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Abstract. A system of linear reaction-diffusion equations with nonlinear singular own
sources is considered in this paper. Compatibility conditions provided sufficient regularity
of the solution are derived. A second order accurate immersed interface difference scheme
is constructed for the differential system of equations involving interfaces. The numerical
method is more accurate than the standard approach and does not require the interfaces
to be grid points. An algorithm for decoupling of the difference equations in nonlinear
part (with small number of equations) and linear part (with large number of equations) is
proposed. Numerical experiments are discussed.

1. INTRODUCTION

Many physical, biological, chemical and other problems lead to mathematical

models in which the input data (such as the coefficients of the differential equations,

initial conditions, source terms etc.) are discontinuous or even singular across one
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or several interfaces in the solution domain. These problems are called interface

problems and their solutions typically are non-smooth or discontinuous across the

interfaces.

Interface problems have attracted a lot of attention from both theoretical and

numerical point of view. Many numerical methods designed for smooth solutions do

not work for such problems. The standard discrete methods require the grid points

to lie along the interfaces. Another methods use Cartesian grid and avoid grid regen-

eration. Some commonly used methods for discontinuous coefficients problems are

the smoothing method that utilizes the smoothed Heaviside function, and harmonic

averaging method. Similar is the Steklov operator method developed in the papers

of Jovanovic, Vulkov [5, 6, 7].

Recently some new methods are developed to deal with interfaces with more com-

plicated geometry. Most of them are motivated by the Peskin’s immersed boundary

method [16], originally constructed for studying the blood flow in the heart. It uses

grid-dependent discrete Dirac δ functions to distribute singular source to nearby grid

points and is first order of accuracy method. It was extended by Beyer and LeVeque

[1], were the combination of different discrete δ functions gives second order results,

but only for 1-D problems. In 1994 LeVeque and Li [9] developed the immersed inter-

face method (IIM) for elliptic equations. Later, it has been extended to many others

problems, see the review paper of Li [11].

The key idea of IIM is to incorporate the known jump conditions of a solution and

its derivatives into finite difference schemes in the neighborhood of the discontinuities

arising from the singular force. In [10] immersed interface finite element method is

presented for the case of homogeneous jump conditions. Cartesian grids are used and

then associated uniform triangulations are added on. Interfaces are not necessarily

aligned with cell boundaries. Using modified bases functions it is second order method

in maximum norm. In [23] an explicit jump immersed interface method for elliptic

problems is developed. It uses the jump conditions of higher order to decrease the

local truncation error of the finite difference schemes.

In this paper we consider another kind of conjugation conditions, see (5),(6),
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which are specific and are not treated in the papers mentioned above. The solution

is continuous, but the jump of the flux depends on the solution at the active sites.

One of the difficulties appeared is the wider stencil to make IIM work. For the

one-dimensional case it needs 6-points on every time layer, while it needs 8-points

for the two-dimensional problems with line interface, parallel to one of the axis [13].

Some classical difference schemes for the scalar case (S=1) of the problem (1)–(3) and

single (R=1) site of reactions are examined in [3]. The IIM for one equation (S=1)

and many reactions is studied in [13] and for the parabolic system (1)–(3) with one

reaction (S=1) - in [22]. 2-D parabolic problems with more complicated interfaces are

considered in [14]. Boundary element approximations of (1)–(3) are derived in [17].

We propose a fast numerical method, which combines a second order IIM difference

scheme and an algorithm for solving the discrete equations. The layout of the paper

is as follows. The differential problem is stated in the next section. Existence and

uniqueness of regular solution of the problem formulated is also discussed. The IIM

difference scheme is derived in Section 3. An algorithm based on elimination of the

unknowns corresponding to linear equations is presented in Section 4. It essentially

decreases the computational work. Finally, numerical experiments are discussed in

the last section.

2. THE DIFFERENTIAL PROBLEM

In this paper we construct and analyze an IIM difference scheme for the system

of reaction-diffusion equations

∂U

∂t
= D

∂2U

∂x2
− ΩU +

R
∑

r=1

Qr(U)δ(x− ξr) (1)

(x, t) ∈ QT = Ω× (0, T ), Ω = (−1, 1), 0 < t < T,

U(x, 0) = U0(x), for x ∈ Ω, (2)

and

U(−1, t) = Φ(t), U(1, t) = Ψ(t), 0 < t < T. (3)
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Here U(x, t) = (u1(x, t), ..., uS(x, t))
T is a vector of concentration of S different

species, D = diag(D1, ..., DS) is a diagonal matrix of diffusion coefficients, Ω =

(wij), i, j = 1, ..., S is a matrix corresponding to adsorption-desorption linear pro-

cesses and Qr(U) = (Q1r(U), ..., QSr(U))
T is the r-th reaction term due to reaction

taking place at active site ξr, r = 1, ..., R.

