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Abstract. We consider the classical inverse problem in the potential theory in which it is
required to determine the unknown right-hand side of the elliptic equation in the case in
which additional data are set on the boundary of the calculation domain. To simplify the
consideration, restrict ourselves to the two-dimensional Poisson equation.

1. STATEMENT OF THE INVERSE PROBLEM

Consider a model inverse problem in which it is required to determine the un-

known right-hand side from observation data obtained at the domain boundary. To

simplify the consideration, restrict ourselves to the two-dimensional Poisson equation.

Consider first the formulation of the direct problem.

In a bounded domain Ω the function u(x), x = (x1, x2) satisfies the equation

−∆u ≡ −
2
∑

α=1

∂2u

∂x2α
= f(x), x ∈ Ω. (1)
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Consider a Dirichlet problem in which equation (1) is supplemented with the following

first-kind homogeneous boundary conditions:

u(x) = 0, x ∈ ∂Ω. (2)

The direct problem is formulated in the form (1), (2), with known right-hand side

f(x) in (1).

Among the inverse problems for elliptic equation, consider the right-hand side

identification problem. We assume that additional measurements are feasible only

on the domain boundary. In addition to (2), the following second-kind boundary

conditions are also set:
∂u

∂n
(x) = µ(x), x ∈ ∂Ω, (3)

where n is the external normal to Ω.

In this general formulation the solution of the inverse problem in which it is

required to determine the pair of functions {u(x), f(x)} from conditions (1)–(3) is

not unique [1]. The latter statement requires no special comments: it suffices to

consider the inverse problem in a circle with the right-hand side dependent on the

distance from the center of the circle. The non-uniqueness stems from the fact that

we are trying to reconstruct a two-dimensional function (the right-hand side f(x)

from a function with lower dimensionality (µ(x), x ∈ ∂Ω).

2. UNIQUENESS OF THE INVERSE-PROBLEM SOLUTION

Unique determination of the right-hand side is possible in the case in which the

unknown right-hand side is independent of one of the variables [2]. Not trying to

consider the general case, turn to a typical example [3]. We assume that the right-

hand side (1) can be represented as

f(x) = ϕ1(x2) + x1ϕ2(x2). (4)

We pose a problem in which it is required to determine two functions ϕα(x2), α = 1, 2,

independent of one of the variables (namely, of the variable x1), from (1)–(3).
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We reformulate the inverse problem (1)–(4) by eliminating the unknown functions

ϕα(x2), α = 1, 2. Double differentiation of (1) with respect to x1 with allowance for

(4) gives:
∂2

∂x21
∆u = 0, x ∈ Ω. (5)

In this way, we arrive at a boundary-value problem for the composite equation (2),

(3), (5).

Let us show that the solution of problem (2), (3), (5) is unique. For this to

be shown, it suffices to prove that the solution of the problem with homogeneous

boundary conditions
∂u

∂n
(x) = 0, x ∈ ∂Ω, (6)

is u(x) ≡ 0, x ∈ Ω.

We multiply equation (5) by u(x) and perform integration over the whole domain

Ω; this yields
∫

Ω

∂2

∂x21
∆uu dx = 0.

Taking into account the homogeneous boundary conditions (2) and permutability of

the operators ∂/∂x1 and ∆, we obtain:
∫

Ω

v∆v dx = 0, v =
∂u

∂x1
.

Conditions (2), (6) guarantees that

v(x) = 0, x ∈ ∂Ω.

Under these conditions, we have

∫

Ω

v∆v dx =
2
∑

α=1

∫

Ω

( ∂v

∂xα

)2

dx = 0

and, hence, v(x) = 0 throughout the whole domain Ω. From

∂u

∂x1
= 0, x ∈ Ω

and boundary conditions (2) it follows that the only solution of problem (2), (5), (6)

is u(x) ≡ 0, x ∈ Ω.
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More informative a priori estimates for the solution of the boundary-value problem

(2), (3), (5) can also be obtained. This matter will be considered on the difference

level below.

3. DIFFERENCE PROBLEM

We assume the calculation domain to be a rectangle:

Ω = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}.

