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(e-mail: kocic@elfak.ni.ac.yu)

2 Faculty of Technology and Metallurgy, SS Cyril and Methodius University,
Skopje, R.Macedonia

(e-mail: liljana@ian.tmf.ukim.edu.mk)

3 Faculty of Electrical Engineering, SS Cyril and Methodius University,
Skopje, R.Macedonia

(e-mail: szajkova@etf.ukim.edu.mk)

(Received October 18, 2006)

Abstract. The existence of an operator that maps rational number 1/2 into the array of
Farey tree is proven. It is shown that this operator can be represented by combinatorial
compositions of two simple real functions: f : [0, 1] → [1/2, 1], which is (0, 1)-rational and
σ : [0, 1] → [0, 1], which is linear. Then, another operator, mapping rational r ∈ (0, 1) into
the branch of the Farey tree emanating from the node characterized by r is described.

1. INTRODUCTION

The Farey tree is a collection of sets (called levels) FT = {T0, T1, T2, . . . }, where
T0 = {r1 = 1/2} is called root of the tree. The n-th level Tn = {r2n , . . . r2n+1−1},
n = 0, 1, 2, . . . , is the decreasing sequence of rationals rj ∈ (0, 1), like T1 = {r2 =
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2/3, r3 = 1/3}, T2 = {r4 = 3/4, r5 = 3/5, r6 = 2/5, r7 = 1/4}, . . . . One can identify

FT with the infinite binary graph which set of vertices is isomorphic with Q[0, 1],

the set of rationals from the segment [0, 1]. In set-theoretic notation, Farey tree is

collection of sets

FT = {{1/2}, {1/3, 2/3}, {1/4, 2/5, 3/5, 3/4}, (1)

{1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5},

{1/6, 2/9, 3/11, 3/10, 4/11, 5/13, 5/12, 4/9, 5/9,

7/12, 8/13, 7/11, 7/10, 8/11, 7/9, 5/6}, . . .}.

Farey tree (1) plays an important role in Chaos Theory. For ex., it contains all

quasi-periodic routes to chaos. In fact, if a dynamic system contains two periodic

oscillators with different frequencies, f1 and f2, (f1 < f2), the regime in the system

tries to preserve the state where the ratio f1/f2 is the simplest rational number, say

1. Then, f1 : f2 = 1 : 1 which is called optimal resonance or 1 : 1 mode-locking

regime. If this is not possible, the system ”jumps” to the ”reserve” mode-locking

state, f1/f2 = 1/2. If, by some reason, this state is not possible, the system passes

to the next simple mode-locking possibility, f1/f2 = 2/3 (or f1/f2 = 1/3), and so

on, along the Farey tree. Among others, Farey tree contains the quickest route, so

called golden route to chaos, the sequence of ratios of consecutive Fibonacci numbers

converging to famous golden mean φ = (
√
5− 1)/2.

Let a0, . . . , ak denote coefficients in continuous fraction expansion (partial quo-

tients) of a rational number r

r = [a0, a1, . . . , ak] =
1

a0 +

1

a1 +
. . .

+

1

ak

, ai ∈ N, ak ≥ 2. (2)

Using expansion (2), Cvitanović [1] gave the following formal definition of the

Farey tree level:

Definition 1. The n-th Farey tree level Tn is the monotonically increasing se-

quence of 2n continued fractions [a0, a1, . . . , ak] whose entries ai ≥ 1, i = 0, 1, . . . , k−
1, ak ≥ 2, add up to n+ 2.
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For example,

T2 = {[4], [2, 2], [1, 1, 2], [1, 3]} = {1/4, 2/5, 3/5, 3/4},

T3 = {[5], [3, 2], [2, 1, 2], [2, 3], [1, 1, 3], [1, 1, 1, 2], [1, 2, 2], [1, 4]}

= {1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5},

etc.

The Farey tree can be split into two sub-trees ([2], [3]). One of them, denoted

by FT 0 (”0-subtree”) has the root in 1/3 and contains all rationals from the open

interval (0, 1/2); Another, FT 1 (”1-subtree”) has the root in 2/3 and contains all

rationals from (1/2, 1). It is proved in [3] that elements of FT 0 have continued

fractions of the form [a0, a1, . . . , ak], a0 ≥ 2, while elements from FT 1 have the form

[a0, a1, . . . , ak], a0 = 1. The k-th level of FT i will be denoted by T i
k, i = 0, 1, and it

represents ”i-half” if of the level Tk.

