(Ω).

If u ∈W1,1(Ω) (⊂ BV(Ω)), then

|u|BV(Ω) =

∫

Ω

|Du| = ‖∇u‖L1(Ω),

where ∇u is the distributional gradient of u (cf. [10]).

We recall the following approximation result of Anzellotti and Giaquinta [2]; see

also Theorem 1.17 in Giusti [7] and Theorem 5.3.3 in Ziemer [13].

Theorem 1. For each function v ∈ BV(Ω) there exists a sequence {ϕj}∞j=1 of

functions in W1,1(Ω) ∩ C∞(Ω) such that

lim
j→∞

∫

Ω

|v − ϕj| dx = 0,

lim
j→∞

∫

Ω

|Dϕj| dx =

∫

Ω

|Dv|.

Now, suppose that v ∈ BV(Ω) (extended by zero to the whole of R
n) and consider

a sequence {ϕj}∞j=1 of functions in W1,1(Ω) ∩ C∞(Ω), as in Theorem 1; namely,

lim
j→∞

‖v − ϕj‖L1(Ω) = 0

and

lim
j→∞

|ϕj|W1,1(Ω) = |v|BV(Ω).

By Lemma 2, we also have, with ϕj defined to be identically 0 in the set R
n \ Ω̄, that

‖ϕj − ϕj ∗Kδ‖L1(Ω′) ≤ C2δ|ϕj|W1,1(Ω).
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Passing to the limit as j →∞, we deduce that

‖v − v ∗Kδ‖L1(Ω′) ≤ C2δ

∫

Ω

|Dv| = C2δ|v|BV(Ω).

Thus we have proved the following lemma.

Lemma 3. Suppose that v ∈ BV(Ω), extended to R
n \ Ω̄ as the identically zero

function; then, for each δ ∈ (0, d′),

‖v − vδ‖L1(Ω′) ≤ C2δ|v|BV(Ω),

where vδ = v ∗Kδ and C2 is the same positive constant as in Lemma 2.

Now suppose that v ∈ Lip′(Ω)∩BV(Ω) (extended by zero onto the whole of R
n).

With δ ∈ (0, d′) as above, we then write
∫

Ω

v(x)ψ(x) dx =

∫

Ω

v(x)ψδ(x) dx+

∫

Ω

v(x)[ψ(x)− ψδ(x)] dx,

where, as before, ψ ∈ L∞(Ω′) (extended by zero onto the whole of R
n). Further,

recalling that K(−z) = K(z) for all z ∈ R
n, we deduce that

∫

Ω

v(x)[ψ(x)− ψδ(x)] dx =

∫

Ω

[v(x)− vδ(x)]ψ(x) dx.

Thereby,
∣

∣

∣

∣

∫

Ω

v(x)ψ(x) dx

∣

∣

∣

∣

≤ ‖v‖Lip′(Ω)‖ψδ‖Lip(Ω) + ‖v − vδ‖L1(Ω′)‖ψ‖L∞(Ω′).

Recalling Lemmas 1 and 2, we find that
∣

∣

∣

∣

∫

Ω

v(x)ψ(x) dx

∣

∣

∣

∣

≤
{

C1δ
−1‖v‖Lip′(Ω) + C2δ|v|BV(Ω)

}

‖ψ‖L∞(Ω′).

Let us, in particular, choose ψ = χΩ′ sgn(v), where χΩ′ is the characteristic function

of the open set Ω′. We then deduce that

‖v‖L1(Ω′) ≤ C1δ
−1‖v‖Lip′(Ω) + C2δ|v|BV(Ω) ∀δ ∈ (0, d′), ∀v ∈ Lip′(Ω) ∩ BV(Ω). (6)

Trivially, (6) implies that

‖v‖L1(Ω′) ≤ C1δ
−1‖v‖Lip′(Ω) + C2δ‖v‖BV(Ω) ∀δ ∈ (0, d′), ∀v ∈ Lip′(Ω) ∩ BV(Ω), (7)
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where δ′ = dist(∂Ω′, ∂Ω), Ω̄′ ⊂ Ω. We begin by considering the case of d′ < ∞; the

case of d′ =∞, corresponding to the choice of Ω = R
n, will be discussed in the next

section.