For the sides of Ω we use designations indicated in Figure 1, so that

∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

�

�

���� �� �

���

�
	

� 	

� 	 ���

Figure 1: Calculation domain

We seek the right-hand side of (1) in class (4) under the following additional

conditions posed on the sides Γ2 and Γ4 of the rectangle:

∂u

∂x1
(0, x2) = µ1(x2),

∂u

∂x1
(l1, x2) = µ2(x2). (7)

With boundary conditions set on Γ1 and/or Γ3 (see (3)), the problem becomes over-

specified.

Along both direction xα, α = 1, 2, we introduce a uniform grid

ωα = {xα | xα = iαhα, iα = 0, 1, . . . , Nα, Nαhα = lα},
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so that

ωα = {xα | xα = iαhα, iα = 1, 2, . . . , Nα − 1, Nαhα = lα},

∂ωα = {xα | xα = 0, lα}.

For the grid in the rectangle Ω we use the designations

ω = ω1 × ω2 = {x | x = (x1, x2), xα ∈ ωα, α = 1, 2},

ω = ω1 × ω2.

In the standard notation adopted in the theory of difference schemes[4], at internal

nodes we define the difference Laplace operator

Λy = yx̄1x1
+ yx̄2x2

, x ∈ ω.

We put into correspondence to the direct problem (1), (2) the difference problem

−Λy = f(x), x ∈ ω, (8)

y(x) = 0, x ∈ ∂ω. (9)

In the inverse problem, the right-hand side is sought in the class (4) from the

additional conditions (7). To pass to a difference analogue of (2), (4), (7), we define

the mesh function v = −Λy not only at internal nodes (see (8)), but also on the set

of boundary nodes.

We can conveniently introduce fictitious nodes with i1 = −1 i1 = N1+1 to extend

the grid over the variable x1 by one node from either side. We approximate boundary

conditions (7) on the extended grid. Accurate to O(h21), we have:

y(h1, x2)− y(−h1, x2)

2h1
= µ1(x2), (10)

y(l1 + h1, x2)− y(l1 − h1, x2)

2h1
= µ2(x2). (11)

Taking into account the boundary conditions (2) at the left boundary, we obtain:

v(0, x2) = −Λy(0.x2) = −
y(h1, x2)− 2y(0, x2) + y(−h1, x2)

h21
.
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With (10) taken into account, we arrive at the expression

v(0, x2) = −
2

h21
y(h1, x2) +

2

h1
µ1(x2). (12)

In a similar way, on Γ4 we obtain:

v(l1, x2) = −
2

h21
y(l1 − h1, x2)−

2

h1
µ1(x2). (13)

Double difference differentiation (8) yields the equation

vx̄1x1
= 0, x ∈ ω. (14)

The boundary conditions for this equations have the form (11), (12). With known v,

the solution is to be determined (see (8), (9)) from

−Λy = v(x), x ∈ ω, (15)

y(x) = 0, x ∈ ∂ω. (16)

In this manner, we arrive at a system of two difference Poisson equations for the pair

{y, v}. These two equations are interrelated via boundary conditions (12), (13).

We can conveniently reformulate the boundary-value problem with non-homogeneous

boundary conditions (12)–(14) as a problem with homogeneous boundary conditions

for a non-homogeneous equation at the internal nodes. With (12), at near-boundary

nodes we have:

2v(h1, x2)− v(2h1, x2)

h21
=
v(0, x2)

h21
= −

2

h41
y(h1, x2) +

2

h31
µ1(x2).

From (13), we obtain:

2v(l1 − h1, x2)− v(l1 − 2h1, x2)

h21
= −

2

h41
y(l1 − h1, x2)−

2

h31
µ2(x2).

Let us define difference operators Aα, α = 1, 2 on the set of mesh functions

vanishing at the boundary nodes:

Aαy = −yx̄αxα , x ∈ ω.
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Then, the boundary-value problem (12)–(14) can be written as

A1v = −A0y + φ, x ∈ ω. (17)

Here, the difference operator A0 is defined by

A0y =























2

h41
y(h1, x2), x1 = h1,

0, h1 < x1 < l1 − h1,
2

h41
y(l1 − h1, x2), x1 = l1 − h1.

The right-hand side φ in nonzero only at near-boundary nodes:

φ =























−
2

h31
µ1(x2), x1 = h1,

0, h1 < x1 < l1 − h1,
2

h31
µ2(x2), x1 = l1 − h1.

