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Abstract. It is known that the equation (2) determines non-elemental linear oscillations
of the second order, which are the first generalization of ordinary harmonical oscillations.
In the paper, there is firstly a resume of some our previous results which more preciselly
determine nature of oscillatory solutions, Sturm’s theorems on locations of zeroes and ex-
tremes are given next, and finally there is discussion on oscillatoriness and general solution
for arbitrary integration constants C1 and C2

Furthermore, for the non-homogeneous equation (2), the isue of oscillatorines of the general
solution is discussed. Problems of amplitudes, oscillatoriness, resonance and stability of
possible solutions are approached.
A momentum and intiative is given that the same is to be done for the most general non-
homogeneous linear equations, primarily of the second order, but of higher orders as well.

1. INTRODUCTION

Very important question of entire engineering related to the theory of oscillations

is the question of oscillations and zeroes of solution of the equation.

y′′ + a(x)y = f(x) (1)
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All the questions of practical usefulness of the equation and especially the most im-

portant - the stability, depend on it.

The appropriate homogeneous equation

y′′ + a(x)y = 0, (2)

with the characteristic of the oscillatoriness of solutions: a(x) is continuouos on

[0,+∞), a(x) > 0, and
+∞
∫

0
a(x)dx diverges, has the linearly independent particu-

lar fundamental solutions in the form of series-iterations ([2], [3])
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It has been proved ([2], [3]) for the solutions that those are approximate to ordinary

functions sin x and cos x.

Besides, it has been proved that in the same time y1 has zeroes and y2 has extremes

in the points of the solutions of the equation

x
√

a(x) = nπ, n = 0, 1, 2, 3, ... (5)

It has also been proved that in the same time y1 has extremes and y2 has zeroes which

are approximatively points of the solutions of the equation

x
√

a(x) = (2n− 1)
π

2
, n = 0, 1, 2, 3, ... (6)

Sturm’s theorems are confirmed by this, additionaly being supplemented and broad-

ened by achievement of more precise locations of zeroes and extremes.

An approximative representation of non-elementary functions (3) and (4) by means

of elementary functions (sinx and cos x) of complex argument has been found. The
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formulae are

y1 = sina(x) x ≈
sin

(

x
√

a(x)
)

√

a(x)
, (7)

y2 = cosa(x) x ≈ cos
(

x
√

a(x)
)

. (8)

Those are, taking into consideration (5) and (6), obviously oscillatory. From the form

of the general solution

y = C1 cosa x+ C2 sina x (9)

it is concluded that the solution is compulsorily oscillatory, since the equation y(x) = 0

gives

C1 cosa x+ C2 sina x = 0,

wherefrom

sina x

cosa x
= −

C1

C2

.

By introducing non-elementary function tana(x) x, it is easily proved that it has the

same characteristics as ordinary tanx, and there is the equation

tana x = −
C1

C2

. (10)

Regardless the constants C1 and C2, taking into consideration zeroes and extremes

of the functions sin x and cosx, it is easily concluded from the form of the graph

tana x (characteristical monotone growth in the continuity intervals) that the curves

y = tana x and horizontal line y = −C1

C2

always have intersections. It means that the

equation (10) always has solutions. This implies that from (9) y(x) = 0 always has

solutions. This means that the general solution of the equaton (2) is oscillatory (see

the Figure 1). The following theorem is the resume of the discussion.

Theorem 1. If a(x) is continuouos on [0,+∞), a(x) > 0, and
+∞
∫

0
a(x)dx di-

verges, the general solution of the equation (2) is oscillatory for arbitraty constants

C1 and C2.
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Let’s consider more general non-homogeneous equation (1). The Lagrange method

of variation of constants yields that particular integral of the equation (1) is

Yp = y1

∫

y2

W
f(x)dx− y2

∫

y1

W
f(x)dx, (11)

where y1 and y2 are given with (3) and (4). Wronskian of the equation (2), as it has

no factor with the first derivative, is

W (x) = W (y1, y2) = y′1y2 − y1y
′

2 = 1.

