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Abstract. It is known that every hyperbolic Iterated Function System containing affine
mappings can be represented in barycentric form by which it becomes affine invariant.
Some properties were surveyed and some new ones were established. Examples of fractal
sets supplement the theory.

1. INTRODUCTION

Parametric fractal sets are known to change their shape upon continuous change

of one or more parameters. One way of introducing shape parameters is to let the

surrounding space being dependent on them, in a predictable way. Then, these pa-

rameters may be used to model animated fractal sets and to show their generation
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and continuous transformation from or into smooth sets. This animation may be used

as an effective educational tool for better understanding of fractal architecture and

its application.

The usual way of introducing ”laboratory” fractals is constructive approach, usu-

ally defined in terms of Iterated Function Systems (IFS) [1]. An IFS,

F = {Rm;w1, . . . , wn} (n ≥ 2) is a set of mappings {w1, . . . , wn}, of the metric

space (Rm, d) (m ≥ 1) into itself. Let R̃
m be the set of all nonempty compact sub-

sets of R
m. Attached to F is the Hutchinson’s operator WF : R̃

m → R̃
m, defined as

WF (·) =
n
⋃

i=1

wi(·). If all mappings wi are contractions, the IFS F is called hyperbolic,

and than, as a consequence, WF is also a contraction of the complete metric space

(R̃m, h), where h is the Hausdorff’s metric induced by d. Using the Banach’s theo-

rem, iterations {W
(k)
F (B)} converge to a fixed point A for any B ∈ R̃

m [7]. The fixed

point, called attractor of the IFS F , may have a non-integer Hausdorff’s dimension,

an object that we usually call fractal set [1]. Also, note that the contractions wi from

F need not to be nonlinear to get fairly complex fractal attractors. Typical choice of

wi is the simplest mapping - an affine one

w(x) = Ax+ b, x ∈ R
m−1, (1)

where A is an (m− 1)× (m− 1) real matrix and b ∈ R
m−1.

A number of scientific or technology fields is evidenced using fractals in differ-

ent aspects ranging from earthquake prediction to graphic design and computer art.

People experiment with different IFS settings to get nice looking figures of strange

forms resembling tree foliage, water surface, mist, clouds, moss, rock, formations, tis-

sue textures etc. But, from the point of modelling, the IFS method faces difficulties.

The biggest problem appears to be unpredictability of the form of fractal attractor

generated by an IFS. The next one is change of attractor’s form, which is almost

impossible task.

The aim of this note is to offer some practical tools that may help in making

fractal sets more flexible in the sense that one may model them interactively in the

similar way designers do with free form curves, surfaces and volumes. Some similar
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ideas were developed by Zair and Tosan (see [8] and references cited there).

2. THE AIFS

Let the set of points {T1, . . . , Tm} from R
m−1 define a non-degenerate (m − 1)-

dimensional simplex T ⊂ R
m−1. Let {S1, . . . , Sn} be the set of m×m real, nonsin-

gular, row-stochastic matrices (all rows sum up to 1).

Definition 1. The system FT = {T ⊂ R
m−1; S1, . . . , Sn}, n ≥ 2, is called affine

invariant (m − 1)-dimensional IFS (AIFS), and it is hyperbolic if the linear map

defined by Si : T→ T is a contraction.

Note that Si : T→ T is a contraction if and only if Si(T) belongs to the interior of

T up to the orthogonal transformation. Here, the linear map of the space R
m−1 into

itself, performed by Si should be understood as the map of the vector x̃ of barycentric

coordinates of the point x ∈ R
m−1, w.r.t. simplex T, into x̃TSi. Thus, the revisited

Hutchinson’s operator W : R
m−1 → R

m−1, associated with the AIFS FT , will be

W (·) =
n
⋃

i=1

(·)TSi .

It is proven in [3] that, if the system F has an attractor, so does FT and vice versa.

Formally, the attractor of FT is given by att(FT ) = W∞(T).

Unlikely the IFS notation, where the attractor is uniquely determined by the IFS,

different AIFS may produce the same attractor. Explanation is simple. The mapping

T 7→ S(T) splits into m sub-mappings

T 7→ S(T) = {s1T, . . . , smT},

where si denotes the i-th row of the matrix S. In some cases, the order in the set

S(T) has no influence on the attractor’s shape, so, the rows of S may be permuted.

