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Abstract. The subject of this paper is an error estimate of the order h
1/2 in the L

2-norm
for an explicit, fully discrete numerical scheme that approximates smooth solutions of the
barotropic compressible fluid flow equations in the multidimensional case. Assuming some
a-priori estimates for the discrete solution we derive an error estimate using a technique
based upon stability results due to Dafermos [3] and DiPerna [5], which were originally
formulated for systems of conservation laws.

1. INTRODUCTION

Let Ω ⊂ Rm be an open set and Q = (0, 1)d the unite cube in Rd. Consider the

following Cauchy problem

∂tu+
d
∑

i=1

∂iGi(u) = B[u] in Rd × (0, T ), (1)

u(x, 0) = u0(x), x ∈ R
d, (2)

where Gi : Ω → Rm (i = 1, . . . , d) are smooth flux functions and B is an operator.

The derivative on Rd is denoted by ∂ and the partial derivatives by ∂i. For functions
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F : Ω → Rm and f : Ω → R let DF and ∇f be their derivative and gradient,

respectively. Finally, the Euclidean norm on Rm is denoted by | · | and the induced

matrix norm on Rm×m by ‖ · ‖.

Assume that the system (1) has a strictly convex entropy η. If the solution

u : Rd × [0, T ]→ Rm of (1), (2) is smooth, then the additional equality

∂tη(u) +
d
∑

i=1

∂iqi(u) = ∇η(u) ·B[u] in Rd × (0, T ], (3)

holds, with qi’s being the corresponding entropy fluxes. The stability issue for (1),

(2) in the hyperbolic setting (i.e. B ≡ 0) was explored in Dafermos [3] and DiPerna

[5]. If one assumes, for the sake of simplicity, that the smooth solution u of (1), (2)

is 1–periodic in the spacial variable, the theory developed there implies the following

assertion: if ū is a 1–periodic admissible weak solution of (1) (with the initial function

ū0), then

∫

Q
|u(x, t)− ū(x, t)|2 dx ≤ ceαt

∫

Q
|u0 − ū0|

2dx, t ∈ [0, T ), (4)

where c depends on the set where u and ū take their values, and the constant α

depends also on the sup-norm of ∂u.

In an attempt to derive a similar stability result for general B, it turns out that

a certain compatibility condition between the conservative hyperbolic part of the

system (1) and the operator B is needed. Let us state that condition: If Dom(B) is

the domain of the operator B, then for all u1, u2 ∈ Dom(B),

∫

Q
{B[u1]−B[u2]} · {∇η(u1)−∇η(u2)} dx ≤ C

∫

Q
|u1 − u2|2dx, (5)

with t ∈ [0, T ). The constant C should depend only on the set where u1, u2 take their

values (for details see Jovanović [10]). The condition (5) is obviously satisfied if B is a

source term. However, it is not quite obvious that (5) also holds for the compressible

Navier–Stokes system, with C = 0 (see equality (13) below). Hence the possibility of

obtaining an inequality of the form (4) for the Navier–Stokes system. We will even

go a step further in our generalizations. If we replace the smooth solution ū in (4)
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by an arbitrary L2-function w, we will be in a position to estimate the resulting L2-

distance between u and w by some residual measures (see Definition 1 and Theorem

1 below). Finally, by taking w to be a numerical approximation, we can derive an

L2-error estimate, if we estimate the right-hand-side in the obtained inequality (see

(26) below). This is the idea of our approach.

For what concerns the numerical scheme, we use an explicit finite volume – finite

difference scheme on a uniform mesh: the hyperbolic part of the Navier–Stokes system

is discretized by a finite volume, and the viscous part by a finite difference scheme.

A priori estimates for the numerical solution are assumed. Our main result, the error

estimate, is stated in Theorem 2.