There is the implication

Yp = y1

∫

y2f(x)dx− y2

∫

y1f(x)dx, (12)

and the general solution of the equation (1) has the form

y = C1y1 + C2y2 + y1

∫

y2f(x)dx− y2

∫

y1f(x)dx. (13)

The question is: when is the general solution of (13) also oscillatory, i.e. what

should the functions a(x) and f(x) be like, in order the general solution be oscillatory?

The condition is that the equation

C1 cosa x+ C2 sina x+ Yp = 0

has infinite number of isolated solutions. The last transcedent equation depends on

four elements: the functions a(x) and f(x) and arbitrary constants C1 and C2; all the

elements have the power od continuum of real numbers. If the above is rewritten

C1 cosa x+ C2 sina x = sina x
∫

f cosa xdx− cosa x
∫

f sina xdx

then the question is when the equation has the solution for arbitrary C1 and C2, and

for which functions a(x) and f(x)?

After division of the last equation by cosa x there is equation which is almost

equivalent with (10)

C1 + C2 tana x = tana x
∫

f cosa xdx−
∫

f sina xdx
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If the equation is gruped, then there is

tana x =

∫

f(x) sina xdx+ C1
∫

f(x) cosa xdx− C2

, (14)

or L1 = L2. The curve L1, just as any tangent, monotonously grows in
(

−
π
2
, π

2

)

and

periodically repeats in every interval from −∞ to +∞.

There is the problem with the right side of the equation, i.e. the curve L2. It

is obvious important that L2 is either continuous from x = 0 to +∞, or, if it is

not continuous, that the discontinuities do not match the doscontinuities of tana x

(since the curves might not have intersection then, i.e. somehow remain with paralel

branches). That’s why it is important to research the integral
∫

f(x) sina xdx

and its oscillatoriness in L2.

Let f(x) be continuous in [0,+∞), with or without zeroes. It is known that sina x

is continuous, after the way of its construction, by means of series-iterations (the

basis is Picard’s theorem on on succesive approximations, which implies continuity

of solutions of oscillatory equation (2)). The product f(x) sina x is then continu-

ous, as well as the integral
∫

f(x) sina xdx. It implies that the numerator in L2:
∫

f(x) sina xdx + C2 is continuous. As regards denominator, it is, for same reasons,

continuous. If the denominator has zeroes, L2 is discontinuous.

If the primitive non-elementary function of non-elementary function f(x) cosa x is

denoted as F (x)
∫

f(x) cosa xdx = F (x) + C3, (15)

where C3 is a given arbitrary constant, then the discontinuities of the right side in

(14) will occur in the points ξ which are solutions of the equation

F (x) = −C3.

If those points match singular points of tanx, which is the left side of the equation

(14), i.e. for cosa x = 0, approximatively

cos
(

x
√

a(x)
)

= 0
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or
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√

a (ξk) = (2k − 1)
π

2
, k = 1, 2, 3, ...
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Figure 1:

then vertical asymptotes of the curves L1 and L2 match and those could have no

intersections, i.e. the equation (14) could have no zeroes. In all the other cases (14)

has solutions, i.e. the general solution of (13) has zeroes and the general solution is

oscillatory. There implies

Theorem 2. If all of the solutions of the equation (2) are oscillatory, then all

of the solutions of the equation (1) are oscillatory as well, except if the solutions of

the equation F (x) = −C3 where F (x) is primitive function given with (15), match

zeroes of one solution of the homogeneous equation (2).ntegral of square of an entire

and analytical periodical function

∫

p2(x)dx

cannot be periodical.

Geometry of the oscillatoriness and locating of zeroes is given in the Figure 2.

With the problems of oscillatoriness of the solutions of the equations (2) and (3),

the following problem obviosly becomes very important:

- if f(x) is a continuous and g(x) is an oscillatory function, is the primitive function

F (x) =
∫

f(x)g(x)dx oscillatory, and what is it like?
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APPLICATIONS

1. ELEMENTARY SOLUTIONS, RESONANCE

Very important and known result [1] is when a(x) = Const = ω2 and f(x) is a

periodical function in the equation (1). This is the most frequent case of oscillations

in engineering (mechanical and electrical). Those are the equations of the following

form

y′′ + ω2y = A sinω1x.

