AN ERROR ESTIMATE FOR A NUMERICAL SCHEME FOR THE COMPRESSIONABLE NAVIER–STOKES SYSTEM

Vladimir Jovanović

Faculty of Science, Mladen Stojanovića 2, 78000 Banja Luka, Bosnia and Herzegovina
(e-mail: vladimir@mathematik.uni-freiburg.de)

(Received October 31, 2006)

Abstract. The subject of this paper is an error estimate of the order $h^{1/2}$ in the L^2-norm for an explicit, fully discrete numerical scheme that approximates smooth solutions of the barotropic compressible fluid flow equations in the multidimensional case. Assuming some a-priori estimates for the discrete solution we derive an error estimate using a technique based upon stability results due to Dafermos [3] and DiPerna [5], which were originally formulated for systems of conservation laws.

1. INTRODUCTION

Let $\Omega \subset \mathbb{R}^m$ be an open set and $Q = (0,1)^d$ the unite cube in \mathbb{R}^d. Consider the following Cauchy problem

$$\partial_t u + \sum_{i=1}^d \partial_i G_i(u) = B[u] \quad \text{in} \quad \mathbb{R}^d \times (0,T),$$

$$u(x,0) = u_0(x), \quad x \in \mathbb{R}^d,$$

where $G_i : \Omega \to \mathbb{R}^m (i = 1, \ldots, d)$ are smooth flux functions and B is an operator. The derivative on \mathbb{R}^d is denoted by ∂ and the partial derivatives by ∂_i. For functions
$F : \Omega \to \mathbb{R}^m$ and $f : \Omega \to \mathbb{R}$ let DF and ∇f be their derivative and gradient, respectively. Finally, the Euclidean norm on \mathbb{R}^m is denoted by $\| \cdot \|$ and the induced matrix norm on $\mathbb{R}^{m \times m}$ by $\| \cdot \|$.

Assume that the system (1) has a strictly convex entropy η. If the solution $u : \mathbb{R}^d \times [0, T] \to \mathbb{R}^m$ of (1), (2) is smooth, then the additional equality

$$
\partial_t \eta(u) + \sum_{i=1}^d \partial_i q_i(u) = \nabla \eta(u) \cdot B[u] \quad \text{in} \quad \mathbb{R}^d \times (0, T),
$$

holds, with q_i's being the corresponding entropy fluxes. The stability issue for (1), (2) in the hyperbolic setting (i.e. $B \equiv 0$) was explored in Dafermos [3] and DiPerna [5]. If one assumes, for the sake of simplicity, that the smooth solution u of (1), (2) is 1-periodic in the spatial variable, the theory developed there implies the following assertion: if \bar{u} is a 1-periodic admissible weak solution of (1) (with the initial function \bar{u}_0), then

$$
\int_Q |u(x, t) - \bar{u}(x, t)|^2 \, dx \leq ce^{\alpha t} \int_Q |u_0 - \bar{u}_0|^2 \, dx, \quad t \in [0, T),
$$

where c depends on the set where u and \bar{u} take their values, and the constant α depends also on the sup-norm of ∂u.

In an attempt to derive a similar stability result for general B, it turns out that a certain compatibility condition between the conservative hyperbolic part of the system (1) and the operator B is needed. Let us state that condition: If Dom(B) is the domain of the operator B, then for all $u^1, u^2 \in \text{Dom}(B)$,

$$
\int_Q \{B[u^1] - B[u^2]\} \cdot \{\nabla \eta(u^1) - \nabla \eta(u^2)\} \, dx \leq C \int_Q |u^1 - u^2|^2 \, dx,
$$

