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Abstract. We present the basic structural properties of convoluted C-cosine functions
and semigroups in a Banach space setting and consider the corresponding abstract Cauchy
problems.

1. INTRODUCTION AND PRELIMINARIES

Local convoluted C-semigroups were introduced and studied in the papers of I.

Ciorănescu and G. Lumer [3]-[5] as a generalization of local integrated C-semigroups

(cf. [1], [12], [13], [18], [22], [23]). The first comprehensive look at global convoluted C-

semigroups and cosine functions was obtained in [10] and [11] where we also discussed

the basic properties of introduced class of analytic convoluted C-semigroups. For

example, the poliharmonic operator (−∆)2
n

, n ∈ N, acting on L2[0, π], with appro-

priate boundary conditions, generates an exponentially bounded Kn-convoluted co-

sine function, and consequently, an exponentially bounded, analytic Kn+1-convoluted

semigroup of angle π
2
, for suitable exponentially bounded kernels Kn and Kn+1 ([11]).
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Notation. By E and L(E) are denoted a complex Banach space and Banach

algebra of bounded linear operators on E. For a closed linear operator A on E, D(A),

Kern(A), R(A), ρ(A) denote its domain, kernel, range and resolvent set, respectively.

Put D∞(A) :=
⋂

n∈N0

D(An). By [D(A)] is denoted the Banach space D(A) endowed

with the graph norm. In this paper, C ∈ L(E) is an injective operator satisfying

CA ⊂ AC. The C-resolvent set of A, denoted by ρC(A), is defined by ρC(A) := {λ ∈

C : R(C) ⊂ R(λ−A) and λ−A is injective}. Further on, in some statements which

are to follow we use that a complex valued function K ∈ L1loc([0, τ)), 0 < τ ≤ ∞ is a

kernel which means that for every φ ∈ C([0, τ)), the assumption
t
∫

0
K(t−s)φ(s)ds = 0,

for every t ∈ [0, τ), implies φ(t) = 0, t ∈ [0, τ).

Recall, K-convoluted C-semigroups and functions are important tools in the study

of the following abstract Cauchy problems discussed in Section 2:

(ΘC) :















u ∈ C([0, τ) : [D(A)]) ∩ C1([0, τ) : E),

u′(t) = Au(t) + Θ(t)Cx, t ∈ [0, τ),

u(0) = 0,

(ACP2)Θ :



















u ∈ C([0, τ) : [D(A)]) ∩ C2([0, τ) : E),

u′′(t) = Au(t) + Θ(t)Cx+
t
∫

0
Θ(s)Cyds, t ∈ [0, τ),

u(0) = 0, u′(0) = 0.

It is said that (ΘC), resp., (ACP2)Θ, is well-posed if for every x, y ∈ E there

exists a unique solution of (ΘC), resp., (ACP2)Θ. The existence of a unique solution

of (ACP2)Θ is closely connected with the existence of a unique K-convoluted mild

solution of the problem (ACP2), where

(ACP2) :















u ∈ C([0, τ) : [D(A)]) ∩ C2([0, τ) : E),

u′′(t) = Au(t), t ∈ [0, τ),

u(0) = x, u′(0) = y.

The notion of such kind of mild solutions is introduced by S. W. Wang and Z. Huang

in [20] in the particular case: τ =∞ and K(t) = tn−1

(n−1)!
, t ≥ 0, n ∈ N.

Definition 1. Let A be a closed operator and K ∈ L1loc([0, τ)), 0 < τ ≤ ∞. If

there exists a strongly continuous operator family (CK(t))t∈[0,τ) such that:
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(i) CK(t)A ⊂ ACK(t), t ∈ [0, τ),

(ii) CK(t)C = CCK(t), t ∈ [0, τ) and

(iii) for all x ∈ E and t ∈ [0, τ):
t
∫

0
(t− s)CK(s)xds ∈ D(A) and

A

t
∫

0

(t− s)CK(s)xds = CK(t)x−Θ(t)Cx, where Θ(t) :=

t
∫

0

K(s)ds, (1)

then it is said that A is a subgenerator of a K-convoluted C-cosine function (CK(t))t∈[0,τ).