The following properties are important in fractal modelling [4]-[3], [8]:
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Affine invariance: For any affine transform A : R
m−1 → R

m−1

A(att(FT )) = att(FA(T)) ;

Convex hull (CH) property: If matrices Si have non-negative entries, the attractor of

the AIFS belongs to the interior of T, att(FT ) ⊂ intT. It can be shown that this

inclusion has the following refinement:

intT ⊃ intW (T) ⊃ intW 2(T) ⊃ · · · ⊃ intW∞(T) = att(FT );

Continuity property: The attractor att(FT ) is a continuous curve in R
m−1, if matrices

Si, may be after permutation of rows, satisfy

eT
1 S1 = eT

1 , e
T
mSn = eT

m, and eT
mSi = eT

1 Si+1, (i = 1, . . . , n− 1);

Interpolation property: If the attractor att(FT ) is a continuous curve and there exists

i such that eT
mSi = eT

1 Si+1 = eT
j , then it interpolates the j-th vertex of T;

Symmetry property: Let the simplex T ⊂ R
m−1 be symmetric w.r.t. some orthonor-

mal transformation A0 : R
m−1 → R

m−1, i.e. A0(T) = T. If all the matrices Si satisfy

ΠSiΠ = Sn−i+1, where Π is permutation matrix Π = [δi,m−j+1] (δi,j-Kronecker’s delta),

att(FT ) is also symmetric, i.e., A0(att(FT )) = att(FT );

Smooth shapes: The smooth curved forms like (parametric) polynomials and splines

can be generated as attractor of specific AIFS that is usually called (mainly in CAGD)

subdivision schemes or algorithms [2].

Examle 1. Consider a two-term, four dimensional hyperbolic AIFS

{T ⊂ R
m−1; S1, S2}, where S1 and S2 are well known subdivision matrices [2],

S1 =

[

2−i+1

(

i− 1
j − 1

)]m

i, j=1

, S2 =

[

2−m+i

(

m− i

m− j

)]m

i, j=1

. The associated Hutchin-

son’s operator, W = S1 ∪ S2 defines De Casteljau subdivision, and its iterates

W, W 2, W 3 and W∞ map simplex T into decreasing inclusive-isotonic sequence of
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sets that converge to the attractor W∞(T), known as Bézier curve. This is a smooth

set, or, in other words its fractal dimension is integer number m−1. Note that Bézier

curve has all the properties listed above.

Example 2. (Lévy curve). To the contrast, consider a two-dimensional AIFS

{T; S1, S2} defined by

S1 =





1 0 0
0.5 1 −0.5
0 1 0



 , S2 =





0 1 0
−0.5 1 0.5

0 0 1



 . (2)

Due to the negative items, the AIFS has no convex hull property. Further, since

eT
1 S1 = eT

1 , e
T
3 S2 = eT

3 , and eT
3 S1 = eT

1 S2, the AIFS has continuity property. But,

despite the absence of CH property, changing the polygon {T1 T2 T3} changes the

shape of the fractal attractor in the similar way it changes the shape of Bézier’s

curve. The attractor of this AIFS is called Levy curve [7]. Some other examples of

AIFS without CH property are given in [2].

3. HOW TO MODEL?

There are several possibilities for free-form modelling actions. First, one can

easily model transformation T → Si(T) by selecting items of matrices Si that are

barycentric coordinates of Si(T) with respect to T. For example, the simplex T from

R
3, can be subdivided into four sub-simplices having vertices in the middle of each

edge emanated from each vertex T plus this vertex. In this case, the first subdivision

matrix has typical form

S1 =









1 0 0 0
0.5 0.5 0 0
0.5 0 0.5 0
0.5 0 0 0.5









,

and the other three will be just permutations of S1. The attractor of such AIFS is

known as the Sierpinski pyramid. Second, the shape of the simplex can be changed

by changing the lengths of its edges. It will produce the Bézier’s controllability effect
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that can be stable if the AIFS has the CH property, or unstable if it hasn’t. In

the case of Barnsly’s Fern [1], the absence of CH property occurs, so that a slight

perturbation of the simplex height causes a dramatic change of the shape of the Fern.

And finally, the third possibility is to combine two or more AIFS with the same

dimension (same number of mappings) in the sense that matrices A, B, C, . . . from

different AIFS’s may be combined by some ”blending” function f that preserves

row-stochasticity, so that S = f(A, B, C, . . .). A typical example is the convex

combination, like the one of the Fern and Sierpinski’s pyramid.

In all three cases there is need to know AIFS form of an IFS and vice versa. The

following theorems solve this problem.