with $t \in [0, T)$. The constant C should depend only on the set where u^1, u^2 take their values (for details see Jovanović [10]). The condition (5) is obviously satisfied if B is a source term. However, it is not quite obvious that (5) also holds for the compressible Navier–Stokes system, with $C = 0$ (see equality (13) below). Hence the possibility of obtaining an inequality of the form (4) for the Navier–Stokes system. We will even go a step further in our generalizations. If we replace the smooth solution \bar{u} in (4)
by an arbitrary \(L^2 \)-function \(w \), we will be in a position to estimate the resulting \(L^2 \)-distance between \(u \) and \(w \) by some residual measures (see Definition 1 and Theorem 1 below). Finally, by taking \(w \) to be a numerical approximation, we can derive an \(L^2 \)-error estimate, if we estimate the right-hand-side in the obtained inequality (see (26) below). This is the idea of our approach.

For what concerns the numerical scheme, we use an explicit finite volume – finite difference scheme on a uniform mesh: the hyperbolic part of the Navier–Stokes system is discretized by a finite volume, and the viscous part by a finite difference scheme. A priori estimates for the numerical solution are assumed. Our main result, the error estimate, is stated in Theorem 2.

The approach of deriving error estimates based upon the Dafermos-DiPerna stability result for hyperbolic problems was pursued in Arvanitis et al. [1], Vila [14], Jovanović, Rohde [11], etc.. Numerical methods for compressible fluid flow are developed in Bristeau et al. [2], Feistauer et al. [6], Fortin et al. [7], Shu et al. [13], etc.. However, a priori error estimates are available only in the one-dimensional case and can be found in the papers by D. Hoff and his collaborators (see [8], [9]).

2. STABILITY RESULT

The Cauchy problem for the compressible, barotropic Navier–Stokes system in \(\mathbb{R}^d \times (0, T] \) may be written in the form

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div}(\rho v) &= 0, \\
\frac{\partial v_i}{\partial t} + \sum_{j=1}^d \frac{\partial}{\partial x_j} (\rho v_i v_j) + \frac{\partial p}{\partial x_i} &= \mu \Delta v_i + (\lambda + \mu) \frac{\partial}{\partial x_i} \text{div} v, \\
\rho(x, 0) &= \rho_0(x), \quad v(x, 0) = v_0(x), \quad x \in \mathbb{R}^d,
\end{align*}
\]

(6)

(7)

for \(i = 1, \ldots, d \). Here \(\rho \) denotes the density, \(v = (v^1, \ldots, v^d)^T \) the velocity of the fluid and \(\mu, \lambda \) are given parameters with \(\mu \geq 0, \mu + \lambda \geq 0 \). The pressure \(p = p(\rho) \) satisfies the conditions \(p \in C^2(0, \infty) \) and \(p' > 0 \). Let \(\Omega = \{ (\rho, v) \in \mathbb{R}^{d+1} : \rho > 0 \} \). Suppose that the solution \((\rho, v) \) of (6), (7) satisfies

\[
(\rho, v) \text{ is a } C^1 \text{-function on } \mathbb{R}^d \times [0, T],
\]

(8)
(ρ, v) is 1-periodic in the spatial variable,
\begin{equation}
\partial^2 v \text{ is continuous on } \mathbb{R}^d \times [0, T],
\end{equation}
(ρ, v) takes values in a convex, compact set $S \subset \Omega$.

The existence of such solutions in one space-dimension (locally in time) was shown in Kreiss, Lorenz [12].