If τ =∞, then we say that (CK(t))t≥0 is an exponentially bounded, K-convoluted C-

cosine function with a subgenerator A if, additionally, there exist M > 0 and ω ∈ R

such that ||CK(t)|| ≤Meωt, t ≥ 0.

As a consequence of (i) and (iii), we have CA ⊂ AC. Indeed, if x ∈ D(A), choose

a t ∈ [0, τ) with Θ(t) 6= 0. Then (i) and (iii) implies CK(t)Ax− Θ(t)CAx = A
t
∫

0
(t−

s)CK(s)Axds = A2
t
∫

0
(t− s)CK(s)xds = A[CK(t)x− Θ(t)Cx]. Since CK(t)x ∈ D(A),

we obtain Cx ∈ D(A) and CAx = ACx.

The integral generator of (CK(t))t∈[0,τ) is defined by

{(x, y) ∈ E2 : CK(t)x−Θ(t)Cx =

t
∫

0

(t− s)CK(s)yds, t ∈ [0, τ)}.

The integral generator of (CK(t))t∈[0,τ) is a closed linear operator which is an ex-

tension of any subgenerator of (CK(t))t∈[0,τ). Even if (C(t))t≥0 is a global, expo-

nentially bounded C-cosine function, the set of all subgenerators of (C(t))t≥0 need

not be monomial and, furthermore, the set of all subgenerators of a K-convoluted

C-cosine function can be consisted of infinitely many elements. In order to illus-

trate this fact (see also [19, Example 2.14]), we would like to present a simple

example appearing in [11]. Choose an arbitrary K ∈ L1loc([0,∞)). Put E := l∞,

C〈xn〉 := 〈0, x1, 0, x2, 0, x3, . . .〉 and CK(t)〈xn〉 := Θ(t)C〈xn〉, t ≥ 0, 〈xn〉 ∈ E. If

I ⊂ 2N+1, define EI := {〈xn〉 ∈ E : xi = 0, for all i ∈ (2N+1) \ I}. It is clear that

EI is a closed subspace of E which contains R(C) and that EI1 6= EI2 , if I1 6= I2. De-

fine a closed linear operator AI on E by: D(AI) = EI and AI〈xn〉 = 0, 〈xn〉 ∈ D(AI).
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It is straightforward to see that every subgenerator of (CK(t))t≥0 is of the form AI , for

some I ⊂ 2N + 1, and consequently, there exist the continuum many subgenerators

of (CK(t))t≥0.

Definition 2. Let A be a closed operator and K be a locally integrable func-

tion on [0, τ), 0 < τ ≤ ∞. If there exists a strongly continuous operator fam-

ily (SK(t))t∈[0,τ) such that, for t ∈ [0, τ), SK(t)C = CSK(t), SK(t)A ⊂ ASK(t),
t
∫

0
SK(s)xds ∈ D(A), x ∈ E and

A

t
∫

0

SK(s)xds = SK(t)x−Θ(t)Cx, x ∈ E, (2)

then (SK(t))t∈[0,τ) is called a (local) K-convoluted C-semigroup having A as a sub-

generator. If τ = ∞, then it is said that (SK(t))t≥0 is an exponentially bounded,

K-convoluted C-semigroup with a subgenerator A if, in addition, there are constants

M > 0 and ω ∈ R such that ||SK(t)|| ≤Meωt, t ≥ 0.

The integral generator of (SK(t))t∈[0,τ) is defined by

{(x, y) ∈ E2 : SK(t)x−Θ(t)Cx =

t
∫

0

SK(s)yds, t ∈ [0, τ)}.

It is straightforward to see that the integral generator of (SK(t))t∈[0,τ) is an extension

of any subgenerator of (SK(t))t∈[0,τ). Furthermore, the subgenerators of a (local) con-

voluted C-semigroup equipped with appropriate algebraic operations form a lattice

which, in general, need not be trivial.

For the proof of the statements (a), (c), (d) and (e) of the following theorem one

can proceed exactly in the same way as in [9] while the proof of (b) follows similarly

as in the proof of [12, Proposition 1.3].