These equations describe various physical processes with localized source terms.

For example, localized reactions occur at chemically active parallel line deflects on a

two-dimensional surface. Similar phenomena are also observed in biological systems,

for instance on chemically active membranes. The reader can consult [2, 17] for

physical derivation.

The additional motivation for our study comes from the parabolic problems with

interfaces. In [4] the authors study the well-posedness of a scalar diffusion equation

of the above type. Sufficient conditions are found to ensure global existence and

blow-up time. There are not such results for the system (1) in the literature. On

the other hand an effective numerical approach to (1)–(3) will help at studying of the

qualitative behaviour of the solutions.

With some assumptions for smoothness a solution of (1)–(3) is equivalent to a

solution of the following problem:

∂U

∂t
= D

∂2U

∂x2
− ΩU, x ∈ (−1, 1), x 6= ξr, 0 < t < T, (4)

[U ]ξr
≡ U(ξr + 0, t)− U(ξr − 0, t) = 0, 0 ≤ t ≤ T, r = 1, ..., R, (5)

D[
∂U

∂x
]ξr

= −Qr(U(ξr, t)), 0 ≤ t ≤ T, r = 1, ..., R, (6)

subjected with initial (2) and boundary conditions (3).

This is a parabolic problem and if the input data are piecewise functions, the solu-

tion is also piecewise function. The discontinuities of the solution and its derivatives

propagates along the discontinuity lines x = ξr, r = 1, ..., R.

For construction of a second-order accurate IIM difference scheme that approxi-

mates (4)-(6), (2), (3) we need some regularity of the solution U(x, t). Let C 0
α = Cα

be the set of the Holder continuous functions with 0 < α < 1. For each k ≥ 1 we
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introduce the following subspaces Ck
α(QT ) of Cα(QT ), whose elements have Holder

continuous derivatives:

Ck
α(QT ) = {u :

∂i+ju

∂xi∂tj
∈ C0

α(QT ), 0 ≤ i+ 2j ≤ k, i,j - nonnegative integers}.

In order the solution U to be continuous up to the boundary {(x, t) : x = −1,+1,

0 ≤ t ≤ T} and up to the interface ΓT = {(x, t) : x = ξr, r = 1, ..., R, 0 ≤ t ≤ T} it

is necessary to have the following conditions:

us,0(−1) = ϕs(0), us,0 = ψs(0), [us,0]ξr
= 0, s = 1, ..., S, r = 1, ..., R.

We call these relations compatibility conditions of order 0.

If we require the solution to have continuous derivatives ∂U/∂t, ∂2U/∂x2 up to

the boundary the following conditions are necessary:

ϕ̇s(0) = u′′s,0(−1), ψ̇s(0) = u′′s,0(1), where s = 1, ..., S, · ≡ d/dt, ′ ≡ d/dx.

Differentiating the equality (5) with respect to t we get

[

∂us

∂t

]

ξr

= 0, s = 1, ..., S, r = 1, ..., R. (7)

Now, from (4),(5) and (7), one obtains

Ds

[

∂2us

∂x2

]

ξr

= 0, s = 1, ..., S, r = 1, ..., R. (8)

Therefore,

Ds

[

u′′s,0
]

ξr

= 0, s = 1, ..., S, r = 1, ..., R. (9)

Also, it follows from (8), that

Ds

[

u′s,0
]

ξr

= −Qsr(U0(ξr)), s = 1, ..., S, r = 1, ..., R. (10)

Conditions (16), (17) are called compatibility conditions of order 1.