With the help of the conserved variables $m = \rho v$, $u = (\rho, m)$, our Cauchy problem (6), (7) takes the more convenient form (1), (2) with
\begin{align*}
G(u) &= \frac{m \otimes m}{\rho} + p(\rho) I, \quad G = (G_1, \ldots, G_d), \\
B[u] &= (0, \mu \Delta v + (\lambda + \mu) \nabla (\text{div} v)), \\
u_0 &= (r_0, m_0).
\end{align*}
The symbol \otimes is the notation for the tensor product of vectors and I is the identity operator. The conservative hyperbolic part of the compressible Navier–Stokes system possesses the entropy pair
\begin{align*}
\eta(u) &= \frac{|m|^2}{2\rho} + \rho \varepsilon(\rho), \\
q_i(u) &= \frac{|m|^2}{2\rho} + \rho \varepsilon(\rho) + p(\rho) \frac{m_i}{\rho},
\end{align*}
for $i = 1, \ldots, d$ (see Dafermos [4]). Here it is $\varepsilon(\rho) = \int_{\mathbb{R}^d} \frac{p(s)}{s^2} \, ds$. The gradient for η has the form
\begin{equation}
\nabla \eta(u) = \left(- \frac{|m|^2}{2\rho^2} + \varepsilon(\rho) + \rho \varepsilon'(\rho), \ v \right).
\end{equation}
An easy calculation shows that η is a strictly convex function on Ω and uniformly convex on convex, compact subsets of Ω.

Therefore, if $u^1 = (\rho^1, \rho^1 v^1)$, $u^2 = (\rho^2, \rho^2 v^2)$ satisfy (8)–(11), then
\begin{align*}
\int_Q \{B[u^1] - B[u^2]\} \cdot \{\nabla \eta(u^1) - \nabla \eta(u^2)\} \, dx \\
= \mu \int_Q (\Delta v^1 - \Delta v^2) \cdot (v^1 - v^2) \, dx \\
+ (\lambda + \mu) \int_Q [\nabla (\text{div} v^1) - \nabla (\text{div} v^2)] \cdot [v^1 - v^2] \, dx \\
= -\mu \int_Q \|\partial (v^1 - v^2)\|^2 \, dx - (\lambda + \mu) \int_Q (\text{div} (v^1 - v^2))^2 \, dx.
\end{align*}
Now, we introduce the relative entropy by

\[h(a, b) = \eta(b) - \eta(a) - \nabla \eta(a) \cdot (b - a) \quad (a, b \in \Omega). \tag{14} \]

Due to uniform convexity of the entropy \(\eta \) on any convex, compact set \(S \subset \Omega \), there
are constants \(l = l(S) > 0, L = L(S) > 0 \), such that

\[(\forall a, b \in S) \quad l |a - b|^2 \leq h(a, b) \leq L |a - b|^2. \tag{15} \]

Consequently, if \(u = (\rho, \rho v) \) is the solution of (6), (7) (or equivalently (1), (2)) satisfying (8)–(11), and \(S \) is the set from (11), then there exists a constant \(\alpha > 0 \) depending on \(S \) and the sup-norm of \(\partial u, \partial^2 v \), such that

\[\left| B[u] \cdot [\nabla \eta(w) - \nabla \eta(u) - \nabla^2 \eta(u)(w - u)] \right| \leq \frac{\alpha}{2} h(u, w), \]

\[\left| \sum_{i=1}^{d} \nabla^2 \eta(u) \partial_i u \cdot [G_i(w) - G_i(u) - DG_i(u)(w - u)] \right| \leq \frac{\alpha}{2} h(u, w), \tag{16} \]

holds on \(\mathbb{R}^d \times [0, T] \), for all \(w \in S \).

Our aim now is to estimate the \(L^2 \)-distance between the solution \(u \) of (1), (2) and
an arbitrary function \(w \) by generalizing the inequality (4). In order to do so, we need
two auxiliary functions, which measure at the extent to which (1) and (3) are satisfied
by \(w \).

Definition 1. Assume that Assumptions (8) - (11) for the solution \(u \) of (1), (2) hold and let \(w \in [L^\infty(\mathbb{R}^d \times (0, T))]^d \) be an arbitrary function with values in the set \(\Omega \). The weak consistency error \(\mu_w : [C^1(\mathbb{R}^d \times [0, T])]^d \to \mathbb{R} \) and the dissipation error \(\nu_w : C^1[0, T] \to \mathbb{R} \) are defined by

\[\langle \mu_w, \pi \rangle = - \int_0^T \int_Q w \cdot \partial_t \pi + G(w) \cdot D\pi + B[u] \cdot \pi \ dxdt - \int_Q u_0(x) \cdot \pi(x, 0) \ dx \]

\[\langle \nu_w, \omega \rangle = - \int_0^T \int_Q \eta(w) \omega' + \nabla \eta(w) \cdot B[u] \omega \ dxdt - \int_Q \eta(u_0) \omega(0) \ dx. \]

We are ready to formulate the generalization of (4).