From the solution of the homogeneous equation

y = C1 sinωx+ C2 cosωx,

it is well-known that Lagrange’s method of variation of constants gives general solu-

tion

y = C1 sinωx+ C2 cosωx−
A

2ω

(

cos (ω + ω1) x

ω + ω1

+
cos (ω1 − ω) x

ω1 − ω

)

sinωx−

−
A

2ω

(

cos (ω + ω1)x

ω + ω1

+
cos (ω1 − ω)x

ω1 − ω

)

cosωx,

where the particular integral of non-homogeneous equation is given as

Yp = −
A

2ω
(sinωx+ cosωx)

(

cos (ω + ω1)x

ω + ω1

+
cos (ω1 − ω) x

ω1 − ω

)

.
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The integral implies that if frequency of self-oscillations ω and the frequency of forced

oscillations ω1 get close (ω1 → ω), then Yp could have very high amplitudes. The

very important science on stability of solutions originates from it. In order to more

preciselly determine the high amplitude of the solution Yp, a solution of the following

form should be looked after in the above equation.

Yp = R sinω1x.

After derivations

Y ′

p = Rω1 cosω1x, Y
′′

p = −Rω2
1 sinω1x

and substitution in the equation, there is

−Rω2
1 sinω1x+ ω2R sinω1x = A sinω1x; R

(

ω2
− ω2

1

)

= A.

Subsequently, there is

R =
A

ω2
− ω2

1

.

Hence, there is one solution with very high amplitudes. The amplitude is

Yp =
A

ω2
− ω2

1

→∞, ω1 → ω.

This is a known, dramatical case of instability in engineering.

2. NON-ELEMENTARY OSCILLATIONS. INSTABILITY

Let there be the equation (1)

y′′ + a(x)y = f(x)

where a(x) is not a constant, but is such that allows for oscillatory solutions of the

homogeneous equation y′′ + a(x)y = 0, being approximatively

y1 = sina x ≈
sin

(

x
√

a(x)
)

√

a(x)
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y2 = cosa x ≈ cos
(

x
√

a(x)
)

.

Let f(x) be a non-elementary oscillation, that is a solution of some other homogeneous

equation with some other coefficient a1(x) providing for oscillatoriness

f ′′ + a1(x)f = 0,

i.e. let the following be correct analogously

f1 = sina1(x) x ≈
sin

(

x
√

a1(x)
)

√

a1(x)

f2 = cosa1(x) x ≈ cos
(

x
√

a1(x)
)

.

For the equation of non-elementary oscillations

y′′ + a(x)y = A1 sina1
x, (16)

it is also possible then to look for

Yp = R sina1
x.

From the derivatives

Y ′

p = R (sina1
x)′ , Y ′′

p = R (sina1
x)′′ = R (−a1 sina1

x)

and after substitution in (16)

−Ra1 sina1
x+ aR sina1

x = A1 sina1
x

the solution for R is found

R =
A1

a− a1

.

It is obvious that amplitude becomes very high as a approaches a1.

The conclusion is that there is resonance with such non-elementary oscillations,

analogously to elementary oscillations. More complex circumstances, much harder
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than with constant coefficients and elementary harmonical oscillations, could be ob-

served:

- the functions a(x) and a1(x) are close to each other for every x;

- the functions are inequal, but have close locations of zeroes.

This all needs a more detailed analysis.

3. THE ISSUE OF INSTABILITY OF GENERAL CASE OF LINEAR

OSCILLATIONS

All of the above could be used and applied, by means of refined analysis and

technics, to the case of general linear equation of the second order

y′′ + A(x)y′ +B(x)y = F (x)

along with met criteria on oscillatoriness of solutions.

It would be an analysis of non-elementary oscillations of the above equations, for

various cases of approximation of the function of forced (external) oscillations F (x)

with base functions sin(A,B) x and cos(A,B) x of corresponding homogeneous equation

y′′ + A(x)y′ +B(x)y = 0

In the general case, we would deal with non-elementary functions

sin(A,B,F ) x and cos(A,B,F ) x.

However, this is a comprehensive and special issue.
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