Next, differentiating (4) with respect to x we find

[

∂2us

∂t∂x

]

ξr

= Ds

[

∂3us

∂x3

]

ξr

−
S
∑

i=1

ωsi

[

∂ui

∂x

]

, s = 1, ..., S, r = 1, ..., R. (11)
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Differentiating the equality (6) with respect to t we find expressions for [∂2us/∂t∂x]ξr
,

s = 1, ..., S, r = 1, ..., R. With this, (11) becomes:

[

∂3us

∂x3

]

ξr

= −
1

Ds

S
∑

i=1

(

1

Ds

∂Qsr

∂ui

∂ui

∂t
+ ωsiQir

)

ξr

s = 1, ..., S, r = 1, ..., R. (12)

Now, from (4), (7) and (12) it follows the compatibility conditions of order 2:

[

u′′′s,0
]

ξr

= −
1

Ds

S
∑

i=1

(

1

Ds

∂Qsr

∂ui

(

Diu
′′
i,0(ξr)−

S
∑

s=1

ωisus,0(ξr)

)

+ ωsiQir (U0(ξr))

)

,

s = 1, ..., S, r = 1, ..., R.

It was found that the compatibility conditions are not only necessary for the

continuity of the corresponding derivatives of U up to the boundary and the interface,

they are also sufficient. The following result for local existence and uniqueness of

solution holds [4, 8, 18].

Theorem 1. Let U0 ∈ Cα[−1, 1]∩C
2
α(−1, 0)∩C

2
α(0, 1) has continuous derivatives,

ϕ, ψ ∈ C1
α[0, T ] and Q(u) ∈ C1(RS). Assume that the compatibility conditions of

order 0 and 1 are hold. Then the problem (1)-(3) has a unique solution u ∈ Cα(Q̄T )

∩ C2
α(QT\ΓT ) and this solution also solves the problem (4)-(6), (2), (3).

If the compatibility conditions of order 2 are also hold, then u ∈ Cα(Q̄T ) ∩

C3
α(QT\ΓT ).

3. CONSTRUCTION OF AN IIM DIFFERENCE SCHEME

We discretize (1)-(3) on the mesh ω̄ = ω̄h × ω̄τ :

ω̄h = {xi = ih , i = 0, 1, ...,M, x0 = −1, xM = 1},

ω̄τ = {tn+1 = tn + τn+1 , n = 0, 1, ..., N − 1, t0 = 0, tN = T}.

Let denote the solution matrix as U(t) = (U1, U2, · · · , UM)T , where Ui = U(xi, t).

Define also Un = (Un
1 , U

n
2 , · · · , U

n
M)T , where Un

i = U(xi, tn).Our finite difference
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method described below produces the matrix Y (t) = (Y0(t), ..., YM(t))T , 0 < t < T,

that approximates U(t) and Y n = (Y n
0 , ..., Y

n
M )T for n = 0, ..., N , that approxi-

mates Un (superscript T denotes transpose). For simplicity, we may also write

Y̌i = Y n
i , Ŷi = Y n+1

i , i = 0, ...,M , n = 0, ..., N − 1.

On the mesh ω̄h × ω̄τ we shall use the standard notations, as in [20],

fx̄(xi) = fx̄,i = (fi − fi−1)/h, fx(xi) = fx,i = (fi+1 − fi)/h,

fx̄x(xi) = fx̄x,i = (fx)x̄,i .

Let us fix the integer r, 1 ≤ r ≤ R and suppose that xIr
≤ ξr < xIr+1,

2 ≤ Ir ≤M − 2. The vector function U(x, t) is smooth almost everywhere, except at

ξr, r = 1, ..., R, where its derivatives has a discontinuity of first kind. Therefore, the

question is how to approximate the derivatives ∂2us(xIr
, t)/∂x2, ∂2us(xIr+1, t)/∂x

2,

s = 1, ..., S, r = 1, ..., R using the solution values at grid points. From the Taylor

expansion, we obtain a second order difference at a grid point xj, j = Ir, Ir+1, as did

in [1]:

∂2us(xj, t)

∂x2
= us,x̄x(xj, t) (13)

−
sgn(ξr − xj)

h2

∞
∑

m=0

1

m!

(

h2sgn(ξr − xj)d
(1)
h (xj − ξr)

)m
[

∂mus

∂xm

]

ξr

,

where d
(1)
h is the Peskin’s discrete delta function, or “hat function” with support

(−h, h):

d
(1)
h (x) =

{

(h− |x|)/h2, |x| ≤ h,
0, otherwise.

It follows from (13) that to achieve second order accuracy, the solution us(x, t),

s = 1, ..., S, must have up to third order piecewise continuous derivatives. The dis-

continuity occurs at the interface ΓT . The compatibility conditions require that the

initial data us,0(x), s = 1, ..., S and the reaction terms fr, r = 1, ..., R also to have

second order piecewise continuous derivatives.