For v ∈ Lip′(Ω) ∩ BV(Ω), v 6= 0, we consider the mapping

δ ∈ R+ 7→ f(v; δ) := C1δ
−1‖v‖Lip′(Ω) + C2δ‖v‖BV(Ω).

The function f(v; ·) is strictly positive on R+ and attains its minimum value at

δ = δ0 :=

√

C1‖v‖Lip′(Ω)
C2‖v‖BV(Ω)

.

We shall consider two mutually exclusive cases, depending on the size of δ0 > 0

relative to d′ <∞.

Case 1: δ0 ∈ (0, d′). On equilibrating the two terms on the right-hand side of (7)

by choosing δ = δ0, we get

‖v‖L1(Ω′) ≤ C4‖v‖1/2Lip′(Ω)
‖v‖1/2BV(Ω), (8)

where C4 = 2
√
C1C2. For future reference, we rewrite (8) in the following equivalent

form:

‖v‖L1(Ω′) ≤
√

C1C2‖v‖1/2Lip′(Ω)
‖v‖1/2BV(Ω) +

√

C1C2‖v‖1/2Lip′(Ω)
‖v‖1/2BV(Ω), (9)

the inequality being valid for all v ∈ Lip′(Ω) ∩ BV(Ω) such that δ0 ∈ (0, d′). Since
√

C2‖v‖BV(Ω)

C1‖v‖Lip′(Ω)
=

1

δ0
= max

(

1

d′
,
1

δ0

)

= max

(

1

d′
,

√

C2‖v‖BV(Ω)

C1‖v‖Lip′(Ω)

)

,

we can rewrite (9) as follows:

‖v‖L1(Ω′) ≤ C1‖v‖Lip′(Ω)max

(

1

d′
,

√

C2‖v‖BV(Ω)

C1‖v‖Lip′(Ω)

)

+
√

C1C2‖v‖1/2Lip′(Ω)
‖v‖1/2BV(Ω). (10)

Case 2: δ0 ∈ [d′,∞). In this case, the function f(v; ·) is strictly monotonic

decreasing in the interval δ ∈ (0, d′), and therefore infδ∈(0,d′) f(v, δ) = f(v, d′). Hence,

‖v‖L1(Ω′) ≤ C1(d
′)−1‖v‖Lip′(Ω) + C2d

′‖v‖BV(Ω)

≤ C1(d
′)−1‖v‖Lip′(Ω) + C2δ0‖v‖BV(Ω)

≤ C1(d
′)−1‖v‖Lip′(Ω) +

√

C1C2‖v‖1/2Lip′(Ω)
‖v‖1/2BV(Ω).
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Now, since d′ ≤ δ0, we have that

1

d′
= max

(

1

d′
,
1

δ0

)

= max

(

1

d′
,

√

C2‖v‖BV(Ω)

C1‖v‖Lip′(Ω)

)

,

so, once again,

‖v‖L1(Ω′) ≤ C1‖v‖Lip′(Ω)max

(

1

d′
,

√

C2‖v‖BV(Ω)

C1‖v‖Lip′(Ω)

)

+
√

C1C2‖v‖1/2Lip′(Ω)
‖v‖1/2BV(Ω). (11)

Combining Cases 1 and 2, as expressed by inequalities (10) and (11), we see that,

irrespective of the relative magnitudes of δ0 and d′, we have

‖v‖L1(Ω′) ≤ C1‖v‖Lip′(Ω)max

(

1

d′
,

√

C2‖v‖BV(Ω)

C1‖v‖Lip′(Ω)

)

+
√

C1C2‖v‖1/2Lip′(Ω)
‖v‖1/2BV(Ω), (12)

for all v ∈ Lip′(Ω)∩BV(Ω)\{0}, where Ω̄′ ⊂ Ω and where d′ := dist(∂Ω′, ∂Ω) ∈ (0,∞).