The approach of deriving error estimates based upon the Dafermos-DiPerna sta-

bility result for hyperbolic problems was pursued in Arvanitis et al. [1], Vila [14],

Jovanović, Rohde [11], etc.. Numerical methods for compressible fluid flow are devel-

oped in Bristeau et al. [2], Feistauer et al. [6], Fortin et al. [7], Shu et al. [13], etc..

However, a priori error estimates are available only in the one-dimensional case and

can be found in the papers by D. Hoff and his collaborators (see [8], [9]).

2. STABILITY RESULT

The Cauchy problem for the compressible, barotropic Navier–Stokes system in

Rd × (0, T ] may be written in the form

∂tρ+ div(ρv) = 0,

∂t(ρ vi) +
∑d

j=1 ∂j(ρ vivj) + ∂ip(ρ) = µ∆vi + (λ+ µ)∂i(div v),
(6)

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x), x ∈ R
d, (7)

for i = 1, . . . , d. Here ρ denotes the density, v = (v1, . . . , vd)T the velocity of the fluid

and µ, λ are given parameters with µ ≥ 0, µ+ λ ≥ 0. The pressure p = p(ρ) satisfies

the conditions p ∈ C2(0,∞) and p′ > 0. Let Ω = {(ρ, v) ∈ Rd+1 : ρ > 0}. Suppose

that the solution (ρ, v) of (6), (7) satisfies

(ρ, v) is a C1-function on Rd × [0, T ], (8)



266

(ρ, v) is 1–periodic in the spatial variable, (9)

∂2v is continuous on Rd × [0, T ], (10)

(ρ, v) takes values in a convex, compact set S ⊂ Ω. (11)

The existence of such solutions in one space-dimension (locally in time) was shown

in Kreiss, Lorenz [12].

With the help of the conserved variables

m = ρv, u = (ρ,m),

our Cauchy problem (6), (7) takes the more convenient form (1), (2) with

G(u) =
m⊗m

ρ
+ p(ρ)I, G = (G1, . . . , Gd),

B[u] = (0, µ∆v + (λ+ µ)∇(divv)),

u0 = (ρ0,m0).

The symbol ⊗ is the notation for the tensor product of vectors and I is the identity

operator. The conservative hyperbolic part of the compressible Navier–Stokes system

possesses the entropy pair

η(u) =
|m|2

2ρ
+ ρε(ρ), qi(u) =

|m|2

2ρ
+ ρε(ρ) + p(ρ)

mi

ρ
,

for i = 1, . . . , d (see Dafermos [4]). Here it is ε(ρ) =
∫ ρ p(s)

s2
ds. The gradient for η has

the form

∇η(u) =
(

−
|m|2

2ρ2
+ ε(ρ) + ρε′(ρ), v

)

. (12)

An easy calculation shows that η is a strictly convex function on Ω and uniformly

convex on convex, compact subsets of Ω.

Therefore, if u1 = (ρ1, ρ1v1), u2 = (ρ2, ρ2v2) satisfy (8)–(11), then
∫

Q
{B[u1]−B[u2]} · {∇η(u1)−∇η(u2)} dx

= µ
∫

Q
(∆v1 −∆v2) · (v1 − v2) dx

+ (λ+ µ)
∫

Q
[∇(div v1)−∇(div v2)] · [v1 − v2] dx

= −µ
∫

Q
‖∂(v1 − v2)‖2dx− (λ+ µ)

∫

Q
(div(v1 − v2))2 dx.

(13)
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Now, we introduce the relative entropy by

h(a, b) = η(b)− η(a)−∇η(a) · (b− a) (a, b ∈ Ω). (14)

Due to uniform convexity of the entropy η on any convex, compact set S ⊂ Ω, there

are constants l = l(S) > 0, L = L(S) > 0, such that

(∀a, b ∈ S) l |a− b|2 ≤ h(a, b) ≤ L |a− b|2. (15)

Consequently, if u = (ρ, ρ v) is the solution of (6), (7) (or equivalently (1), (2))

satisfying (8)–(11), and S is the set from (11), then there exists a constant α > 0

depending on S and the sup-norm of ∂u, ∂2v, such that

|B[u] · [∇η(w)−∇η(u)−∇2η(u)(w − u)]| ≤ α
2
h(u,w),

∣

∣

∣

∑d
i=1∇

2η(u)∂iu · [Gi(w)−Gi(u)−DGi(u)(w − u)]
∣

∣

∣ ≤ α
2
h(u,w),

(16)

holds on Rd × [0, T ], for all w ∈ S.

