MINIMUM PRINCIPLE FOR QUADRATIC SPLINE COLLOCATION DISCRETIZATION OF A CONVECTION-DIFFUSION PROBLEM

Katarina Surla¹, Zorica Uzelac² and Ljiljana Teofanov²

 ¹ Faculty of Science and Mathematics, University of Novi Sad,
 ² Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 4 and 6, 21000 Novi Sad, Serbia
 (e-mails: ksurla@im.ns.ac.yu, zora@uns.ns.ac.yu, ljiljap@uns.ns.ac.yu)

(Received December 04, 2006)

Abstract. In this paper the quadratic spline difference scheme for a convection-diffusion problem is derived. With the suitable choice of collocation points we provide the discrete minimum principle. The numerical results implies the uniform convergence of order $\mathcal{O}(n^{-2}\ln^2 n)$.

1. INTRODUCTION

We consider the two parameter singularly perturbed boundary value problem

$$Ly := \varepsilon y''(x) + a(x)y'(x) - b(x)y(x) = f(x), \quad x \in (0, 1),$$

$$y(0) = p_0, \qquad y(1) = p_1,$$

(1)

where a, b and f are sufficiently smooth functions, $0 < \varepsilon \ll 1$ and

$$A \ge a(x) \ge a > 0, \quad B \ge b(x) \ge b > 0, \quad x \in [0, 1].$$

Problem (1) is a convection-diffusion problem with boundary layer of width $\mathcal{O}(\varepsilon)$ near x = 0.

In [5] a reaction-diffusion problem is considered and numerically treated with spline collocation method on a slightly modified Shishkin mesh with standard collocation points. Paper [8] deals with convection-diffusion problem (1) where b = 0 and considers discretization of the problem using quadratic splines as approximation functions on a piecewise uniform Shishkin mesh. Since those method is non-monotone, apart from the consistency error, the construction and analysis of the Green's grid function had to be carried out in order to prove the uniform convergence. Therefore, the proof from [8] is complicate. In [6] and [7] two-parameter singularly perturbed problem is considered and the position of the collocation points are chosen so that minimum principle is achieved on a standard Shishkin mesh. In this paper we use technique from [5],[6] and [7] for the problem (1) and prove uniform convergence based on the inverse monotonicity.

Problem (1) satisfies the minimum principle.

Lemma 1. If $g \in C^2[0,1]$ such that $Lg \leq 0, x \in (0,1)$ and $g(0) \geq 0, g(1) \geq 0$, then $g(x) \geq 0, x \in [0,1]$.

2. SOLUTION DECOMPOSITION, MESH AND SCHEME

Lemma 2. Let $a, b, f \in C^2[0, 1]$. Then (1) has unique solution $y \in C^4[0, 1]$

$$y = v + w, \tag{2}$$

where

$$\begin{cases} Lv = f, \\ Lw = 0 \end{cases}$$

and

$$\begin{cases} |v^{(k)}(x)| \leq M(1+\varepsilon^{2-k}e^{-\delta x/\varepsilon}), \\ |w^{(k)}(x)| \leq M\theta^k e^{-\theta x}, \end{cases} \quad k=0,1,2,3,4,$$

 θ is positive root of the equation $\varepsilon \theta^2 - a\theta - b = 0$. δ and M are constant independent of ε and $\delta > 0$.

The above decomposition is given in [2] and [3], but the estimates for $|v^k(x)|$ for k = 3, 4 are obtained by the comparison of the results from [3] and [1].

We seek the solution of (1) in the form of quadratic spline u(x) on the mesh Δ_n from [3]:

$$\Delta_n: x_0 = 0, \ x_1, x_2, \dots, x_n = 1,$$

where

$$x_{i} = \begin{cases} \frac{2\sigma}{n} i, & i \leq \frac{n}{2} \\ \sigma + \frac{2}{n}(i - \frac{n}{2})(1 - \sigma), & \frac{n}{2} \leq i \leq n \\ \sigma = \min\left\{\frac{1}{2}, \frac{2}{\theta}\ln n\right\}. \end{cases}$$

We suppose that $\sigma = \frac{2}{\theta} \ln n$ since otherwise we use standard procedure on equidistant mesh.