3. GLOBAL BOUND

We shall now consider the case when Ω = R
n, and extend the result stated in (12)

from Ω′ to the whole of R
n. On taking d′ =∞ in (7) and equilibrating the two terms

on the right-hand side of (7) by choosing δ = δ0 ∈ (0, d′) = (0,∞), we have that

‖v‖L1(Ω′) ≤ C4‖v‖1/2Lip′(Rn)
‖v‖1/2BV(Rn) ∀v ∈ Lip′(Rn) ∩ BV(Rn).

Now, let us assume that {Ωj}∞j=1 is a nested sequence of bounded open sets, Ω1 ⊂⊂
Ω2 ⊂⊂ · · · ⊂⊂ R

n such that R
n =

⋃∞
j=1Ωj. On taking Ω′ = Ωj in the last inequality,

we see that

‖v‖L1(Ωj) ≤ C4‖v‖1/2Lip′(Rn)
‖v‖1/2BV(Rn) ∀v ∈ Lip′(Rn) ∩ BV(Rn), j = 1, 2, . . . ,

where C4 = 2
√
C1C2 is independent of Ωj.

Defining vj(x) := χΩj
(x)v(x), j = 1, 2, . . . , where χΩj

is the characteristic function

of Ωj, we can restate this inequality as follows:

‖vj‖L1(Rn) ≤ C4‖v‖1/2Lip′(Rn)
‖v‖1/2BV(Rn) ∀v ∈ Lip′(Rn) ∩ BV(Rn), j = 1, 2, . . . .
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As |v(x)| = limj→∞ |vj(x)| for a.e. x ∈ R
n, it follows by Fatou’s Lemma that

‖v‖L1(Rn) ≤ lim infj→∞‖vj‖L1(Rn).

Consequently, passing to the limit over j →∞ gives

‖v‖L1(Rn) ≤ C4‖v‖1/2Lip′(Rn)
‖v‖1/2BV(Rn) ∀v ∈ Lip′(Rn) ∩ BV(Rn), (13)

which is the desired multiplicative interpolation inequality.

4. APPLICATION IN A POSTERIORI ERROR ANALYSIS

Suppose that Ω = (0, 1)n, and let Γ signify the union of all (n − 1)-dimensional

open faces of Ω. Let us denote by ν the unit outward normal vector to Γ. Suppose

that b ∈ [C0,1(Ω̄)]n, c ∈ C0,1(Ω̄), and f ∈ BV(Ω). We shall suppose that there exists

a positive contact c0 such that c(x) + 1
2
∇ · b(x) ≥ c0 for all x ∈ Ω̄, and that the

components bi, i = 1, . . . , n, of the vector field b are strictly positive on Ω̄. We then

consider the first-order linear hyperbolic partial differential equation

Lu := ∇ · (bu) + cu = f in Ω, (14)

supplemented by the boundary condition

u|Γ− = g, (15)

where Γ− = {x ∈ Γ : b(x) · ν(x) < 0} and g ∈ L1(Γ−); analogously, we define

Γ+ = {x ∈ Γ : b(x) · ν(x) > 0}.
The weak formulation of the boundary-value problem amounts to finding u ∈

BV(Ω) such that

−
∫

Ω

u b · ∇v dx+

∫

Γ+

(b · ν)u v ds+
∫

Ω

c u v dx =

∫

Ω

f v dx−
∫

Γ−

(b · ν) g v ds (16)

for all v ∈ C0,1(Ω̄).

Now, let {Th}h>0 denote a shape-regular family of partitions of Ω into disjoint

open simplices κ whose union is Ω; for κ ∈ Th we define hκ := diam(κ) and let h =
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maxκ∈Th
hκ. Further, let Vhp denote the set of all continuous piecewise polynomials

of degree p ≥ 1 defined on Th.