2. FAREY TREE OPERATOR

Lemma 1. If in (2) all ak ∈ N, and k ≥ 1, then r ∈ (0, 1).

Proof. Consider partial ”sum” sj =
1

ak−j +
· · ·

+

1

ak

(0 ≤ j ≤ k). Obviously,

s0 = 1/ak ∈ (0, 1) for all ak ≥ 2 and s0 = 1 for ak = 1. Then, s1 = 1/(ak−1 +1/ak) ∈
(0, 1), and by induction sj ∈ (0, 1). Thus, sk = r ∈ (0, 1), except if k = 0 (and

a0 = 1) which is excluded by supposition. 2

Lemma 2. The simplest difeomorphism

[a0, . . . , ak] 7→ [1, a0, . . . , ak], ak ∈ N,

is given by

f : x→ 1

1 + x
, (3)

and it maps [0, 1] to [ 1
2
, 1].
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Proof. The proof follows by definition [1, a0, . . . , ak] =
1

1 + [a0, . . . , ak]
and by

Lemma 1, x = [a0, . . . , ak] ∈ (0, 1). 2

Lemma 3. The simplest difeomorphism

[a0, a1, . . . , ak] 7→ [a0 + 1, a1, . . . , ak]

is given by

g : x→ x

1 + x
, (4)

and it maps [0, 1] to [0, 1
2
].

Proof. Let x = [a0, . . . , ak] ∈ (0, 1]. Then

[1 + a0, a1, . . . , ak] =
1

1 + a0 +
(

1
a1 +

. . .
+

1
ak

) =
1

1 + 1
[a0, ..., ak]

= f

(

1

x

)

,

where f is given by (3). Setting g(x) = f(1/x) for x 6= 0 gives (4). 2

Note that composition g ◦ f−1 yields (g ◦ f−1)(x) = g(f−1(x)) = 1 − x. Denote

σ(x) = 1 − x. Then, by σ = g ◦ f−1, it follows g(x) = (σ ◦ f)(x). Let Q̃[0, 1]

denotes partition set of Q[0, 1]. Consider the following four set valued operators

Q̃[0, 1]→ Q̃[0, 1]:
F1 = {σ ◦ f, f} ,
F2 = {σ ◦ f ◦ σ, f} ,
F3 = {σ ◦ f ◦ σ, f ◦ σ} ,
F4 = {σ ◦ f, f ◦ σ} .

(5)

Note that mappings in (5) have the form F = {ϕ, ψ}. Here ϕ : [0, 1]→ [0, 1/2] is

one of two functions: (σ ◦f)(x) = x/(x+1) or (σ ◦f ◦σ)(x) = (x−1)/(x−2). On the

other side, ψ : [0, 1]→ [1/2, 0] is ether f(x) = 1/(x+1) or (f◦σ)(x) = 1/(2−x). Also,
the inverse operators to (5) can easily be established provided that the conventions

Fi(∅) = ∅, and

Fi({r1, . . . , rk}) = {ϕ(r1), . . . , ϕ(rk), ψ(r1), . . . , ψ(rk)}, (6)

are adopted. Namely, F−1
i (∅) = ∅, and

F−1
i ({s1, . . . , sk, sk+1, . . . , s2k}) =
{ϕ−1(s1), . . . , ϕ

−1(sk), ψ
−1(sk+1), . . . , ψ

−1(s2k)}. (7)
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Theorem 1. Neighbor levels of FT map one to another by any of the operators (5)

or their inverses. More precisely, Fi(Tn) = Tn+1 and F−1
i (Tn+1) = Tn, n = 0, 1, . . ..

Proof. Consider the operator F1. Suppose that rk = [a0, . . . , ak] ∈ Tn. By

definition, and convention (6), F1({rk}) = {g(rk), f(rk)}, and by use Lemma 2 and

3 we conclude that

F1({rk}) = F1({[a0, . . . , ak]}) = {g([a0, . . . , ak]), f([a0, . . . , ak])}

= {[a0 + 1, a1, . . . , ak], [1, a0, . . . , ak]}.