The function $u(x) \in C^1[0,1]$ has the form

$$u(x) = u_i + (x - x_i)u'_i + \frac{(x - x_i)^2}{2}u''_i, \ x \in [x_i, x_{i+1}],$$
(3)

where $u_i = u(x_i)$, and

$$u_{i+1} = u_i + h_{i+1}u'_i + \frac{h_{i+1}^2}{2}u''_i, \quad h_i = x_i - x_{i-1}$$
(4)

$$u_{i+1}' = u_i' + h_{i+1}u_i''. (5)$$

We chose collocation points in a nonstandard way:

$$\xi_i = \alpha_{1i}x_{i-1} + (1 - \alpha_{1i})x_i$$
, on $[x_{i-1}, x_i]$,
 $\eta_i = \alpha_{2i}x_i + (1 - \alpha_{2i})x_{i+1}$, on $[x_i, x_{i+1}]$

where $0 \le \alpha_{1i}, \alpha_{2i} \le 1$.

The collocation equations have the form

$$\varepsilon u''(\xi_i) + a(\xi_i)u'(\xi_i) - b(\xi_i)u(\xi_i) = f(\xi_i), \text{ for } \xi_i \in [x_{i-1}, x_i]$$

$$\varepsilon u''(\eta_i) + a(\eta_i)u'(\eta_i) - b(\eta_i)u(\eta_i) = f(\eta_i), \text{ for } \eta_i \in [x_i, x_{i+1}]$$

i = 1, ..., n, where $u''(\xi_i) = u''_{i-1}$, $u''(\eta_i) = u''_i$. In the construction of the scheme, apart from collocation equations (4) and (5) we use the following equations

$$u'(\xi_i) = u'_{i-1} + (1 - \alpha_{1i})h_i u''_{i-1}, \quad u'(\eta_i) = u'_i + (1 - \alpha_{2i})h_{i+1}u''_i,$$
$$u(\xi_i) = u_{i-1} + (1 - \alpha_{1i})h_i u'_{i-1} + (1 - \alpha_{1i})^2 \frac{h_i^2}{2}u''_{i-1},$$
$$u(\eta_i) = u_i + (1 - \alpha_{2i})h_{i+1}u'_i + (1 - \alpha_{2i})^2 \frac{h_{i+1}^2}{2}u''_i.$$

In order to shorten the notation we omit the indices and use the following notation $f^+ = f(\eta_i), f^- = f(\xi_i), \dots$

After some calculations we have

$$u_{i+1}' = \frac{2(u_{i+1} - u_i)}{h_{i+1}} + \frac{1}{h_{i+1}P_i}((u_{i+1} - u_i)Q_i + h_{i+1}^2b^+u_i + h_{i+1}^2f^+)$$
(6)

$$u'_{i} = \frac{1}{h_{i+1}P_{i}}((u_{i+1} - u_{i})Q_{i} + h_{i+1}^{2}b^{+}u_{i} + h_{i+1}^{2}f^{+}),$$
(7)

where

$$P_{i} = -2\varepsilon + a(\eta_{i})(2\alpha_{2i} - 1)h_{i+1} - b(\eta_{i})\alpha_{2i}(1 - \alpha_{2i})h_{i+1}^{2},$$
$$Q_{i} = -2\varepsilon - 2a(\eta_{i})(1 - \alpha_{2i})h_{i+1} + b(\eta_{i})(1 - \alpha_{2i})^{2}h_{i+1}^{2}.$$

We can determine u'_i from (6) by puting collocation points ξ_i in (6) instead of η_i and obtain

$$u_{i}' = \frac{2(u_{i} - u_{i-1})}{h_{i}} - \frac{1}{h_{i}D_{i}}((u_{i} - u_{i-1})\Omega_{i} + h_{i}^{2}b^{-}u_{i-1} + h_{i}^{2}f^{-}),$$
(8)

where

$$D_{i} = -2\varepsilon + 2a(\xi_{i})h_{i}(2\alpha_{1i} - 1) - b(\xi_{i})h_{i}^{2}(1 - \alpha_{1i})^{2},$$
$$\Omega_{i} = -2\varepsilon - 2a(\xi_{i})h_{i}(1 - \alpha_{1i}) + b(\xi_{i})h_{i}^{2}(1 - \alpha_{1i})^{2}.$$