The finite element approximation of (16) is defined as follows: find uh ∈ Vhp such

that

−
∫

Ω

uh b · ∇vh dx+

∫

Γ+

(b · ν)uh vh ds+

∫

Ω

c uh vh dx

=

∫

Ω

f vh dx−
∫

Γ−

(b · ν)g vh ds ∀vh ∈ Vhp. (17)

On denoting the expression on the left-hand side of (17) by B(uh, vh), it is easily seen

that (wh, vh) ∈ Vhp × Vhp 7→ B(wh, vh) ∈ R is a bilinear functional, and

B(vh, vh) ≥ c0‖vh‖2L2(Ω) ∀vh ∈ Vhp.

Since Vhp is a finite-dimensional linear space it then follows that problem (17) has a

unique solution uh ∈ Vhp.

To derive an a posteriori bound on the error u − uh in the L1(Ω′) norm where

Ω̄′ ⊂ Ω, we begin by establishing an a posteriori error bound in the Lip′(Ω) norm

using a duality argument which involves the formal adjoint L∗ : z 7→ −b · ∇z + cz of

the differential operator L.

Let ψ ∈ Lip0(Ω), and let z ∈ C0,1(Ω̄) denote the corresponding (classical) solution

to the hyperbolic boundary-value problem

L∗z = ψ in Ω

subject to z|Γ+
= 0.

Consequently, z ∈ C0,1(Ω̄) also satisfies the following identity:

−
∫

Ω

w b · ∇z dx+

∫

Γ+

(b · ν)w z ds+
∫

Ω

cw z dx =

∫

Ω

wψ dx ∀w ∈ BV(Ω). (18)
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Thus, for any zh ∈ Vhp,

∫

Ω

(u− uh)ψ dx

= −
∫

Ω

(u− uh) b · ∇z dx+

∫

Γ+

(b · ν)(u− uh)z ds+

∫

Ω

c (u− uh) z dx

= −
∫

Ω

(u− uh) b · ∇(z − zh) dx+

∫

Γ+

(b · ν)(u− uh) (z − zh) ds

+

∫

Ω

c (u− uh) (z − zh) dx

=

∫

Ω

f (z − zh) dx−
∫

Γ−

(b · ν) g (z − zh) dx

−
[

−
∫

Ω

uh b · ∇(z − zh) dx+

∫

Γ+

(b · ν)uh (z − zh) ds+

∫

Ω

c uh (z − zh) dx

]

=

∫

Ω

(f −∇ · (buh)− cuh) (z − zh) dx−
∫

Γ−

(b · ν) (g − uh) (z − zh) dx.

On defining the internal residual RΩ = f − ∇ · (buh) − cuh on Ω and the boundary

residual RΓ = |b · ν|(g − uh) on Γ−, we then deduce the error representation formula

∫

Ω

(u− uh)ψ dx =

∫

Ω

RΩ (z − zh) dx+

∫

Γ−

RΓ (z − zh) dx ∀zh ∈ Vhp.

Hence, with h signifying the positive piecewise constant function defined on Th such

that h(x) = hκ for all x ∈ κ and all κ ∈ Th,
∣

∣

∣

∣

∫

Ω

(u− uh)ψ dx

∣

∣

∣

∣

≤ ‖hRΩ‖L1(Ω)‖h−1(z − zh)‖L∞(Ω) + ‖hRΓ‖L1(Γ−)‖h−1(z − zh)‖L∞(Γ−)

≤
(

‖hRΩ‖L1(Ω) + ‖hRΓ‖L1(Γ−)

)

‖h−1(z − zh)‖L∞(Ω) ∀zh ∈ Vhp.

Thus,

∣

∣

∣

∣

∫

Ω

(u− uh)ψ dx

∣

∣

∣

∣

≤
(

‖hRΩ‖L1(Ω) + ‖hRΓ‖L1(Γ−)

)

inf
zh∈Vhp

‖h−1(z − zh)‖L∞(Ω).

Using a standard approximation property of the finite element space Vhp in the L∞(Ω)

norm, we deduce that

∣

∣

∣

∣

∫

Ω

(u− uh)ψ dx

∣

∣

∣

∣

≤ Kapprox

(

‖hRΩ‖L1(Ω) + ‖hRΓ‖L1(Γ−)

)

|z|Lip(Ω),
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where Kapprox is a positive constant, dependent only on the shape-regularity of the

family {Th}h>0.