Then, F1({rk}) = {rp, rq}, and by Definition 1, rp, rq ∈ Tn+1. Since any of 2n

rationals from Tn has one-to-one unique expansion in continued fraction, the operator

F1 applying on them produces 2n expansions that define exactly 2n+1 new rationals

from the upper level Tn+1. Since the mapping σ just reverse the order, i.e., F2(x) =

{g(1 − x), f(x)} , F3(x) = {g(1 − x), f(1 − x)} and F4(x) = {g(x), f(1 − x)}, we
conclude that Fi(Tn) = Tn+1 (n = 0, 1, . . .) for i = 2, 3 and 4. The inverse mapping

F−1
1 (7) maps Tn+1 → Tn. The similar reasoning applies to other Fi’s from (5). 2

The immediate consequence of Theorem 1 is that (Fi ◦ Fj)(Tn) = Tn+2, for any

i, j ∈ {1, 2, 3, 4}. This leads to the main result of this note.

Theorem 2. Let G be any composition of mappings in (5)

Gm = Fi1 ◦ Fi2 ◦ · · · ◦ Fim ij ∈ {1, 2, 3, 4}, m ∈ N. (8)

Then,

Gm({1/2}) = Tm. (9)

Proof. Now, note that difeomorphism f given by (3) is bijective mapping of

the level Tn−1 onto T 1
n ”1-half” of the level Tn. For any r = [a0, a1, . . . , ak] ∈

Tn−1, ai ≥ 1, i = 0, 1, . . . , k − 1, ak ≥ 2, and by Definition 1,
∑

ai = n + 1.

Also, f(r) = [1, a0, a1, . . . , ak], with the sum of partial quotients 1 +
∑

ai = n + 2.

Therefore, f(r) ∈ Tn. Further, the first partial quotient of f(r) is 1 making it the

member of the ”1-subtree”or f(r) ∈ T 1
n . Similar reasoning may be applied on g given
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by (4), which maps Tn−1 onto T 0
n bijectively. Suppose that r ∈ Tn−1. Then, by

Definition 1, r = [a0, a1, . . . , ak], where ai ≥ 1, i = 1, 2, . . . , k − 1, ak ≥ 2, and
∑

ai = n + 1. Since g(r) = g([a0, a1, . . . , ak]) = [a0 + 1, a1, . . . , ak], then the sum

of partial quotients is 1 +
∑

ai = n+ 2, so g(r) ∈ Tn. Further, the first coefficient in

the continued fraction expansion of g(r) is ≥ 2, which guarantees that g(r) belongs

to the ”0-subtree”. This gives g(r) ∈ T 0
n .

By similar argument and in the previous proof, we have

(Fi ◦ Fj)(Tn−1) = Tn+1,

for any i, j ∈ {1, 2, 3, 4}, and therefore

G2(T0) = (Fi ◦ Fj)(T0) = (Fi ◦ Fj)({1/2}) = T2.

Thus, (9) follows by induction. 2

Definition 2. The operator r 7→ Hm(r), given by

Hm(r) =
m
⋃

n=1

Gn({r}) , r ∈ Q[0, 1] (10)

will be called partial Farey tree operator.

The following two statements are consequences of Theorem 2:

Corollary 1. If in (10) m→∞, the Farey tree (without root) is obtained as an

image of a single rational number, r = 1/2. Namely,

H∞(1/2) =
∞
⋃

n=1

Gn({1/2}) = FT \ {1/2}.

By using F (n) to denote n-th auto-iteration of the operator F , with usual conven-

tion that F (0) is identity, we may state a short definition of the Farey tree, given as

Corollary of Theorem 2.

Corollary 2. FT =
∞
⋃

n=1

F (n)({1/2}), where F ∈ {F1, F2, F3, F4}.
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Here, we restricted ourselves on the first operator in (5). Of course, others are

applicable as well.

3. BRANCH OPERATOR

Schroeder in [4] gives the simple algorithm for indexing rationals from Farey tree.

In fact, for any n ∈ N,

rn = [a0, a1, . . . , ak], aj ∈ N,

the sequence of partial quotients (a0, a1, . . . , ak) represents cardinal numbers of sub-

sets of successive units or zeros in the sequence (b0, b1, . . . , bm−1, bm, bm), where

(b0, b1, . . . , bm), bi ∈ {0, 1}, b0 = 1 is the sequence of binary digits making the

binary expansion of n.

Let α and β represent the following simple mappings of rationals from (0, 1):

α : [a0, a1, . . . , an] 7→ [a0, a1, . . . , an − 1, 2],
β : [a0, a1, . . . , an] 7→ [a0, a1, . . . , an + 1]

. (11)

In [1], the following statement is proven.