Our aim now is to estimate the L2-distance between the solution u of (1), (2) and

an arbitrary function w by generalizing the inequality (4). In order to do so, we need

two auxillary functions, which measure at the extent to wich (1) and (3) are satisfied

by w.

Definition 1. Assume that Assumptions (8) - (11) for the solution u of (1), (2)

hold and let w ∈ [L∞(Rd × (0, T ))]d be an arbitrary function with values in the set

Ω. The weak consistency error µw : [C1(Rd × [0, T ])]d → R and the dissipation error

νw : C1[0, T ]→ R are defined by

〈µw, π〉 = −
∫ T

0

∫

Q
w · ∂tπ +G(w) ·Dπ +B[u] · π dxdt−

∫

Q
u0(x) · π(x, 0) dx

〈νw, ω〉 = −
∫ T

0

∫

Q
η(w)ω′ +∇η(w) ·B[u]ω dxdt−

∫

Q
η(u0)ω(0) dx.

We are ready to formulate the generalization of (4).

Theorem 1. Assume that u = (ρ, ρ v) is the solution of (1), (2) (or equivalently (6),

(7)) which satisfies (8)–(11) and S is the set from (11). Then

l
∫ T

0

∫

Q
e−αt|u− w|2 dxdt ≤ 〈νw, θ〉 − 〈µw, ψ〉. (17)
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Here it is θ(t) = e−αt(T − t) and ψ = θ∇η(u) for α given by (16). The constant l > 0

is defined in (15).

Proof. Let ω ∈ C1[0, T ] be such that ω(., T ) = 0 and let π = ω∇η(u). From (1),

(3) and the definition of the measures µw, νw it follows that

−
∫ T

0

∫

Q
h(u,w)ω′ dxdt = −

∫ T

0

∫

Q
η(w)ω′ dxdt−

∫

Q
η(u0)ω(0) dx

−
∫ T

0

∫

Q
ωB[u] · ∇η(u) dxdt

+
∫ T

0

∫

Q
{∂t[ω∇η(u)]− ω∇2η(u)∂tu} · {w − u} dxdt

= 〈νw, ω〉 − 〈µw, π〉+
∫ T

0

∫

Q
B[u] · ∇η(w)ω −

d
∑

i=1

Gi(w) · ∂iπ dxdt

−2
∫ T

0

∫

Q
B[u] · π dxdt+

∫ T

0

∫

Q
ω

d
∑

i=1

∇2η(u)DGi(u)∂iu · (w − u) dxdt

−
∫ T

0

∫

Q
ω∇2η(u)B[u] · (w − u) dxdt+

∫ T

0

∫

Q
∂tu · π dxdt.

Using the symmetry of the operators ∇2η, ∇2ηDGi (see [4]) and the equality

∫ T

0

∫

Q
∂tu · π dxdt =

∫ T

0

∫

Q
ω

d
∑

i=1

∇2η(u)∂iu ·Gi(u) +B[u] · π dxdt,

we obtain

−
∫ T

0

∫

Q
h(u,w)ω′ dxdt = 〈νw, ω〉 − 〈µw, π〉

+
∫ T

0

∫

Q
ωB[u] · [∇η(w)−∇η(u)−∇2η(u)(w − u)] dxdt

−
∫ T

0

∫

Q
ω

d
∑

i=1

∇2η(u)∂iu · [Gi(w)−Gi(u)−DGi(u)(w − u)] dxdt.
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Plugging ω = θ in the last equality, one concludes, thanks to (15) and the relations
∫ T