Plugging (6), (8), (12) for [∂mus/∂x
m]ξr

, m = 1, 2, 3, s = 1, ..., S, r = 1, ..., R into

(20), we obtain the desired second order approximation. Now, the equations (4)–(6)

can be written in the form:
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∂us(xi, t)

∂t
= Dsus,x̄x(xi, t)−

S
∑

k=1

ωskuk(xi, t) + 0(h2) (14)

i = 1, ...,M − 1, i 6= Ir, Ir + 1, s = 1, ..., S, r = 1, ..., R,

∂us(xIr
, t)

∂t
= Dsus,x̄x(xIr

, t)−
S
∑

k=1

ωskuk(xIr
, t) +

xIr+1 − ξr
h2

Qsr(U(ξr, t))

+
(xIr+1 − ξr)

3

6h2
Q̃sr(U(ξr, t)) + 0(h2), (15)

∂us(xIr+1, t)

∂x2
= Dsus,x̄x(xIr+1, t)−

S
∑

k=1

ωskuk(xIr+1, t)−
xIr
− ξr
h2

Qsr(U(ξr, t))

−
(xIr

− ξr)
3

6h2
Q̃sr(U(ξr, t)) + 0(h2), (16)

where

Q̃sr(U(ξr, t)) =
S
∑

k=1

(

1

Ds

∂Qsr

∂uk

∂uk

∂t
+ ωskQkr

)

ξr

, s = 1, ..., S, r = 1, ..., R.

Since in the IIM ξr usually does not coincide with any of the nodes xIr
, xIr+1, we

need to interpolate us(ξr, t) and ∂us(ξr, t)/∂t. We use the interpolation formula from

Lemma 4.2 in [1]:

ϕ(ξr) = h
∑

j

ϕ(xj)dh(xj − ξr) + 0(hp). (17)

Here ϕ is an arbitrary continuous function, Lipschitz continuous on each half interval,

ϕ ∈ Cp−1 ([ξr − Lh, ξr) ∪ (ξr, ξr + Lh]) , (18)

and dh(x) satisfies:

dh(x) = 0 for |x| ≥ Lh, L− integer;

h
∑

j

(xj − ξr)
mdh(xj − ξr) = δm0 =

{

1, m = 0,
0, m = 1, ..., p− 1.

(19)

To preserve 0(h2) approximation in (15), (16) we apply (17) to ∂us(ξr, t)/∂t and

us(ξr, t). For this we need d
(1)
h and the following discrete delta-function:

d
(6)
h (x) =

1

2h



















(h− |x|)(h+ |x|)(2h+ |x|)/h3, |x| ≤ h,
2(h− |x|)(h+ |x|)(2h− |x|)/h3, h ≤ |x| ≤ 2h,
(h− |x|)(2h− |x|)(3h− |x|)/h3, 2h ≤ |x| ≤ 3h,
0, otherwise.
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The condition (18) with d
(6)
h applied to u(ξr, t) requires the following restriction

on the mesh size:

3h < min
1≤i≤R+1

(ξi − ξi−1), (20)

where ξ0 = x0, ξR+1 = xM .

To approximate Qsr(U(ξr, t)) and ∂Qsr(U(ξr, t))/∂uk, s, k = 1, ..., S, r = 1, ..., R,

we apply the so called ”product approximation formula” [19]:

∂Qsr(U(ξr, t))

∂uk

=
∂Qsr

(

h
∑

j U(xj, t)d
(1)
h (xj − ξr) +O(h)

)

∂uk

= h
∑

j

∂Qsr(U(xj, t))

∂uk

d
(1)
h (xj − ξr) +O(h)

≈ ρIr+1
∂Qsr(U(xIr

, t))

∂uk

+ ρIr

∂Qsr(U(xIr+1, t))

∂uk

,

Qsr(U(ξr, t)) = Qsr



h
∑

j

U(xj, t)d
(6)
h (xj − ξr) + 0(h3)





= h
∑

j

Qsr(U(xj, t))d
(6)
h (xj − ξr) + 0(h3)

≈ θ1rQsr(U(xIr−2, t)) + θ2rQsr(U(xIr−1, t)) + θ3rQsr(U(xIr
, t))

+ θ4rQsr(U(xIr+1, t)) + θ5rQsr(U(xIr+2, t)) + θ6rQsr(U(xIr+3, t))

=
6
∑

i=1

θirQsr(U(xIr−3+i, t)) ≡ Qsr,

where for r = 1, ..., R

ρIr
= (ξr − xIr

)/h, ρIr+1 = (xIr+1 − ξr)/h,

θ1r = ρIr
ρIr+1(ρIr

+ 1)/2, θ2r = −ρIr
ρIr+1(ρIr

+ 2),

θ3r = ρIr+1(ρIr
+ 1)(ρIr

+ 2)/2, θ4r = ρIr
(ρIr+1 + 1)(ρIr+1 + 2)/2,

θ5r = −ρIr
ρIr+1(ρIr+1 + 2), θ6r = ρIr

ρIr+1(ρIr+1 + 1)/2.