Lemma 4. The ”children” of the Farey tree element rk (k = 1, 2, . . .) are

r2k+1 = α(rk), r2k = β(rk), if k is even;
r2k+1 = β(rk), r2k = α(rk), if k is odd.

It is known ([2], [3]) that k-th rational rk from FT belongs to the level Tblog2 kc,

where bxc stands for ”entire part of x”. Having in mind that blog2(2k)c = blog2(2k+

1)c = n+ 1, it is clear that rk ∈ Tn, implies r2k, r2k+1 ∈ Tn+1. For instance,

1/2 = [2] 7→ {[3], [1, 2]}, 1/3 = [3] 7→ {[4], [2, 2]},
2/3 = [1, 2] 7→ {[1, 1, 2], [1, 3]}, 1/4 = [4] 7→ {[5], [3, 2]},
2/5 = [2, 2] 7→ {[2, 1, 2], [2, 3]}, 3/5 = [1, 1, 2] 7→ {[1, 1, 3], [1, 1, 1, 2]},
3/4 = [1, 3] 7→ {[1, 2, 2], [1, 4]},

etc.
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Upon the Lemma 4, we construct the following operator Φ : [0, 1]→ [0, 1]2:

Φ(rk) =
1 + (−1)k

2
{α(rk), β(rk)} +

1 + (−1)k
2

{β(rk), α(rk)},

rk ∈ Tblog2 kc, k ∈ N.

(12)

Let n denote the n-th iteration of the type Φ2 = Φ ∩ Φ, Φ3 = (Φ ∩ Φ) ∩ (Φ ∩ Φ),

etc. If BRk denotes the branch of FT emanating from the element rk, then operator

(12) may be used for defining this branch, in accordance with the next theorem.

Theorem 3. The branch of Farey tree, emanating from the element rk is given

by

lim
n→∞

n
⋃

i=0

Φi(rk) = BRk, k ∈ N.

Proof. By Lemma 4 and relation (12), for even k, one has Φ(rk) = {r2k+1, r2k}.
By induction,

Φi(rk) =
{

r2i(k+1)−1, r2i(k+1)−2, . . . , r2i(k+1)−2i

}

.

If rk ∈ Tn, then n = blog2 kc, so the elements of Φi(rk) belongs to Tn+i, since

blog2(2
i(k + 1)− 1)c = blog2(2

i(k + 1)− 2)c

= blog2(2
i(k + 1)− 2i) = i+ blog2 kc = i+ n.

On the other hand, Φi(rk) contains all 2
i descents of element rk that belong to Tn+i,

and, consequently
n
⋃

i=0

Φi(rk) contains all 2
i+1−2 descents of element rk up to the level

Tn+i. When n→∞,

n
⋃

i=0

Φi(rk) = {{rk}, {r2k+1, r2k},

{r4(k+1)−1, r4(k+1)−2, r4(k+1)−3, r4(k+1)−4}, . . .
}

= BRk.

2

Since BR1 is the whole Farey tree, one has

Corollary 3. FT = lim
n→∞

n
⋃

i=0

Φi(1/2).
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It is interesting to compare Corollaries 2 and 3. Both give Farey tree in the process

of forming an infinite set level by level. But in the case of operators F , in spite of

simple mappings f and g, levels are forming disorderly. On the contrary, the operator

can not be described by simple functions, yet levels of descents are forming orderly.

To be convinced of the complexity of operator Φ, it is enough to examine mappings

α and β, given by (11), for the case when rational number r has a simple continued

fraction expansion, say

r = [x, y, z] =
1

x+

1

y +

1

z
=

1 + yz

x+ z + xyz
, x, y, z ∈ N, z ≥ 2.

Now, according to (11), α(r) = [x, y, z − 1, 2] =
2− y + 2yz

−1 + 2x+ 2z − xy + 2xyz
and

β(r) = [x, y, z+1] =
1 + y + yz

1 + x+ z + xy + xyz
. Both α(r) and β(r) are rational functions

of x, y and z that can not be expressed by some simple mapping of (1+ yz)/(x+ z+

xyz).

4. CONCLUSION

The authors aim was to demonstrate that one so complex structure as the Farey

tree, can be defined by iterating some simple mappings such as f and g given by (3)

and (4) respectively. There are four combinations of these mappings that give the

same result, the Farey tree as an image of its root, 1/2. But, the sequence of rational

numbers, obtained in each iteration is not ordered naturally. On the other hand, two

other mappings α and β, given by (11) although very complicated still yield ordered

levels in building the Farey tree.
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