From (7) and (8) we obtain scheme

$$\mathcal{L}_{n}u_{i}: = r_{i}^{-}u_{i-1} + r_{i}^{c}u_{i} + r_{i}^{+}u_{i+1} = q^{-}f(\xi_{i}) + q^{+}f(\eta_{i}), \ i = 1(1)n - 1$$

$$u_{0} = p_{0}, \qquad u_{n} = p_{1},$$
(9)

where

$$r_i^- = \frac{S_i}{2D_i}, \quad r_i^+ = \frac{h_i Q_i}{2h_{i+1}P_i}, \quad r_i^c = -1 + \frac{h_i h_{i+1}}{2P_i} b(\eta_i) - \frac{Q_i h_i}{2h_{i+1}P_i} + \frac{\Omega_i}{2D_i},$$
$$q_i^- = -\frac{h_i^2}{2D_i}, \qquad q_i^+ = -\frac{h_i h_{i+1}}{2P_i},$$
$$S_i = -2\varepsilon + 2a(\xi_i)h_i\alpha_{1i} + b(\xi_i)h_i^2\alpha_{1i}^2.$$

We want to determine α_{1i} and α_{2i} so that the corresponding matrix has L-form, i.e.

$$r_i^- \ge 0, \quad r_i^+ \ge 0, \quad r_i^c \le 0.$$

We put $\alpha_{2i} = \frac{1}{2}$ except in the case when i = n/2 when $\alpha_{2,n/2} = \frac{1}{2} + \frac{h_{n/2+1}}{2^k}$ where $k = \log_2 x + 1$ and x is the solution of the equation

$$b(\eta_{n/2})x^2 - 4a(\eta_{n/2})x - b(\eta_{n/2})h_{n/2+1}^2 = 0.$$

Then for $n \ge n_0$ (n_0 is independent of ε) we have

$$Q_i = -2\varepsilon - a(\eta_i)h_{i+1} + b(\eta_i)\frac{1}{4}h_{i+1}^2 \le 0$$

and $P_i = -2\varepsilon - b(\eta_i)\frac{1}{4}h_{i+1}^2 \le 0$, which gives $r_i^+ \ge 0$.

We determine α_{1i} from the condition $r_i^- \ge 0$. This condition is fulfilled if $S_i \le 0$ and $D_i \le 0$. Since

$$D_i \le 0$$
 if $\alpha_{1i} \le \frac{1}{2}$,

we can find α_{1i} so that $S_i \leq 0$. Then $r_i^c < 0$ and the matrix of the system (9) is inverse monotone.

Lemma 3. (Discrete minimum principle) If W is mesh function and $L_nW_i \leq 0, i = 1(1)n - 1$, and $W_0 \geq 0, W_n \geq 0$ then $W_i \geq 0$ for i = 0, 1, ..., n.

We use the following discrete decomposition

$$u = V + W,$$

where V is the approximation for v and W approximate w and

$$\mathcal{L}_n W = 0, \ W(0) = w(0), \ W(1) = w(1).$$

Theorem 1. We have the following bound for W:

$$|W(x_j)| \le M \prod_{i=1}^{j} (1 + 2\theta_L h_i)^{-1} := \psi_j, \quad \psi_0 = M,$$

where θ_L is positive root of the equation $2\varepsilon \theta_L^2 - a\theta_L - b = 0$.

Proof. Consider $\phi_j = \psi_j \pm W(x_j)$. Now

$$\mathcal{L}_n \phi_j = r^- \psi_{j-1} + r^c \psi_j + r^+ \psi_{j+1} \pm 0 \tag{10}$$

$$= M\psi_{j+1}[G(1+2\theta_L h_{i+1}) + \frac{\theta_L h_i}{D_i P_i}(S_i P_i - Q_i D_i) + 2\theta_L^2 \frac{h_i h_{i+1}}{D_i}(S_i + 2\varepsilon) + \frac{\theta_L h_i h_{i+1}^2 b^+}{P_i} - 2\frac{h_i h_{i+1} \beta}{D_i} + \frac{h_i h_{i+1} b^+}{2P_i} - 2\frac{h_i h_{i+1} \theta_L a}{D_i}],$$

where

$$G=-1+\frac{S_i+\Omega_i}{2D_i}=\frac{h_i^2b^-}{2D_i}\leq 0$$

Crucial expressions for the analysis of (10) are \tilde{A} and \tilde{B} . \tilde{A} contains the values of the function a(x) and \tilde{B} contains the values of the function b(x). Since