Proposition 1. Suppose A is a subgenerator of a (local) K-convoluted C-semigroup

(S(t))t∈[0,τ . Let B be the integral generator of (S(t))t∈[0,τ). Then:

(a)

S(t)S(s) =





t+s
∫

0

−

t
∫

0

−

s
∫

0



K(t+ s− r)S(r)Cdr, 0 ≤ t, s, t+ s < τ.
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(b) B = C−1BC.

If K is a kernel, then the next conditions are satisfied:

(c) (ΘC) is well posed.

(d) B = C−1AC.

(e) For every λ ∈ ρC(A) : (λ− A)−1CS(t) = S(t)(λ− A)−1C, t ∈ [0, τ).

2. RELATIONS WITH THE ABSTRACT CAUCHY PROBLEMS

In this section we relate convoluted C-cosine functions to the corresponding Cauchy

problem (ACP2)Θ. We investigate the well-posedness of this problem through the ex-

istence of K-convoluted mild solutions of (ACP2).

Definition 3. The abstract Cauchy problem (ACP2)Θ is well-posed if for every

x, y ∈ E there exists a unique solution u of it. If, additionally, for every x, y ∈ E,

the solution u satisfies ||u(t)|| ≤ Meωt, 0 ≤ t < τ, for some M > 0 and ω ∈ R,

then we say that (ACP2)Θ is exponentially well-posed. Further on, a function v ∈

C([0, τ) : E) is a K-convoluted mild solution of (ACP2) at (x, y) ∈ E2 if, for all

t ∈ [0, τ),
t
∫

0
(t− s)v(s)ds ∈ D(A) and

A

t
∫

0

(t− s)v(s)ds = v(t)−Θ(t)x−

t
∫

0

Θ(s)yds, t ∈ [0, τ).

Let C = I. It is clear that u ∈ C2([0, τ) : E) ∩ C([0, τ) : [D(A)]) is a (unique)

solution of (ACP2)Θ on [0, τ) if and only if v = u′′ ∈ C([0, τ) : E) is a (unique)

K-convoluted mild solution of (ACP2) on [0, τ).

Let A be a subgenerator of a K-convoluted C-cosine function (CK(t))t∈[0,τ), 0 <

τ ≤ ∞ and x, y ∈ E. Then it is straightforward to see that v(t) = CK(t)x +
t
∫

0
CK(s)yds, t ∈ [0, τ), is a K-convoluted mild solution of (ACP2) at (Cx,Cy) and
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that u(t) =
t
∫

0
(t− s)v(s)ds, t ∈ [0, τ), is a solution of (ACP2)Θ. If K is a kernel, then

we would like to point out that v is a unique K-convoluted mild solution of (ACP2)

and u is a unique solution of (ACP2)Θ, see [9, Proposition 4.2] and [20, Theorem

1.5].

Proposition 2. Assume that for each x ∈ R(C) there exists a unique K-

convoluted mild solution of (ACP2) at (Cx, 0), 0 < τ ≤ ∞. Then A is a subgenerator

of a K-convoluted C-cosine function on [0, τ).

Proof. Let t ∈ [0, τ) and x ∈ E. Define CK(t)x := v(t), where v is the K-

convoluted mild solution of (ACP2) at (Cx, 0). The uniqueness of mild solutions

implies that (CK(t))t∈[0,τ) is a strongly continuous family of linear operators satisfying

(iii) of Definition 1. The proof of (i) and (ii) of Definition 1 can be obtain similarly

as in the proof of [20, Theorem 1.5]. For the sake of completeness, we will prove only

(i). Fix an x ∈ D(A) and define

CK(t)x :=

t
∫

0

(t− s)CK(s)Axds+Θ(t)Cx, t ∈ [0, τ).

Clearly, the mapping t 7→ CK(t)x belongs to C([0, τ) : E). Furthermore, for every

t ∈ [0, τ),

A

t
∫

0

(t− s)CK(s)xds = A

t
∫

0

(t− s)[

s
∫

0

(s− r)CK(r)Axdr +Θ(s)Cx]ds

=

t
∫

0

(t− s)A

s
∫

0

(s− r)CK(r)Axdrds+

t
∫

0

(t− s)Θ(s)ACxds

=

t
∫

0

(t− s)[CK(s)Ax−Θ(s)CAx]ds+

t
∫

0

(t− s)Θ(s)ACxds

= CK(t)x−Θ(t)Cx.