Theorem 1. Assume that \(u = (\rho, \rho v) \) is the solution of (1), (2) (or equivalently (6), (7)) which satisfies (8)–(11) and \(S \) is the set from (11). Then

\[l \int_0^T \int_Q e^{-\alpha t} |u - w|^2 \ dx dt \leq \langle \nu_w, \theta \rangle - \langle \mu_w, \psi \rangle. \tag{17} \]
Here it is $\theta(t) = e^{-\alpha t}(T-t)$ and $\psi = \theta\nabla \eta(u)$ for α given by (16). The constant $l > 0$ is defined in (15).

Proof. Let $\omega \in C^1[0, T]$ be such that $\omega(., T) = 0$ and let $\pi = \omega \nabla \eta(u)$. From (1), (3) and the definition of the measures μ_w, ν_w it follows that

\[
- \int_0^T \int_Q h(u, w) \omega' \, dxdt = - \int_0^T \int_Q \eta(w) \omega' \, dxdt - \int_Q \eta(u_0) \omega(0) \, dx
- \int_0^T \int_Q \omega B[u] \cdot \nabla \eta(u) \, dxdt
+ \int_0^T \int_Q \{ \partial_t [\omega \nabla \eta(u)] - \omega \nabla^2 \eta(u) \partial_t u \} \cdot \{ w - u \} \, dxdt
= \langle \nu_w, \omega \rangle - \langle \mu_w, \pi \rangle + \int_0^T \int_Q B[u] \cdot \nabla \eta(w) \omega - \sum_{i=1}^d G_i(w) \cdot \partial_i \pi \, dxdt
- 2 \int_0^T \int_Q B[u] \cdot \pi \, dxdt + \int_0^T \int_Q \omega \sum_{i=1}^d \nabla^2 \eta(u) DG_i(u) \partial_i u \cdot (w - u) \, dxdt
- \int_0^T \int_Q \omega \nabla^2 \eta(u) B[u] \cdot (w - u) \, dxdt + \int_0^T \int_Q \partial_t u \cdot \pi \, dxdt.
\]

Using the symmetry of the operators $\nabla^2 \eta$, $\nabla^2 \eta DG_i$ (see [4]) and the equality

\[
\int_0^T \int_Q \partial_t u \cdot \pi \, dxdt = \int_0^T \int_Q \omega \sum_{i=1}^d \nabla^2 \eta(u) \partial_i u \cdot G_i(u) + B[u] \cdot \pi \, dxdt,
\]

we obtain

\[
- \int_0^T \int_Q h(u, w) \omega' \, dxdt = \langle \nu_w, \omega \rangle - \langle \mu_w, \pi \rangle
+ \int_0^T \int_Q \omega B[u] \cdot [\nabla \eta(w) - \nabla \eta(u) - \nabla^2 \eta(u)(w - u)] \, dxdt
- \int_0^T \int_Q \omega \sum_{i=1}^d \nabla^2 \eta(u) \partial_i u \cdot [G_i(w) - G_i(u) - DG_i(u)(w - u)] \, dxdt.
\]
Plugging $\omega = \theta$ in the last equality, one concludes, thanks to (15) and the relations

$$\int_0^T \int_Q \theta B[u] \cdot [\nabla \eta(w) - \nabla \eta(u) - \nabla^2 \eta(u)(w - u)] \, dx \, dt$$

$$\leq \frac{\alpha}{2} \int_0^T \int_Q \theta h(u, w) \, dx \, dt$$

$$- \int_0^T \int_Q \theta \sum_{i=1}^d \nabla^2 \eta(u) \partial_i u \cdot [G_i(w) - G_i(u) - DG_i(u)(w - u)] \, dx \, dt$$

$$\leq \frac{\alpha}{2} \int_0^T \int_Q \theta h(u, w) \, dx \, dt,$$

that (17) holds.

