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Abstract. In this article we give two new characteristics of quasi-antiorder relation on
ordered set under antiorder.
The new results in this article is co-called the second isomorphism theorem on ordered sets
under antiorders: Let (X,=, 6=, α) be an ordered set under antiorder α, ρ and σ quasi-
antiorders on X such that σ ⊆ ρ. Then the relation σ/ρ, defined by

σ/ρ = {(x(ρ ∪ ρ−1), y(ρ ∪ ρ−1) ∈ X/(ρ ∪ ρ−1)×X/(ρ ∪ ρ−1) : (x, y) ∈ σ},

is a quasi-antiorder on X/(ρ ∪ ρ−1) and (X/(ρ ∪ ρ−1))/((σ/ρ) ∪ (σ/ρ)−1) ∼= X/(σ ∪ σ−1)
holds.
Let A = {τ : τ is quasi-antiorder on X such that τ ⊂ σ}. Let B be the family of all
quasi-antiorder on X/q, where q = σ ∪ σ−1. We shall give connection between families A

and B. For τ ∈ A, we define a relation ψ(τ) = {(aq, bq) ∈ X/q × X/q : (a, b) ∈ τ}. The
mapping ψ : A→ B is strongly extensional, injective and surjective mapping from A onto
B and for τ, µ ∈ A we have τ ⊆ µ if and only if ψ(τ) ⊆ ψ(µ).

Let (X,=, 6=) be a set in the sense of book [1], [2] and [6], where 6= is a binary

relation on X which satisfies the following properties:

¬(x 6= x), x 6= y ⇒ y 6= x, x 6= z ⇒ x 6= y ∨ y 6= z, x 6= y ∧ y = z ⇒ x 6= z
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called apartness (A. Heyting). The apartness is tight (W. Ruitenburg) if ¬(x 6= y)⇒

x = y holds. Let Y be a subset of X and x ∈ X. The subset Y of X is strongly

extensional in X if and only if y ∈ Y ⇒ y 6= x∨x ∈ Y ([3], [6]). If x ∈ X, we defined

([3]) x#Y ⇔ (∀y ∈ Y )y 6= x.

Let f : (X,=, 6=)→ (Y,=, 6=) be a function. We say that it is:

(a) f is strongly extensional if and only if (∀a, b ∈ X)(f(a) 6= f(b)⇒ a 6= b);

(b) f is an embedding if and only if (∀a, b ∈ X)(a 6= b⇒ f(a) 6= f(b)).

Let α ⊆ X × Y and β ⊆ Y × Z be relations. The filled product ([3]) of relations

α and β is the relation

β ∗ α = {(a, c) ∈ X × Z : (∀b ∈ Y )((a, b) ∈ α ∨ (b, c) ∈ β)}.

A relation q ⊆ X ×X is a coequality relation on X if and only if holds:

q ⊆6=, q ⊆ q−1, q ⊆ q ∗ q.

If q is a coequality relation on set (X,=, 6=), we can construct factor-set (X/q,=q, 6=q)

with

aq =q bq ⇔ (a, b)#q, aq 6=q bq ⇔ (a, b) ∈ q.

M. Bozic and this author were first defining and studied notion of coequality

relation in 1985. For more information on this relation readers can see in the paper

[3].

A relation α on X is antiorder ([3], [4]) on X if and only if

α ⊆6=, α ⊆ α ∗ α, 6=⊆ α ∪ α−1, α ∩ α−1 = ∅.

Antiorder relation on set with apartness the first defined in article [4].

Let f : (X,=, 6=, α) → (Y,=, 6=, β) be a strongly extensional function of ordered

sets under antiorders. f is called isotone if

(∀x, y ∈ S)((x, y) ∈ α⇒ (f(x), f(y)) ∈ β);
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f is called reverse isotone if and only if

(∀x, y ∈ S)((f(x), f(y)) ∈ β ⇒ (x, y) ∈ α).

The strongly extensional mapping f is called an isomorphism if it is injective and

embedding, onto, isotone and reverse isotone. X and Y called isomorphic, in symbol

X ∼= Y , if exists an isomorphism between them.

As in [3] a relation τ ⊆ X/×X is a quasi-antiorder on X if and only if

τ ⊆ α(⊆6=), τ ⊆ τ ∗ τ, τ ∩ τ−1 = ∅.

The first proposition gives some information on quasi-antiorder:

Lemma 1. If τ is a quasi-antiorder on X, then the relation q = τ∪τ−1 is a coequality

relation on X.

Proof. (1) q = τ ∪ τ−1 ⊆6= ∪ 6=−1=6= ∪ 6== 6= (because 6=−1=6=).

(2) q = τ ∪ τ−1 = τ−1 ∪ τ = (τ ∪ τ−1)−1 = q−1.

(3) q = τ ∪τ−1 ⊆ (τ ∗τ)∪ (τ−1 ∗τ−1) ⊆ (τ ∗τ)∪ (τ ∗τ−1)∪ (τ−1 ∗τ)∪ (τ−1 ∗τ−1) =

τ ∗ (τ ∪ τ−1) ∪ τ−1 ∗ (τ ∪ τ−1) = (τ ∪ τ−1) ∗ (τ ∪ τ−1) = q ∗ q. ¤

Now we give the second results. Let (X,=, 6=, α, τ) be a ordered set under an-

tiorder α and let τ be a quasi-antiorder on X.