The uniqueness of K-convoluted mild solutions implies that

CK(t)x = CK(t)x, t ∈ [0, τ), i.e.,
t
∫

0
(t − s)CK(s)Axds = A

t
∫

0
(t − s)CK(s)xds, for all

t ∈ [0, τ). Differentiate the last equality twice with respect to t to obtain

CK(t)x ∈ D(A) and ACK(t)x = CK(t)Ax, t ∈ [0, τ). It remains to be shown that
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CK(t), t ∈ [0, τ), is a bounded operator. We will follow the proof of [1, Proposition

2.3] with appropriate changes. Consider the mapping Φ : E → C([0, τ) : [D(A)])

given by

Φ(x)(t) =

t
∫

0

(t− s)CK(s)xds, t ∈ [0, τ) , x ∈ E,

where C([0, τ) : [D(A)]) is a Fréchet space with the sequence of seminorms (pn)n,

where

pn(v) := sup
t∈[0,τ− 1

n
]
‖v(t)‖[D(A)], v ∈ C([0, τ) : [D(A)]), if τ ∈ (0,∞), resp.

pn(v) := sup
t∈[0,n]

‖v(t)‖[D(A)], v ∈ C([0, τ) : [D(A)]), if τ =∞.

It can be easily seen that Φ is well defined and that Φ is a linear mapping. Let

us show that Φ poses a closed graph. Without loss of generality, we can assume

that τ ∈ R. Suppose xn → x, and Φ(xn) → f, n → ∞. Choose a k ∈ N with

k > 1
τ
. Then sup

t∈[0,τ− 1

k
]
||

t
∫

0
(t − s)CK(s)xnds − f(t)||[D(A)] → 0, n → ∞. Hence,

Af(t) = limn→∞A
t
∫

0
(t− s)CK(s)xnds = limn→∞[CK(t)xn −Θ(t)Cxn], t ∈ [0, τ), and

limn→∞CK(t)xn = Af(t) + Θ(t)Cx, t ∈ [0, τ). Using the dominated convergence

theorem, we have

f(t) = lim
n→∞

t
∫

0

(t− s)CK(s)xnds =

t
∫

0

(t− s)[Af(s) + Θ(s)Cx]ds, t ∈ [0, τ).

So, f(0) = f ′(0) = 0, f ∈ C2([0, τ) : E) and Af(t) = f ′′(t) − Θ(t)Cx, t ∈ [0, τ).

Hence, A
t
∫

0
(t − s)v(s)ds = v(t) − Θ(t)Cx, t ∈ [0, τ), where v = f ′′. This implies

v(t) = CK(t)x, t ∈ [0, τ), and f = Φ(x). Hence, for all sufficiently large n ∈ N there

is a cn > 0 such that

∥

∥

∥

∥

∥

∥

A

t
∫

0

(t− s)CK(s)xds

∥

∥

∥

∥

∥

∥

≤ cn‖x‖, x ∈ E, t ∈ [0, τ −
1

n
).

Since A
t
∫

0
(t − s)CK(s)xds = CK(t)x − Θ(t)Cx, x ∈ E, t ∈ [0, τ), one can easily

conclude that CK(t) ∈ L(E), t ∈ [0, τ).
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The next corollary can be viewed as a collection of structural results related to

the abstact Cauchy problems, when K is a kernel.

Corollary 1. Suppose that K is a kernel and 0 < τ ≤ ∞. Then the following

statements are equivalent.

(a) (ACP2)Θ is well-posed.

(b) For every x ∈ E, there exists a unique K-convoluted mild solution of (ACP2)

at (Cx, 0).

(c) For every x, y ∈ E, there exists a unique K-convoluted mild solution of (ACP2)

at (Cx,Cy).

(d) A is a subgenerator of a K-convoluted C-cosine function on [0, τ).
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