3. ERROR ESTIMATE

Let T_h be the uniform triangulation of \mathbb{R}^d consisting of open cubes of the size h parallel to $(0, h)^d$ and let $\overline{T}_h = T_h \cap Q$. For a given $K \in \mathcal{T}_h$ the set $\mathcal{E}(K)$ contains all edges of K. If $e \in \mathcal{E}(K)$, then K_e is the neighbouring cell to K with the common edge e, while $K^\pm_e := K \pm he_i$ are special neighbouring cells, with $\{ e_i : i = 1, \ldots, d \}$ to be the canonical basis of \mathbb{R}^d. If $e \in \mathcal{E}(K)$, then by $n_{K,e}$ we denote the outward unit normal on e and $e^\pm_{K,e} \in \mathcal{E}(K)$ are the edges with the property $n_{K,e_{K,e}} = \pm e_i$.

The mesh with respect to t is uniform as well: $t^n = n \Delta t$ ($n \in \mathbb{N} \cup \{0\}$). Here $\Delta t > 0$ is such that there is an $N \in \mathbb{N}$ with $N \Delta t = T$. With this number, we define the set $\mathcal{N} = \{0, 1, \ldots, N - 1\}$.

For discretization of the Cauchy problem for the compressible Navier–Stokes system (1), (2) we use the following finite volume – finite difference scheme:

$$u_{K}^{n+1} = u_{K}^n - \frac{\Delta t}{|K|} \sum_{e \in \mathcal{E}(K)} |e| g_{K,e}^n (u_{K,e}^n, u_{K,e}^n) + \Delta t B_h[u_{K}^n],$$

$$u_{K}^0 = \frac{1}{|K|} \int_K u_0(x) \, dx. \quad (18)$$

Here, $u_{K}^n = (\rho_{K}^n, m_{K}^n)^T$ and $v_{K}^n := m_{K}^n / \rho_{K}^n$. From the iterations u_{K}^n we define the piecewise constant approximation $u_h : \mathbb{R}^d \times [0, T] \to \mathbb{R}^{d+1}$ of u by

$$u_h(x, t) = u_{K}^n \quad \text{for} \quad x \in K, \ t \in [t^n, t^{n+1}), \quad (19)$$
where $K \in T_h$ and $n \in \mathcal{N}$.

For the numerical flux $g_{K,e}^n$ in (18) we suppose the usual consistency and conservation properties.

- For all $n \in \mathcal{N}$, $K \in T_h$, $e \in \mathcal{E}(K)$ we have

$$g_{K,e}^n(v,v) = \sum_{i=1}^d n_{K,e}^i G_i(v) \quad (v \in \Omega),$$

(20)

where $n_{K,e} = (n_{K,e}^1, \ldots, n_{K,e}^d)^T$ is the unit outward normal to $e \in \mathcal{E}(K)$.

- For all $n \in \mathcal{N}$, $K \in T_h$, $e \in \mathcal{E}(K)$ we have

$$g_{K,e}^n(v,w) = -g_{K,e}^n(w,v) \quad (v, w \in \Omega).$$

(21)

We also suppose that the numerical flux is locally Lipschitz continuous.