Lemma 2. Let τ be a quasi-antiorder relation on X, q = τ ∪ τ−1. Then the relation

θ on X/q, defined by

(aq, bq) ∈ θ ⇔ (a, b) ∈ q,

is an antiorder on X/q. The mapping π : X → X/q strongly extensional surjective

reverse isotone mapping and holds θ ◦ π = τ , in which case θ is equal to τ ◦ π−1.

Proof. We shall check only linearity of the relation θ: Let aq and bq be arbitrary

elements of set X/q such that aq 6= bq. Then (a, b) ∈ q = τ ∪ τ−1. Thus (a, b) ∈

τ ∨ (b, a) ∈ τ . Therefore, we have (aq, bq) ∈ θ ∨ (bq, aq) ∈ θ. ¤

For the next proposition we need a lemma in which we will give explanation about

two coequalities α and β on a set (X,=, 6=) such that β ⊆ α.
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Lemma 3. ([5]) Let α and β be coequality relations on a set X with apartness such

that β ⊂ α. Then the relation β/α on X/α, defined by β/α = {(xα, yα) ∈ X/q×X/q :

(x, y) ∈ β}, is an coequality relation on X/α and there exists the strongly extensional

and embedding bijection

f : (X/α)/(β/α)→ (X/β).

So, at the end of this article, we are in position to give a description of connection

between quasi-antiorder ρ and quasi-antiorder σ of set X with apartness such that

σ ⊆ ρ.

Theorem 1. Let (X,=, 6=, α) be a set, ρ and σ quasi-antiorders on X such that σ ⊆ ρ.

Then the relation σ/ρ defined by

σ/ρ = {(x(ρ ∪ ρ−1), y(ρ ∪ ρ−1)) ∈ X/(ρ ∪ ρ−1)×X/(ρ ∪ ρ−1) : (x, y) ∈ σ},

is a quasi-antiorder on X/(ρ ∪ ρ−1) and

(X/(ρ ∪ ρ−1)/((σ/ρ) ∪ (σ/ρ)−1)) ∼= X/(σ ∪ σ−1)

holds.

Proof.

(1) Put q = (ρ ∪ ρ−1), and construct the factor-set (X/q,=q, 6=q). If a and b are

elements of X, then

(aq, bq) ∈ σ/ρ⇔ (a, b) ∈ σ

⇒ (a, b) ∈ ρ (because σ ⊆ ρ)

⇒ (a, b) ∈ q

⇔ aq 6=q bq.

(aq, cq) ∈ σ/ρ⇔ (a, c) ∈ σ

⇒ (∀b ∈ X)((a, b) ∈ σ ∨ (b, c) ∈ σ)

⇔ (∀bq ∈ X/q)((aq, bq) ∈ X/q ∨ (bq, cq) ∈ q).

Suppose that (σ/ρ) ∩ (σ/ρ)−1 6= ∅, and let (aq, bq) ∈ (σ/ρ) ∩ (σ/ρ)−1. Then

(aq, bq) ∈ σ/ρ ∧ (bq, aq) ∈ σ/ρ, and thus (a, b) ∈ σ ∧ (b, a) ∈ σ, i. e. (a, b) ∈
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σ ∩ σ−1. It is impossible. So, must be (σ/ρ) ∩ (σ/ρ)−1 = ∅. Therefore, the

relation σ/ρ is a quasi-antiorder on set X/q.

(2) From σ ⊆ ρ it follows ρ ∪ ρ−1 ⊇ σ ∪ σ−1. By lemma 1, there exist following

coequality relations:

q = ρ ∪ ρ−1 on the set (X,=, 6=),

r = σ ∪ σ−1 on the set (X,=, 6=),

r/q = (σ/ρ) ∪ (σ/ρ)−1 on factor-set X/r,

and, by Lemma 3, there exists the strongly extensional and embedding bijective

function

ϕ : (X/(ρ ∪ ρ−1))/((σ/ρ) ∪ (σ/ρ)−1)→ X/(σ ∪ σ−1).

(3) By Lemma 2, on factor-set X/r with r = σ∪σ−1 there exists the antiorder θ(σ)

such that

(a(σ ∪ σ−1), b(σ ∪ σ−1)) ∈ θ(σ)⇔ (a, b) ∈ σ,

and on factor-set X/q with q = ρ∪ρ−1 there exists the antiorder θ(ρ) such that

(a(ρ ∪ ρ−1), b(ρ ∪ ρ−1)) ∈ θ(ρ)⇔ (a, b) ∈ ρ.

Also, on the factor-set X/((σ/ρ) ∪ (σ/ρ)−1) there exists the antiorder θ(σ/ρ)

such that

(a((σ/ρ) ∪ (σ/ρ)−1), b((σ/ρ) ∪ (σ/ρ)−1)) ∈ θ(σ/ρ)⇔ (ar, br) ∈ θ(σ).