Now, we neglect high order terms of O(h2) in (14)-(16) to get the following semi-

discrete problem:
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(E − ρIr+1drD
−1Q

′

r)ẎIr
− ρIr

drD
−1Q

′

rẎIr+1

= Φr,1(YIr−2, YIr−1, YIr
, YIr+1, YIr+2, YIr+3)

= DYx̄x,Ir
− ΩYIr

+ erQr + drΩD
−1Qr, (21)

−ρIr+1mrD
−1Q

′

rẎIr
+ (E − ρIr

mrD
−1Q

′

r)ẎIr+1

= Φr,1(YIr−2, YIr−1, YIr
, YIr+1, YIr+2, YIr+3)

= DYx̄x,Ir+1 − ΩYIr+1 + grQr +mrΩD
−1Qr, (22)

Ẏi = DYx̄x,i − ΩYi, i = 1, ...,M − 1, i 6= Ir, Ir + 1 , r = 1, ..., R, (23)

where E is the identity matrix of size S,

dr =
h

6
ρ3Ir+1, er =

ρIr+1

h
, mr =

h

6
ρ3Ir
, gr =

ρIr

h
,

Qr = ρIr+1Qr(YIr
) + ρIr

Qr(YIr+1)

Qr =
6
∑

i=1

θriQr(YIr−3+i)

Q
′

r = ρIr+1Q
′
r(YIr

) + ρIr
Q′r(YIr+1)

Q′r =









∂Q1r/∂u1 . . . ∂Q1r/∂uS

...
∂QSr/∂u1 . . . ∂QSr/∂uS









. (24)

Let denote

Ar(YIr
, YIr+1) =

∥

∥

∥

∥

∥

Ar,11 Ar,12

Ar,21 Ar,22

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

E − ρIr+1drD
−1Q

′

r − ρIr
drD

−1Q
′

r

−ρIr+1drD
−1Q

′

r E − ρIr
drD

−1Q
′

r

∥

∥

∥

∥

∥

.

(25)

The inverse matrix A−1 is

A−1r (YIr
, YIr+1) =

∥

∥

∥

∥

∥

Pr,11 Pr,12

Pr,21 Pr,22

∥

∥

∥

∥

∥

,

where

Pr,22 = (Ar,22 − Ar,21A
−1
r,11Ar,12)

−1, Pr,12 = −A
−1
r,11Ar,12Pr,22,

Pr,21 = −Pr,22Ar,21A
−1
r,11, Pr,11 = −A

−1
r,11 − A−1r,11Ar,12Pr,21.
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Then we find the explicit form of the unknowns ẎIr
, ẎIr+1, r = 1, ..., R:

ẎIr
= Pr,11Φr,1 + Pr,12Φr,2,

ẎIr+1 = Pr,21Φr,1 + Pr,22Φr,2.

The semi-discretization (21)–(23) is an intermediate step in the derivation of a

fully discrete scheme. In this paper, we apply the semi-implicit Euler’s method (with

weight 0 ≤ σ ≤ 1) to obtain the system of finite difference equations between time

level tn and tn+1:

Ŷ0 = F0 = 0, ŶM = FM = 0, (26)

−AiŶi−1 + CiŶi −BiŶi+1 = Fi, i = 1, ...,M − 1, i 6= Ir, Ir + 1, r = 1, ..., R, (27)

ŶIr
− τσ(Pr,11Φ̂r,1 + Pr,12Φ̂r,2) = τ(1− σ)(Pr,11Φ̌r,1 + Pr,12Φ̌r,2)− Y̌Ir

, (28)

ŶIr+1 − τσ(Pr,21Φ̂r,1 + Pr,22Φ̂r,2) = τ(1− σ)(Pr,21Φ̌r,1 + Pr,22Φ̌r,2)− Y̌Ir+1, (29)

where

Ai = (τσ/h2)E, Bi = Ai, Ci = E + 2Ai + τΩ, Fi = Y̌i + τ(1− σ)Y̌x̄x,i.