In the introduced notation, the boundary-value problem (15), (16) assumes the

form

(A1 + A2)y = v, x ∈ ω. (18)

In this way, we pass from (12)–(16) to system (17), (18). The latter system can be

conveniently written as the following single operator equation:

Ay = φ. (19)

Here,

A = (A1 + A2)A1 + A0. (20)

The mesh pattern used in this difference scheme is shown in Figure 2.

In the ordinary way, in the Hilbert space H = L2(ω) we introduce the scalar

product and the norm:

(y, w) ≡
∑

x∈ω

y(x)w(x)h1h2, ‖y‖ ≡ (y, y)1/2.

In H,

Aα = A∗

α > 0, A0 = A∗

0 ≥ 0
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Figure 2: The mesh pattern for the difference scheme

and, hence, in (19) we have A = A∗ > 0. By virtue of this, the difference problem

(19) has a unique solution.

We gave a sufficiently general scheme for constructing a discrete analogue to the

non-classical boundary-value problem (2), (5), (7) suitable for solving even more

complex problems. In the case under consideration, we can substantially simplify the

problem by explicitly writing the solution of problem (12)–(14). It should be noted

that such transformation allows for specific features of the inverse problem in the

greatest possible extent and most clearly on the difference level.

The general solution of the difference equation (14) is a linear function of x1:

v(x1, x2) =
(

1−
x1
l1

)

v(0, x2) +
x1
l1
v(l1, x2).

With boundary conditions (12), (13) taken into account, we obtain:

v(x1, x2) = −
(

1−
x1
l1

) 2

h21
y(h1, x2)−

x1
l1

2

h21
y(l1 − h1, x2) + ψ(x1, x2), (21)

where

ψ(x1, x2) =
(

1−
x1
l1

) 2

h1
µ1(x2)−

x1
l1

2

h1
µ2(x2).

Substitution of (21) into (8) leads us to the difference equation

−Λy +
(

1−
x1
l1

) 2

h21
y(h1, x2) +

x1
l1

2

h21
y(l1 − h1, x2) = ψ(x), x ∈ ω. (22)



53

In this way, the solution of the inverse right-hand side identification problem for

equation (8) in class (4) has reduced to the solution of the boundary-value problem

(9), (22). Equation (22) is a loaded difference equation.

4. SOLUTION OF THE DIFFERENCE PROBLEM

To find the solution of the difference problem, we use the variable separation

method [5]. This approach can be applied to the difference problem (9) with the

composite difference operator A defined by (10). Let us dwell on a second possibil-

ity, when to be sought is the solution of the boundary-layer problem for the loaded

difference elliptic equation (9), (22).

We write problem (9), (22) as the equation

(A1 + A2)y + q1(x1)y(h1, x2) + q2(x1)y(l1 − h1, x2) = ψ(x),

x ∈ ω,
(23)

in which qα ≥ 0, α = 1, 2.

We denote as λk, vk(x2), k = 1, 2, . . . , N2 − 1 the eigenvalues and eigenfunctions

of A2:

A2v = λv.

The solution of this difference spectral problem is well known:

λk =
4

h22
sin2

kπh2
2l2

, vk(x2) =

√

2

l2
sin

kπx2
l2

.

The eigenfunctions are orthonormal functions:

(vk, vm)
(2) = δkm, δkm =

{

1, k = m,
0, k 6= m,

where

(v, w)(2) =

N2−1
∑

i2=1

v(x2)w(x2)h2

is the scalar product in L2(ω2).
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We seek the solution of problem (23) as an expansion in the eigenfunctions of A2:

y(x1, x2) =

N2−1
∑

k=1

ck(x1)vk(x2).

Substitution into (23) leads us to the necessity to solve the difference problems

(A1 + λk)ck(x1) + q1(x1)ck(h1) + q2(x1)ck(l1 − h1) = ψk(x1), (24)

where

ψk(x1) = (ψ, vk)
(2), k = 1, 2, . . . , N2 − 1.

The matter of solution of these N2−1 one-dimensional difference problems should

be given particular attention. In the case of (24) it is required to find the solution of

the difference boundary-value problem

−wx̄1x1
+ λw + q1(x1)w(h1) + q2(x1)w(l1 − h1) = r(x1), (25)

w(0) = 0, w(l1) = 0. (26)

We represent the solution of problem (25), (26) as

w(x1) = s(x1) + s
(1)(x1)w(h1) + s

(2)(x1)w(l1 − h1). (27)

We insert this expression into (25) and isolate the functions sα, α = 1, 2, collecting

the terms with w(h1), w(l1 − h1) and equating them to zero. This gives us three

three-point difference equations for the auxiliary functions s(x1), sα(x1), α = 1, 2.