It is easily to verify that the mapping

ϕ : (X/(ρ ∪ ρ−1))/((σ/ρ) ∪ (σ/ρ)−1)→ X/(σ ∪ σ−1)

is isotone and reverse isotone strongly extensional embedding bijection. ¤

At the end of this consideration, we shall give the following proposition:
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Theorem 2. Let (X,=, 6=, α, σ) be an ordered set under an antiorder α, σ a quasi-

antiorder on X such that σ ∩ σ−1 = ∅. Let A = {τ : τ is quasi-antiorder on X such

that τ ⊆ σ}. Let B be the family of all quasi-antiorder on X/q, where q = σ ∪ σ−1.

For τ ∈ A, we define a relation

ψ(τ) = {(aq, bq) ∈ X/q ×X/q : (a, b) ∈ τ}.

The mapping ψ : A → B is strongly extenstional, injective and surjective mapping

from A onto B and for τ, µ ∈ A we have τ ⊆ µ if and only if ψ(τ) ⊆ ψ(µ).

Proof.

(1) f is well-defined function:

Let τ ∈ A. Then ψ(τ) is a quasi-antiorder on X/q by Lemma 3.

Let τ, µ ∈ A with τ = µ. If (aq, bq) ∈ ψ(τ) then (a, b) ∈ τ = µ, so (aq, bq) ∈

ψ(µ). Similarly, ψ(µ) ⊆ ψ(τ). Therefore, ψ(µ) =q ψ(τ), i. e. the mapping ψ is

a function.

(2) ψ is an injection. Let τ, µ ∈ A, ψ(τ) =q ψ(µ). Let (a, b) ∈ τ . Since (aq, bq) ∈

ψ(τ) =q ψ(µ), we have (a, b) ∈ µ. Similarly, we conclude µ ⊆ τ . So, µ = τ .

(3) ψ is strongly extensional. Let τ, µ ∈ A, ψ(τ) 6=q ψ(µ) i. e. let there exists an

element (aq, bq) ∈ ψ(τ) and (aq, bq)#ψ(µ). Then, (a, b) ∈ τ . Let (x, y) be an

arbitrary element of µ. Then, (xq, yq) ∈ ψ(µ) and (xq, yq) 6= (aq, bq). It means

xq 6=q aq ∨ yq 6=q bq, i. e. (x, a) ∈ q ∨ (y, b) ∈ q. Therefore, from x 6= a ∨ y 6= b

we have (a, b) ∈ τ and (a, b) 6= (x, y) ∈ µ. Thus we have τ 6= µ. Similarly, from

(aq, bq)#ψ(τ) and (aq, bq) ∈ ψ(µ) we conclude τ 6= µ.

(4) ψ is onto. Let M ∈ B. We define a relation µ on X as follows:

µ = {(x, y) ∈ X ×X : (xq, yq) ∈M}.

µ is a quasi-antiorder. In fact:
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(I) Let (x, y) ∈ µ. Since (xq, yq) ∈ M ⊆6=q on X/q, we conclude that xq 6=q yq,

i. e. (x, y) ∈ q = σ ∪ σ−1. Hence (x, y) ∈ σ ⊆6= or (y, x) ∈ σ ⊆6=. Therefore,

we have x 6= y. Let (x, z) ∈ µ i. e. let (xq, zq) ∈ M . Then (xq, yq) ∈ M or

(yq, zq) ∈ M for arbitrary yq ∈ X/q by cotransitivity of M . Thus (x, y) ∈ µ

or (y, z) ∈ µ. Therefore, the relation µ is a quasi-antiorder relation on X. Let

M ∩M−1 = ∅. Suppose that (a, b) ∈ µ ∩ µ−1. Then (aq, bq) ∈ M ∩M−1 = ∅,

which is impossible. So, µ ∩ µ−1 = ∅.

(II) ψ(µ) =M . Indeed:

(xq, yq) ∈ ψ(µ)⇔ (x, y) ∈ µ⇔ (xq, yq) ∈M.

(III) µ ⊆ σ. In the matter of fact, we have sequence

(a, b) ∈ µ⇔ (aq, bq) ∈ ψ(µ) =M

⇔ (π(a), π(b)) ∈ ψ(µ) =M (π : X → X/q is strongly extensional function)

⇔ (a, b) ∈ π−1(ψ(µ)) = π−1(M) (by π−1(M) ⊆ q = Coker(π) = σ ∪ σ−1) By

Corollary 3. 1. the mapping π : X → X/q is a strongly extensional reverse

isotone surjective mapping. Therefore, we have π−1(M) ⊆ σ.

(5) Let τ, µ ∈ A. We have τ ⊆ µ if and only if ψ(τ) ⊆ ψ(µ). Indeed: Let τ ⊆ µ

and (xq, yq) ∈ ψ(τ). Since (x, y) ∈ τ ⊆ µ, we have (xq, yq) ∈ ψ(µ). Opposite,

let ψ(τ) ⊆ ψ(µ) and (x, y) ∈ τ . Since (xq, yq) ∈ ψ(τ) ⊆ ψ(µ), we conclude that

(x, y) ∈ µ. ¤
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