It is obvious that the local truncation error of the weighted scheme (26)–(29) is of

O(τm + h2), where m = 1 if σ 6= 0.5 and m = 2 if σ = 0.5.

4. ALGORITHM FOR DECOUPLING OF THE NONLINEAR EQUATIONS

A three stage algorithm for solving the system (26)–(29) is proposed below:

• first, we eliminate all unknown vectors except ŶIr
, ŶIr+1, r = 1, ..., R ;

• second, we solve ŶIr
and ŶIr+1, r = 1, ..., R using an iteration method for the

system of 2R nonlinear equations;

• third, find other unknown vectors using the exact recurrent formulas.
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We seek the mesh solution in the form

Ŷi = Zi +
R
∑

r=1

(V Ir

i ŶIr
+ V Ir+1

i ŶIr+1), i = 0, ...,M, (30)

where Zi is a vector with S components and V Ir

i , V Ir+1
i are matrixes of order S.

It follows from this linear form:

Z0 = F0, ZM = FM , ZIr
= 0, ZIr+1 = 0, r = 1, ..., R;

V Ir

0 = V Ir

M = V Ir+1
0 = V Ir+1

M = 0;

V Ir

i =

{

E, i = Ir, r = 1, ..., R,
0, i = Ir + 1, Ik, Ik + 1, k 6= r, k = 1, ..., R;

V Ir+1
i =

{

E, i = Ir + 1, r = 1, ..., R,
0, i = Ir, Ik, Ik + 1, k 6= r, k = 1, ..., R.

Plugging the relations (30) into (27), we get a linear system of equations for three

groups of unknowns {Zi}, {V
Ir

i }, {V
Ir+1
i }. The unknowns {Zi} are found from the

systems:

Z0 = F0,

−AiZi−1 + CiZi −BiZi+1 = Fi, i = 1, ..., I1 − 1,

ZI1 = 0;

ZIk+1 = 0 ,
−AiZi−1 + CiZi −BiZi+1 = Fi, i = Ik + 2, ..., Ik+1 − 1, k = 1, ..., R− 1,

ZIk+1
= 0;

(31)

ZIR+1 = 0,

−AiZi−1 + CiZi −BiZi+1 = Fi, i = IR + 2, ..., M − 1,

ZM = FM .

We set I0 = −1, IR+1 =M . In order to find {V Ik

i }, i = 1, ...,M − 1, k = 1, ..., R,

we solve the following linear systems with k = 1, ..., R and r = 1, ..., R + 1,

V Ik

Ir−1+1 = 0, V Ik

Ir
=

{

0 , k 6= r,
E , k = r,

−AiV
Ik

i−1 + CiV
Ik

i −BiV
Ik

i+1 = 0, i = Ir−1 + 2, ..., Ir − 1.

(32)
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In a similar way can be determined the unknowns {V Ik+1
i }: for k = 1, ..., R and

r = 1, ..., R + 1 we solve the linear systems

V Ik+1
Ir

= 0 , V Ik+1
Ir−1+1 =

{

0 , k 6= r − 1,
E , k = r − 1,

−AiV
Ik+1
i−1 + CiV

Ik+1
i −BiV

Ik+1
i+1 = 0 , i = Ir−1 + 2, ..., Ir − 1.

(33)

Now, from (30), we get the expression for ŶIr−2, ŶIr−1, ŶIr+2, ŶIr+3:

ŶIr−2 = ZIr−2 + V
Ir−1+1
Ir−2 ŶIr−1+1 + V Ir

Ir−2ŶIr
,

ŶIr−1 = ZIr−1 + V
Ir−1+1
Ir−1 ŶIr−1+1 + V Ir

Ir−1ŶIr
, (34)

ŶIr+2 = ZIr+2 + V Ir+1
Ir+2 ŶIr+1 + V

Ir+1

Ir+2 ŶIr+1
,

ŶIr+3 = ZIr+3 + V Ir+1
Ir+3 ŶIr+1 + V

Ir+1

Ir+3 ŶIr+1
.