With allowance for (26), we assume the boundary conditions to be homogeneous, so

that

−sx̄1x1
+ λs = r(x1), (28)

s(0) = 0, s(l1) = 0, (29)

−s
(1)
x̄1x1

+ λs(1) = −q1(x1), (30)

s(1)(0) = 0, s(1)(l1) = 0, (31)

−s
(2)
x̄1x1

+ λs(2) = −q2(x1). (32)
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s(2)(0) = 0, s(2)(l1) = 0. (33)

After solving the three standard problems (28)–(33), the functions w(h1) and

w(l1 − h1) can be found. From representation (27), it readily follows that

w(h1) = s(h1) + s
(1)(h1)w(h1) + s

(2)(h1)w(l1 − h1), (34)

w(l1 − h1) = s(l1 − h1) + s
(1)(l1 − h1)w(h1) + s

(2)(l1 − h1)w(l1 − h1). (35)

Solvability of this system is controlled by the determinant

D = (1− s(1)(h1))(1− s(2)(l1 − h1))− s(2)(h1)s
(1)(l1 − h1),

whose nonzero value can easily be guaranteed under certain constraints. Taking

the inequalities λ > 0 and qα ≥ 0, α = 1, 2 into account, we have: s(α)(x1) ≥ 0,

0 ≤ x1 ≤ l1. Hence, we have D > 0 at sufficiently small l1, for instance.

As a matter of fact, the determinant of (34), (35) is always positive. To show this,

we have to recall (see (21)) the expressions for the mesh functions qα(x1), α = 1, 2:

q1(x1) =
(

1−
x1
l1

) 2

h21
, q2(x1) =

x1
l1

2

h21
.

By virtue of this, for the solutions of the boundary-value problems (30), (31) and

(32), (33) there holds the relations

s(1)(x1) = s(2)(l1 − x1), 0 ≤ x1 ≤ l1.

The latter means, in particular, that it is unnecessary for us to solve (in the case

of the uniform computational grid used) one of the two difference boundary-value

problem, (30), (31) or (32), (33). Hence,

D = 1− 2s(1)(h1) + (s
(1)(h1))

2 − (s(1)(l1 − h1))
2

and, with allowance for s(1)(h1) > s(1)(l1 − h1), we obtain that D > 1.

With the mesh functions s(x1), s
(α), α = 1, 2 found from (28)–(33) and with the

mesh functions w(h1) and w(l1 − h1) found from (34), (35), the solution of problem

(25), (26) can be found in the form (27). The program realization of this algorithm

is discussed below.
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5. CALCULATION DATA

The developed program solves the inverse problem (1), (2), (7), in which to be

found is the right-hand side (4) with

ϕ1(x2) =

{

1, 0 < x2 < 0.5,
0, 0.5 < x2 < 1,

ϕ1(x2) = x2.

Figure 3: Solution of the problem obtained on the grid N1 = N2 = 65

Figure 4: Solution of the problem obtained on the grid N1 = N2 = 129
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Figure 5: Solution of the problem obtained on the grid N1 = N2 = 257

The problem is solved in the unit square (l1 = l2 = 1). To obtain the input data

for the inverse problem, the direct problem (1), (2) is preliminarily solved at a given

right-hand side.

First of all, consider the solution data obtained for the inverse problem with

undisturbed input data. Of interest here are numerical data obtained on a sequence

of progressively refined grids (see Figures 3–5). The approximate solution is seen to

converge to the exact solution. A sufficiently high accuracy can be obtained using

refined grids.

More sensitive to input-data inaccuracies are calculation data obtained at different

levels of boundary-condition inaccuracies (7). These inaccuracies were modeled in the

ordinary way, for instance, as

µ̃1(x2) = µ1(x2) + 2δ(σ(x2)− 1/2), x2 ∈ ω2,

where σ(x2) is a random function normally distributed over the interval [0, 1], and

the parameter δ defines the inaccuracy level. Figure 6 shows data obtained by solving

the inverse problem with δ = 0.0003. This inaccuracy level corresponds to a relative

inaccuracy of 0.1%. The calculation grid N1 = N2 = 129 was used.
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Figure 6: Solution of the problem obtained at the inaccuracy level δ = 0.0003
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