Theorem 1. Let w be an affine contraction (1). The corresponding linear map-

ping is defined by the m×m real row-stochastic matrix S, given in block form by

S =





(A+ bJT)T J − JT(AT − bJT)

bT 1− JTb



 , (3)

where J = [1 1 . . . 1]T ∈ R
m−1.

Proof. In [5, 6] it was proven that the matrices S, A and vector b are related by

S = SpS
T
wSl = SpS

T
w(Sp)

−1, (4)

where the projection matrix Sp and lifting matrix Sl are given by

Sp =





Im−1 J

0T 1



 , Sl = S−1
p =





Im−1 −J

0T 1



 , (5)

(Im is identity matrix) and

Sw =





A b

0T 1



 . (6)

By relations (4), (5) and (6), provided that A = [aij]m−1, b = [bi]m−1, S = [sij]m the

following transformation follows:

(A, b)→ S :















sij = aji + bj, i, j = 1, . . . ,m− 1,
smj = bj, j = 1, . . . ,m− 1,

sim = 1−
m−1
∑

j=1

sij, i = 1, . . . ,m;
(7)
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These explicit formulae indicate 2× 2-block structure of the matrix S. The (1, 1)

block is (m − 1)-square matrix. Setting J = [1 1 . . . 1]T ∈ R
m−1, this block may

be put in the form AT + JbT = (A + bJT)T. Underneath the block (2, 1) is an

(m − 1) row-matrix that coincide with bT. The ”right” blocks, (1, 2) and (2, 2) are

fully determined by the row-stochastic property of S. This gives S as in (3). ¤

Theorem 2. Let K = [Im−1|0] and em = [ 0 0 . . . 0 1]T ∈ R
m. Then,

A = [aij]m−1 and b = [bi]m−1 are uniquely determined by the row stochastic matrix

S = [sij]m. More precisely,

A = K
(

S − JSTem

)

KT, b = KSTem. (8)

Proof. The transformation (7) is invertible, since it is linear system regarding aij

and bi with a nonsingular matrix. By inverting, one gets

S → (A, b) :

{

aij = sji − smi, i, j = 1, . . . ,m− 1,
bi = smi, i = 1, . . . ,m− 1;

(9)

The product STem gives us the last row of S as a single column. Then, multiplication

from the left with J makes m copies of this column, filling up an m×m matrix. So, the

matrix S − JSTem has sij − smj as its (i, j)-th item. Then, the ”sandwich operator”

K(·)KT prunes the last row and column of the m×m matrix it is applied on. In this

way the matrix A is obtained. In the similar way, vector b is obtained, as it is given

in (8). ¤

Note that (7) gives algorithm for transforming an IFS into AIFS, i.e. (A, b)→ S,

while (9) transforms AIFS into IFS, i.e. S → (A, b).

Example 3. To test the algorithms (7) and (9), let transform AIFS for Lévy

curve (2) into IFS form. Applying (9) one has aij = sji − s3i, bi = s3i i, j = 1, 2 for

each matrix S. So that the IFS will be

A1 =

[

1 0.5
−1 0

]

, b1 =

[

0
1

]

; A2 =

[

0 −0.5
1 1

]

, b2 =

[

0
0

]

.

By applying (7), on the IFS above, one yields sij = aji + bj, i, j = 1, 2, s3j = bj, j =
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1, 2, si3 = 1− si1 − si2, i = 1, 2, 3, for each of two contractions. This gives S1 and S2

as in (2).

4. CONCLUSION

The aim of this paper is to review some properties of the affine invariant iterated

function systems (AIFS) that has been developed in [3], [4], [5] and [8] (and references

cited there). In addition, we contribute explicit formulae for transforming IFS into

AIFS and v.v., and quote three main methods for free-form-friendly manipulation

by fractal attractors. In the first case, the simplex variant of the Collage’s theorem

allows rough modelling of the fractal set. This segment is very useful for learning

the true nature of the fractal sets and some basic properties. The second method

is suitable for minor interventions on finer details, or in the case when one wants to

improve some form by changing the ratio of its parts, with a remark that modelling

is as weaker as the model properties are more away from the ”nice” properties of the

Bézier’s or spline model. The third ”blending” technique may yield mixed shapes,

or interpolate fixed fractal forms by simply changing one or several parameters. The

effective is blending non-smooth and smooth forms, such as splines with the Von

Koch’s curve or similar. This aspect is especially educational and interesting for

studying dimensions of fractal sets. All three methods may be used for animation

purposes.
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