Inserting (34) in (28)–(29) we get a nonlinear system of 2R equations:

Gr1(ŶIr−1+1, ŶIr
, ŶIr+1, ŶIr+1

) = ŶIr
− τσ( ˆ̃P r,11

ˆ̃Φr,1 +
ˆ̃P r,12

ˆ̃Φr,2)

−τ(1− σ)( ˇ̃P r,11
ˇ̃Φr,1 +

ˇ̃P r,12
ˇ̃Φr,2)− Y̌Ir

= 0, (35)

Gr2(ŶIr−1+1, ŶIr
, ŶIr+1, ŶIr+1

) = ŶIr+1 − τσ( ˆ̃P r,21
ˆ̃Φr,1 +

ˆ̃P r,22
ˆ̃Φr,2)

−τ(1− σ)( ˇ̃P r,21
ˇ̃Φr,1 +

ˇ̃P r,22
ˇ̃Φr,2)− Y̌Ir+1 = 0 (36)

where P̃r,kl and Φ̃r,k, r = 1, ..., R, k, l = 1, 2 are obtained from Pr,kl, Φr,k after the

substitution. Note that for r = 1, we have YIr−1+1 = Y0 and for r = R we have

YIR+1
= YM .

The most widely used iterative method for solving the nonlinear algebraic sys-

tem of equations, obtained from the finite difference discretization, is the Newton’s

method, see for example [15]. We apply the classical Newton’s method to (35), (36).

For shorter we rewrite the system in the form:

Gr1 = ŶIr
− τσĤr,1 − τ(1− σ)Ȟr,2 − Y̌Ir

= 0, (37)

Gr2 = ŶIr+1 − τσĤr,2 − τ(1− σ)Ȟr,2 − Y̌Ir+1 = 0. (38)
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Let us denote the incremental δYi ≡ δY j+1
i = δ

s+1

Y i=
s+1

Y i −
s

Y i, i = Ir, Ir+1, r =

2, ..., R − 1, where
s

Y i is the approximate value of Ŷi at the s-th iteration. Then the

(s+ 1)-th iteration can be written as follows:

−τL2r−1,2r−2δYIr−1+1 + (E − τL2r−1,2r−1)δYIr

−τL2r−1,2rδYIr+1 − τL2r−1,2r+1δYIr+1
= −

s

Gr1 (39)

−τL2r,2r−2δYIr−1+1 − τL2r,2r−1δYIr

+(E − τL2r,2r)δYIr+1 − τL2r,2r+1δYIr+1
= −

s

Gr2, (40)

where for r = 1, ..., R

Li,j =
∂Hr,k

∂Yj

, i = 2r + k − 2, j = 2r − 2, 2r − 1, 2r, 2r + 1, k = 1, 2 (41)

is the Jacobian matrix of the vector function Hrk by the components of the vector Yj.

This linear system of algebraic equations has a special form and we propose the

following factorization algorithm, which is a variant of Thomas-type algorithm [21]:

• Forward substitution:

β2
0 = 0, γ20 = δY0 = 0,

α1
r = τσD−1r1 L2r−1,2r, β1

r = τσD−1r1 L2r−1,2r,

γ1r = D−1r1 (
s

Gr1 +τσL2r−1,2r−2γ
2
r−1),

β2
r = D−1r2 (Dr3β

1
r − τσL2r,2r+1),

γ2r = D−1r2 (−
s

Gr2 +τσL2r,2r−2γ
2
r−1 −Dr3γ

1
r ),

where for r = 1, ..., R

Dr1 = E − τσ(L2r−1,2r−2β
2
r−1 + L2r−1,2r−1),

Dr2 = Dr1α
1
r + E − τσL2r,2r, Dr3 = −τσ(L2r,2r−2β

2
r−1 + L2r,2r−1).
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• Backward substitution:

δYIR+1
= δYM = 0,

and for r = R, ..., 1

δYIr+1 = β2
r δYIr+1

+ γ2r , δYIr
= α1

rδYIr+1 + β1
r δYIr+1

+ γ1r .

Therefore, given an initial data one could advance from n-th (n = 0, ..., N−1) time

layer to the next one by the algorithm just described. This algorithm will converge,

if Dr1 and Dr2 are not singular matrix. A more careful analysis similar to those in

[13] gives us the following theorem.

Theorem 2. Suppose that the functions Qr(U) have continuous derivatives up to

third order on a every bounded interval I ⊂ R1. If the solution of the finite difference

equation Y̌ (Y̌1, ..., Y̌M ) at n-th time layer satisfies

CQU
(Y̌ ) ≡ max

1≤r≤R
(max(|QU(Y̌Ir

)|, |QU(Y̌Ir+1)|)) <
3

h
, (42)

then for sufficiently small τ there exists unique solution of the system (37), (38). New-

ton’s method applied to the non-linear system of equations with initial approximation

Y 0 = Y̌ converges quadratically.