$$\tilde{A} = 2\theta_L [-2a^-h\varepsilon - 2a^+h_{i+1}\varepsilon + a^-a^+h_ih_{i+1}(-1+2\alpha_1) \\ -2h_{i+1}a(-2\varepsilon - \frac{b^+}{4}h_{i+1}^2)] \le 0$$

if $\alpha_1 \leq \frac{1}{2} - \frac{h_i b^+}{4a^+} \leq \frac{1}{2} - \frac{h_i B}{4a}$, this situation is accepted in our treatment of the problem. But, in the opposite case we consider the expression β :

$$\beta = \tilde{A} + 4\theta_L^2 h_{i+1} P_i(S_i + 2\varepsilon).$$

By using the fact $\theta_L \geq \frac{a}{2\varepsilon}$ ([3]) we have that $\beta \leq 0$ if $4ah_i \geq \varepsilon$, which is fulfilled for $i = \frac{n}{2} + 1, \frac{n}{2} + 2, \dots, n-1$. Further,

$$\tilde{B} = 2\alpha_1\theta_l(-2b^-\varepsilon h_i^2(2-\alpha_1) + b^-b^+h_{i+1}^2h_i^2\left(-\frac{3}{4} + \frac{1}{2}\alpha_1\right)$$
$$-h_{i+1}b^+(2\varepsilon + h_i(1-2\alpha_1) + b^-\alpha_1(1-\alpha_1)h_i^2)$$
$$+(2\varepsilon + \frac{b^+}{4}h_{i+1}^2)(4\beta h_{i+1} - b^-h_i(1+2\theta_Lh_{i+1}))$$

and we have

$$B \le 0$$
 if $2\varepsilon \le h_i$,

which is satisfied for the larger mesh step. This implies that $\mathcal{L}_n \phi_j \leq 0, \ j = n/2 + 1, \dots, n-1.$

If i = 1(1)n/2 we put $\alpha_1 = 1/2$ and then we have fine mesh which implies $\mathcal{L}_n \phi_j \leq 0$. Thus, using discrete minimum principle we obtain the result.

Numerical results given in the next section implies that the error is of order $\mathcal{O}(n^{-2}\ln^2 n)$.

3. NUMERICAL RESULTS

We study the test problem

$$\varepsilon y''(x) + y'(x) - y(x) = -x, \quad x \in (0,1), \qquad y(0) = 1, \qquad y(1) = 0.$$

The exact solution is

$$y(x) = x + 1 + \frac{2e^{k_2/(2\varepsilon)}}{1 - e^{-k_1/\varepsilon}} \cdot e^{-xk_1/(2\varepsilon)} - \frac{2}{1 - e^{-k_1/\varepsilon}} \cdot e^{(1-x)k_2/(2\varepsilon)}$$

where $k_{1,2} = 1 \pm \sqrt{1 + 4\varepsilon}$. Tables contain errors, convergence orders and values of the parameter α_1 .

In Table 1 we present errors $E_n = \max_{0 \le i \le n} |y(x_i) - u_i|$ computed on the Shishkin mesh for various values of ε and n. The convergence rates of these errors are calculated in a standard way

$$P_n = \frac{\ln E_n - \ln E_{2n}}{\ln 2}$$
 for $n = 2^k$, $k = 5, 6, \dots 10$

and presented in Table 2.

Table 1. Errors E_n

$\varepsilon \setminus n$	32	64	128	256	512	1024
2^{-4}	4.725e-3	1.551e-3	3.857e-4	9.645e-5	2.409e-5	6.012e-6
2^{-5}	4.527e-3	1.609e-3	5.443e-4	1.776e-4	5.615e-5	1.732e-5
2^{-6}	4.721e-3	1.580e-3	5.331e-4	1.739e-4	5.498e-5	1.695e-5
2^{-7}	4.147e-3	1.664e-3	5.283e-4	1.721e-4	5.441e-5	1.678e-5
2^{-8}	4026e-3	1.485e-3	5.542e-4	1.713e-4	5.413e-5	1.669e-5
2^{-9}	3.894e-3	1.459e-3	5.056e-4	1.784e-4	5.400e-5	1.665e-5
2^{-10}	3.693e-3	1.434e-3	5.003e-4	1.659e-4	5.587e-5	1.663e-5
2^{-11}	3.324e-3	1.401e-3	4.961e-4	1.647e-4	5.270e-5	1.711e-5
2^{-12}	2.796e-3	1.344e-3	4.915e-4	1.639e-4	5.242e-5	1.631e-5
2^{-13}	5.223e-3	1.242e-3	4.843e-4	1.632e-4	5.224e-5	1.624e-5
2^{-14}	1.002e-2	1.059e-3	4.709e-4	1.621e-4	5.211e-5	1.620e-5