For the sake of simplicity, we shall assume henceforth that b is a constant vector

with positive entries. Since ψ ∈ Lip0(Ω) vanishes on Γ, it follows by hyperbolic

regularity theory that

c0‖z‖L∞(Ω) ≤ ‖ψ‖L∞(Ω)

and

c0‖∇z‖L∞(Ω) ≤ ‖∇ψ‖L∞(Ω) + ‖∇c‖L∞(Ω)‖z‖L∞(Ω)

≤ ‖∇ψ‖L∞(Ω) + c−1
0 ‖∇c‖L∞(Ω)‖ψ‖L∞(Ω).

Furthermore, because ψ|Γ = 0, we have that

‖ψ‖L∞(Ω) ≤ diam(Ω)‖∇ψ‖L∞(Ω),

and therefore,

|z|Lip(Ω) ≤ Kstab|ψ|Lip(Ω),

where

Kstab = c−1
0

(

1 + c−1
0 diam(Ω)‖∇c‖L∞(Ω)

)

.

Thus,
∣

∣

∣

∣

∫

Ω

(u− uh)ψ dx

∣

∣

∣

∣

≤ KstabKapprox

(

‖hRΩ‖L1(Ω) + ‖hRΓ‖L1(Γ−)

)

|ψ|Lip(Ω)

for all ψ ∈ Lip0(Ω), whereby,

‖u− uh‖Lip′(Ω) ≤ KstabKapprox

(

‖hRΩ‖L1(Ω) + ‖hRΓ‖L1(Γ−)

)

=: ApostLip′ .

Furthermore,

‖u− uh‖BV(Ω) ≤ ‖u‖BV(Ω) + ‖uh‖BV(Ω) ≤ Kstab‖f‖BV(Ω) + ‖uh‖BV(Ω) =: ApostBV,

where we have used that ‖u‖BV(Ω) ≤ Kstab‖f‖BV(Ω).

We note that, trivially, BV(Ω) ⊂ L1(Ω) and, when Ω ⊂ R
n is bounded, as is the

case in this section, L1(Ω) ⊂ Lip′(Ω); therefore also BV(Ω) ⊂ Lip′(Ω) and thereby

Lip′(Ω) ∩ BV(Ω) = BV(Ω).
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It now follows from (12) that

‖u− uh‖L1(Ω′) ≤
√

C1‖u− uh‖1/2Lip′(Ω)
max

(√
C1

d′
‖u− uh‖1/2Lip′(Ω)

,
√

C2‖u− uh‖1/2BV(Ω)

)

+
√

C1C2‖u− uh‖1/2Lip′(Ω)
‖u− uh‖1/2BV(Ω)

≤
√

C1 Apost
1/2

Lip′
max

(√
C1

d′
Apost

1/2

Lip′
,
√

C2 Apost
1/2
BV

)

+
√

C1C2 Apost
1/2

Lip′
Apost

1/2
BV,

in any domain Ω′ ⊂⊂ Ω, with d′ = dist(∂Ω′, ∂Ω).

We note, in particular, that if

√
C1

d′
Apost

1/2

Lip′
≤
√

C2 Apost
1/2
BV,

that is if

ApostLip′ ≤
C2(d

′)2

C1

ApostBV, (19)

then the following conditional a posteriori error bound holds:

‖u− uh‖L1(Ω′) ≤ 2
√

C1C2 Apost
1/2

Lip′
Apost

1/2
BV,

the condition being inequality (19).

Since the quantity ApostBV featuring in the right-hand side of (19) is expected

to be, at best, of size O(1) as h → 0, while the left-hand side of (19) is antic-

ipated to decay as O(h2s) with some s ∈ (0, 1/2], we expect to be able to set

d′ := dist(∂Ω′, ∂Ω) = O(hs) as h→ 0.

This is the desired a posteriori bound on the error between the analytical solution

u ∈ BV(Ω) and its finite element approximation uh ∈ Vhp, in terms of the computable

domain and boundary residuals, the numerical solution uh and the data.
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