5. NUMERICAL EXPERIMENTS

Example 1. We start with a system of two equations (S = 2) and single active site

(R = 1) at which nonlinear reactions occur. On the domain QT= {(x, t) : x ∈ (0, 2),

t ∈ (0, T ]} we consider the following problem:

∂u1
∂t

= D1
∂2u1
∂x2

+Q1(u1, u2)δ(x− ξ),

∂u2
∂t

= D2
∂2u2
∂x2

+Q2(u1, u2)δ(x− ξ),

with initial and zero boundary conditions

u1(x, 0) = u2(x, 0) = 1− |1− x|, x ∈ (0, 2),

u1(−1, t) = u1(1, t) = u2(−1, t) = u2(1, t) = 0, t ∈ .
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In this problem we choose ξ = 1 and a reaction terms Q = (Q1, Q2) associated with

the Lotka-Volterra system of ordinary differential equations:

Q1(u1, u2) = 4u1 − 4u1u2,

Q2(u1, u2) = −4u2 + 4u1u2.

The problem has two equilibrium study state solutions (0, 0) and (1.5, 0.5). It is

known that the solution (0,0) is not stable and the second one is stable.

In Fig. 1 we present the phase diagram of the solutions (u1, u2) at the active site

ξ = 1 at final time T = 5, N = 64, and M = 2000. As it seen for this initial and

boundary conditions the numerical solution goes to the stable solution (1.5, 0.5). We

chose the parameter T to be T = 5 and T = 50. We have no a closed form solution,

so in the numerical experiments we compare the computed solution at final time T

with the study state solution. In Table 1 we present the error in maximum norm

error1 = |y1(1, T ) − 1.5| and the rate of convergency m. Mesh refinement analysis

confirms second order of accuracy of the method. Other results are discussed in [22].

Table 1: Mesh refinement analysis in maximum norm for the Example 1.
T = 5 T = 50

M N error1 m M N error1 m
32 400 1.4995e-02 - 32 1000 9.8543e-02 -
64 800 3.1748e-03 2.26 64 2000 3.0921e-02 1.67
128 1600 7.1371e-04 2.12 128 4000 9.3516e-03 1.73
256 3200 1.8564e-04 1.95 256 8000 2.5017e-03 1.90
512 6400 4.6748e-05 1.98 512 16000 5.9282e-04 2.07

Example 2. We consider a system of two equations (S = 2) and two active sites

(R = 2) at which nonlinear reactions occur. On the domain QT= {(x, t) : x ∈ (0, 2),

t ∈ (0, T ]} we state the problem:

∂u1
∂t

= D1
∂2u1
∂x2

+Q11(u1, u2)δ(x− ξ1) +Q12(u1, u2)δ(x− ξ2),

∂u2
∂t

= D2
∂2u2
∂x2

+Q21(u1, u2)δ(x− ξ1) +Q22(u1, u2)δ(x− ξ2),
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Figure 1: Phase diagram of the solution (u1, u2) at the active site x = ξ = 1 for
Example 1 at final time T = 5, N = 64, and M = 2000.

with initial and zero boundary conditions

u1(x, 0) = u2(x, 0) = 1− |1− x|, x ∈ (0, 2),

u1(−1, t) = u1(1, t) = u2(−1, t) = u2(1, t) = 0, t ∈ (0, T ].

In this problem we choose ξ1 = 1, ξ2 = 1.5 and the reaction terms (Q11, Q21),

(Q21, Q22) to be

Q11(u1, u2) = 4u1 − 4u1u2,

Q12(u1, u2) = −4u2 + 4u1u2.

Q21(u1, u2) = 4u1 + 4u1u2,

Q22(u1, u2) = 4u2 + 4u1u2.

In Fig. 2 we present the evolution of the solution u1 on the left and u2 on the right.

The signs and the nonlinearity of the reaction terms at the active site ξ2 lead to the

blow up solutions for u1 and u2. It confirms the theoretical results in [4]. If the

reaction terms at the active site ξ2 are chosen similar to those at ξ1

Q21(u1, u2) = 4u1 − 4u1u2,

Q22(u1, u2) = −4u2 + 4u1u2,
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then no blow up solutions occur.
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Figure 2: Evolution of u1 on the left and u2 on the right for Example 2 at final time
T = 0.5112, N = 64, and τ = 10−5.
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