The finite difference operator B_h is defined by

$$B_h[u_h] = (0, \mu \Delta_h v_h + (\mu + \nu) \nabla_h (\text{div}_h v_h))^T,$$

where

$$\Delta_h v_h = \sum_{i=1}^d (v_h)_{x_i}, \quad \text{div}_h v_h = \sum_{i=1}^d (v^i_h)_{x_i}, \quad (\nabla_h f)_i = f_{x_i}.$$

Thereby, for $f : \mathbb{R}^d \rightarrow \mathbb{R}$ a piecewise constant function on T_h, we define the forward and backward finite differences in a classical way:

$$f_{x_i}(x) = \frac{1}{h} (f_{K_i^+} - f_K), \quad f_{\bar{x}_i}(x) = \frac{1}{h} (f_K - f_{K_i^-}), \quad (x \in K).$$

For the discrete solution u_h we make the following assumptions:

$$u_h = (\rho_h, m_h) : S \subset (0, \infty) \times \mathbb{R}^d, \quad S \text{ is from (11)}$$

(22)

$$\sum_{n \in \mathcal{N}} \sum_{K \in T_h} |K| |u_{K,n+1}^n - u_{K,n}^n|^2 \leq C \Delta t$$

(23)

$$\sum_{n \in \mathcal{N}} \sum_{K \in T_h} \sum_{e \in \mathcal{E}(K)} |e| |u_{K,n}^n - u_{K,e}^n|^2 \leq C$$

(24)
Here, \(C \) denotes a generic constant that does not depend on \(h \). \(|K| = h^d\), \(|e| = h^{d-1}\) are measures of \(K \) and \(e \), respectively. From (22) and (24) it follows that

\[
\sum_{n \in N} \sum_{K \in T_h} \sum_{e \in \mathcal{E}(K)} |e| |v^n_K - v^n_{K_e}|^2 \leq C. \tag{25}
\]

If we replace \(w \) by \(u_h \) in (17), we obtain

\[
I \int_0^T \int_Q e^{-\alpha t}|u - u_h|^2 \, dx \, dt \leq \langle \nu_{u_h}, \theta \rangle - \langle \mu_{u_h}, \psi \rangle. \tag{26}
\]

Therefore, it only remains to estimate the right-hand side in order to obtain the \(L^2 \)-error estimate. For that purpose we need several technical lemmas.

Lemma 1.

\[
\langle \nu_{u_h}, \theta \rangle - \langle \mu_{u_h}, \psi \rangle \leq L + R + \int_0^T \int_Q \theta(t) B[u] \cdot [\nabla \eta(u) - \nabla \eta(u_h)] \, dx \, dt + C h^2,
\]

where

\[
L = \sum_{n \in N} \sum_{K \in T_h} \int_K \theta(n+1)[\eta(u_{K}^{n+1}) - \eta(u_{K}^{n}) - \nabla \eta(u(x, t^{n+1})) \cdot (u_{K}^{n+1} - u_{K}^{n})] \, dx,
\]

\[
R = \frac{1}{2} \sum_{n \in N} \sum_{K \in T_h} \sum_{e \in \mathcal{E}(K)} \left[\sum_{i=1}^d n_{K,e}^i (G_i(u_{K}^{n}) - G_i(u_{K_e}^{n})) \right] \cdot \int_{t^n}^{t^{n+1}} \int_e \psi \, d\sigma \, dt.
\]

Proof. The same as the proof of Lemma 4.2 from [11]. \(\square \)

Lemma 2. \(R \leq C(h + \Delta t) + R_3 \), where

\[
R_3 = \frac{1}{2} \sum_{n \in N} \sum_{K \in T_h} \sum_{e \in \mathcal{E}(K)} \left[\sum_{i=1}^d n_{K,e}^i (G_i(u_{K}^{n}) - G_i(u_{K_e}^{n})) \right] \cdot \int_{t^n}^{t^{n+1}} \theta \int_e \left[\nabla \eta(u) - \frac{1}{2} (\nabla \eta(u_{K}^{n}) + \nabla \eta(u_{K_e}^{n})) \right] \, d\sigma \, dt.
\]