0

∫

Q
θ B[u] · [∇η(w)−∇η(u)−∇2η(u)(w − u)] dxdt

≤
α

2

∫ T

0

∫

Q
θ h(u,w) dxdt

−
∫ T

0

∫

Q
θ

d
∑

i=1

∇2η(u)∂iu · [Gi(w)−Gi(u)−DGi(u)(w − u)] dxdt

≤
α

2

∫ T

0

∫

Q
θ h(u,w) dxdt,

that (17) holds. 2

3. ERROR ESTIMATE

Let Th be the uniform triangulation of Rd consisting of open cubes of the size h

parallel to (0, h)d and let T h = Th ∩ Q. For a given K ∈ Th the set E(K) contains

all edges of K. If e ∈ E(K), then Ke is the neighbouring cell to K with the common

edge e, while K±
i := K ± hei are special neighbouring cells, with {ei : i = 1, . . . , d}

to be the canonical basis of Rd. If e ∈ E(K), then by nK,e we denote the outward

unit normal on e and ei±K ∈ E(K) are the edges with the property nK,ei±
K

= ±ei.

The mesh with respect to t is uniform as well: tn = n∆t (n ∈ N ∪ {0}). Here

∆t > 0 is such that there is an N ∈ N with N∆t = T . With this number, we define

the set N = {0, 1, . . . , N − 1}.

For discretization of the Cauchy problem for the compressible Navier–Stokes sys-

tem (1), (2) we use the following finite volume – finite difference scheme:

un+1
K = unK −

∆t

|K|

∑

e∈E(K)

|e| gnK,e(u
n
K , u

n
Ke
) + ∆t Bh[u

n
K ],

u0K =
1

|K|

∫

K
u0(x) dx.

(18)

Here, unK = (ρnK , m
n
K)

T and vnK := mn
K/ρ

n
K . From the iterations unK we define the

piecewise constant approximation uh : Rd × [0, T ]→ Rd+1 of u by

uh(x, t) = unK for x ∈ K, t ∈ [tn, tn+1), (19)
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where K ∈ Th and n ∈ N .

For the numerical flux gnK,e in (18) we suppose the usual consistency and conser-

vation properties.

• For all n ∈ N , K ∈ Th, e ∈ E(K) we have

gnK,e(v, v) =
d
∑

i=1

niK,eGi(v) (v ∈ Ω), (20)

where nK,e = (n1K,e, . . . , n
d
K,e)

T is the unit outward normal to e ∈ E(K).

• For all n ∈ N , K ∈ Th, e ∈ E(K) we have

gnK,e(v, w) = −g
n
Ke,e(w, v) (v, w ∈ Ω). (21)

We also suppose that the numerical flux is locally Lipschitz continuous.

The finite difference operator Bh is defined by

Bh[uh] = (0, µ∆hvh + (µ+ ν)∇h̄(divhvh) )
T ,

where

∆hvh =
d
∑

i=1

(vh)xix̄i
, divhvh =

d
∑

i=1

(vih)xi
(∇h̄f)i = fx̄i

.

Thereby, for f : Rd → R a piecewise constant function on Th, we define the

forward and backward finite differences in a classical way:

fxi
(x) =

1

h
(fK+

i
− fK), fx̄i

(x) =
1

h
(fK − fK−

i
), (x ∈ K).