Table 2. Convergence rates P_n

$\varepsilon \setminus n$	32	64	128	256	512
2^{-4}	1.607	2.008	2.000	2.001	2.003
2^{-5}	1.492	1.564	1.616	1.661	1.697
2^{-6}	1.579	1.567	1.616	1.661	1.697
2^{-7}	1.317	1.655	1.618	1.662	1.697
2^{-8}	1.438	1.422	1.694	1.662	1.697
2^{-9}	1.416	1.529	1.503	1.724	1.697
2^{-10}	1.365	1.519	1.592	1.571	1.748
2^{-11}	1.246	1.498	1.590	1.644	1.623
2^{-12}	1.057	1.451	1.584	1.645	1.684
2^{-13}	2.072	1.358	1.569	1.643	1.685
2^{-14}	3.242	1.170	1.538	1.638	1.685

Table 3. Values of α_1

$\varepsilon \setminus n$	32	64	128	256	512	1024
2^{-4}	0.5	0.5	0.5	0.5	0.5	0.5
2^{-5}	0.5	0.5	0.5	0.5	0.5	0.5
2^{-6}	0.25	0.5	0.5	0.5	0.5	0.5
2^{-7}	0.125	0.25	0.5	0.5	0.5	0.5
2^{-8}	6.250e-2	0.125	0.25	0.5	0.5	0.5
2^{-9}	3.125e-2	6.250e-2	0.125	0.25	0.5	0.5
2^{-10}	1.562e-2	3.125e-2	6.250e-2	0.125	0.25	0.5
2^{-11}	7.812e-3	1.562e-2	3.125e-2	6.250e-2	0.125	0.25
2^{-12}	3.906e-3	7.812e-3	1.562e-2	3.125e-2	6.250e-2	0.125
2^{-13}	1.953e-3	3.906e-3	7.812e-3	1.562e-2	3.125e-2	6.250e-2
2^{-14}	9.766e-3	1.953e-3	3.906e-3	7.812e-3	1.562e-2	3.125e-2

References

- A. I. Berger, J. M. Solomon, M. Ciment, An Analysis of a Uniformly Accurate Difference Method for Singular Perturbation Problem, Mathematics of Computation, Vol. 37, No. 155 (1981), 79–94
- [2] T. Linß, H. G. Roos, Analysis of a finite difference scheme for a singularly perturbed problem with two small parameters, J. Math. Anal. Appl., 289 (2004), 355–366
- [3] E. O'Riordan, M. L. Pickett, G. I. Shishkin, Singularly Perturbed Problems Modelling Reaction-Convection-Diffusion Processes, Computational Methods in Applied Mathematics, Vol. 3, No. 3 (2003), 424–442
- [4] H-G. Roos, Z. Uzelac, The SDFEM for a Convection-Diffusion Problem with Two Small Parameters, Computational Methods in Applied Mathematics, Vol. 3, No. 3 (2003), 424–442
- [5] K. Surla, Z. Uzelac, A Uniformly Accurate Spline Collocation Method for a Normalized Flux, Journal of Computational and Applied Mathematics, Vol. 166, No. 1 (2004), 291–305
- [6] K. Surla, Lj. Teofanov, Z. Uzelac, The Structure of Spline Collocation Matrix for Singularly Perturbation Problems with Two Small Parameters, Novi Sad J. Math., Vol. 35, No. 1 (2005), 41–48
- [7] K. Surla, Z. Uzelac, Lj. Teofanov, A spline collocation method and a special grid of Shishkin type for a singularly perturbed problem, SIMAI2006-VIII Congresso Societa Italiana di Matematica Applicata e Industriale, BaiaSamuele (Ragusa), Italy, 22-26 May 2006
- [8] Lj. Teofanov, Z. Uzelac, Family of Quadratic Spline Difference Schemes for a Convection-Diffusion Problem, to appear in International Journal of Computer Mathematics