For the discrete solution uh we make the following assumptions:

uh = (ρh, mh) ⊂ S ⊂ (0, ∞)×Rd, S is from (11) (22)

∑

n∈N

∑

K∈T h

|K| |un+1
K − unK |

2 ≤ C∆t (23)

∑

n∈N

∑

K∈T h

∑

e∈E(K)

|e| |unK − unKe
|2 ≤ C (24)
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Here, C denotes a generic constant that does not depend on h. |K| = hd, |e| =

hd−1 are measures of K and e, respectively. From (22) and (24) it follows that

∑

n∈N

∑

K∈T h

∑

e∈E(K)

|e| |vnK − vnKe
|2 ≤ C. (25)

If we replace w by uh in (17), we obtain

l
∫ T

0

∫

Q
e−αt|u− uh|

2 dxdt ≤ 〈νuh
, θ〉 − 〈µuh

, ψ〉. (26)

Therefore, it only remains to estimate the right-hand side in order to obtain the

L2-error estimate. For that purpose we need several technical lemmas.

Lemma 1.

〈νuh
, θ〉 − 〈µuh

, ψ〉 ≤ L+R +
∫ T

0

∫

Q
θ(t)B[u] · [∇η(u)−∇η(uh)] dxdt+ Ch2,

where

L =
∑

n∈N

∑

K∈T h

∫

K
θ(tn+1)[η(un+1

K )− η(unK)−∇η(u(x, t
n+1)) · (un+1

K − unK)] dx,

R =
1

2

∑

n∈N

∑

K∈T h

∑

e∈E(K)

[

d
∑

i=1

niK,e(Gi(u
n
K)−Gi(u

n
Ke
))
]

·
∫ tn+1

tn

∫

e
ψ dσdt.

Proof. The same as the proof of Lemma 4.2 from [11]. 2

Lemma 2. R ≤ C(h+∆t) +R3, where

R3 =
1

2

∑

n∈N

∑

K∈T h

∑

e∈E(K)

[

d
∑

i=1

niK,e(Gi(u
n
K)−Gi(u

n
Ke
))
]

·
∫ tn+1

tn
θ
∫

e

[

∇η(u)−
1

2
(∇η(unK) +∇η(u

n
Ke
))
]

dσdt.

Proof. Since

0 =
∫ T

0

∫

Q

d
∑

i=1

qi(uh)∂iθ dxdt

=
1

2

∑

n∈N

∑

K∈T h

∑

e∈E(K)

|e|
[

d
∑

i=1

niK,e(qi(u
n
K)− qi(u

n
Ke
))
]

·
∫ tn+1

tn

∫

e
θ dσdt,

we have that R = R1 +R2 +R3, where
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R1 = −
1

2

∑

n∈N

∑

K∈T h

∑

e∈E(K)

|e|
d
∑

i=1

niK,e[qi(u
n
K)− qi(u

n
Ke
)−∇η(unKe

)·

·(Gi(u
n
K)−Gi(u

n
Ke
))
]

∫ tn+1

tn θ dt,

R2 =
1

2

∑

n∈N

∑

K∈T h

∑

e∈E(K)

|e|
d
∑

i=1

niK,e[
1

2
(∇η(unK) +∇η(u

n
Ke
))−∇η(unKe

)]·

·[Gi(u
n
K)−Gi(u

n
Ke
)]
∫ tn+1

tn θ dt,

R3 =
1

2

∑

n∈N

∑

K∈T h

∑

e∈E(K)

[

d
∑

i=1

niK,e(Gi(u
n
K)−Gi(u

n
Ke
))
]

·

·
∫ tn+1

tn θ
∫

e [∇η(u)−
1
2
(∇η(unK) +∇η(u

n
Ke
))] dσdt.

From qi(b)− qi(a)−∇η(a) · (Gi(b)−Gi(a)) ≤ C|a− b|2 for a, b ∈ S and (24) we

conclude that R1 ≤ C∆t. Similarly, from (24) it follows that R2 ≤ C∆t. 2

Lemma 3. L ≤ C(h+∆t) +
1

2
l
∫ T

0

∫

Q
e−αt|u− uh|

2dxdt

+
∑

n∈N

∑

K∈T h

∫ tn+1

tn

∫

K
θ(∇η(unK)−∇η(u)) ·Bh[uh] dxdt+ P3,

where

P3 =
1

2

∑

n∈N

∑

K∈T h

∑

e∈E(K)

[

gK,e(u
n
K , u

n
Ke
)− gK,e(u

n
K , u

n
K)

]

·

·
∫ tn+1

tn θ
∫

e [∇η(u)−
1
2
(∇η(unK) +∇η(u

n
Ke
))] dσdt.

Proof. Similar to the proof of Lemma 4.3 from [11]. 2

Lemma 4.

∫ T

0

∫

Q
θ(∇η(u)−∇η(uh)) · (B[u]−Bh[uh]) ≤

Ch− µ
∫ T

0

∫

Q
θ‖∂v − ∂hvh‖

2dxdt − (µ+ ν)
∫ T

0

∫

Q
θ(divv − divhvh)

2dxdt.

Proof. From (12) and the definitions of B and Bh it follows that

∫

Q
(∇η(u)−∇η(uh)) · (B[u]−Bh[uh]) d

= µ
∫

Q
(v − vh) · (∆v −∆vh) dx+ (µ+ ν)

∫

Q
(v − vh) · (∇(divv)−∇h̄(divhvh)) dx.
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Partial integration yields

∫

Q
(v − vh) · (∆v −∆vh) dx = −

∫

Q
‖∂v − ∂hvh‖

2dx+
∑

K∈T h

d
∑

j=1

ϕK,j(v) · (vh)xj
(x),

where x ∈ K in the sum above, and

ϕK,j(v) = h
∫

ej+

K

∂v

∂xj
dσ +

1

h

(

∫

K+

j

v dx−
∫

K
v dx

)

− 2
∫

K

∂v

∂xj
dx.

Similarly,
∫

Q
(v − vh) · (∇(divv)−∇h̄(divhvh)) dx =

−
∫

Q
(divv − divhvh)

2dx+
∑

K∈T h

d
∑

j=1

ϕ̄K,j(v) · (v
j
h)xj

(x),

where x ∈ K and

ϕ̄K,j(v) =
d
∑

i=1

1

h

(

∫

K+

i

vi dx−
∫

K
vi dx

)

(vjh)xj
+
∫

ej+

K

div v dσ − 2
∫

K
div v dx.

Let | · |2,A denote the Sobolev 2-seminorm on an open set A ⊂ Rd. Employing the

Bramble-Hilbert lemma, one concludes that

|ϕK,j(v)| ≤ Ch
d
2
+1|v|2,K∪K+

j
, |ϕ̄K,j(v)| ≤ Ch

d
2
+1|v|2,K∪K+

j
,

which, together with (25), implies the assertion of the Lemma. 2

Thus we deduce the main result of the paper.

Theorem 2. Let u = (ρ, m), m = ρv be the solution of (6), (7) (or equivalently of

(1), (2)) satisfying (8)–(11). As the numerical scheme for the underlying system let

us consider (18). If the numerical solution uh given by (19) satisfies (22)–(24), then

the following a-priori error estimate

l

2

∫ T

0

∫

Q
e−αt|u− uh|

2dxdt+ µ
∫ T

0

∫

Q
‖∂v − ∂hvh‖

2dxdt

+(µ+ ν)
∫ T

0

∫

Q
(divv − divhvh)

2dxdt ≤ C(h+∆t),

holds, where C does not depend on the mesh and α, l are given in (16), (15), respec-

tively.
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Proof. Applying Lemmas 1 – 3, we obtain

l

2

∫ T

0

∫

Q
e−αt|u− uh|

2dxdt ≤ C(h+∆t) + P3 +R3

+
∫ T

0

∫

Q
θ(∇η(u)−∇η(uh)) · (B[u]−Bh[uh]) dxdt.

Due to P3+R3 = 0 (see the proof of Theorem 4.4 in [11]) and Lemma 4, we conclude

that the assertion holds. 2
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