Proof. Since

\[
0 = \int_0^T \int_Q \sum_{i=1}^d q_i(u_h) \partial_i \theta \, dx \, dt
\]

\[
= \frac{1}{2} \sum_{n \in N} \sum_{K \in T_h} \sum_{e \in \mathcal{E}(K)} |e| \left[\sum_{i=1}^d n_{K,e}^i (q_i(u_{K}^{n}) - q_i(u_{K_e}^{n})) \right] \cdot \int_{t^n}^{t^{n+1}} \int_e \theta \, d\sigma \, dt,
\]

we have that \(R = R_1 + R_2 + R_3 \), where
\[R_1 = -\frac{1}{2} \sum_{n \in \mathcal{N}} \sum_{K \in T_h} \sum_{e \in \mathcal{E}(K)} |e| \sum_{i=1}^d n_{K,e}^i (g_i(u^n_K) - g_i(u^n_{K_e})) \cdot (G_i(u^n_K) - G_i(u^n_{K_e})) \int_{t^n}^{t^{n+1}} \theta \, dt, \]

\[R_2 = \frac{1}{2} \sum_{n \in \mathcal{N}} \sum_{K \in T_h} \sum_{e \in \mathcal{E}(K)} |e| \sum_{i=1}^d n_{K,e}^i \left[\frac{1}{2} (\nabla \eta(u^n_K) + \nabla \eta(u^n_{K_e})) - \nabla \eta(u^n_{K_e}) \right] \cdot [G_i(u^n_K) - G_i(u^n_{K_e})] \int_{t^n}^{t^{n+1}} \theta \, dt, \]

\[R_3 = \frac{1}{2} \sum_{n \in \mathcal{N}} \sum_{K \in T_h} \sum_{e \in \mathcal{E}(K)} \left[\sum_{i=1}^d n_{K,e}^i (g_i(u^n_K) - G_i(u^n_{K,e})) \right] \cdot [G_i(u^n_K) - G_i(u^n_{K_e})] \int_{t^n}^{t^{n+1}} \theta \, dt, \]

From \(q_i(b) - q_i(a) - \nabla \eta(a) \cdot (G_i(b) - G_i(a)) \leq C|a-b|^2 \) for \(a, b \in S \) and (24) we conclude that \(R_1 \leq C \Delta t \). Similarly, from (24) it follows that \(R_2 \leq C \Delta t \).

Lemma 3. \(L \leq C(h + \Delta t) + \frac{1}{2} \int_0^T \int_Q e^{-\alpha t} |u - u_h|^2 \, dx \, dt \)

\[+ \sum_{n \in \mathcal{N}} \sum_{K \in T_h} \int_{t^n}^{t^{n+1}} \int_K \theta (\nabla \eta(u^n_K) - \nabla \eta(u)) \cdot B_h[u_h] \, dx \, dt + P_3, \]

where \(P_3 = \frac{1}{2} \sum_{n \in \mathcal{N}} \sum_{K \in T_h} \sum_{e \in \mathcal{E}(K)} \left[g_{K,e}(u^n_K, u^n_{K_e}) - g_{K,e}(u^n_K, u^n_{K_e}) \right] \cdot \int_{t^n}^{t^{n+1}} \theta \int_e [\nabla \eta(u) - \frac{1}{2} (\nabla \eta(u^n_K) + \nabla \eta(u^n_{K_e}))] \, d\sigma \, dt. \)

Proof. Similar to the proof of Lemma 4.3 from [11].

Lemma 4. \(\int_0^T \int_Q \theta (\nabla \eta(u) - \nabla \eta(u_h)) \cdot (B[u] - B_h[u_h]) \leq \)

\[C h - \mu \int_0^T \int_Q \theta ||\partial v - \partial_h v_h||^2 \, dx \, dt - (\mu + \nu) \int_0^T \int_Q \theta (\text{div} v - \text{div}_h v_h)^2 \, dx \, dt. \)

Proof. From (12) and the definitions of \(B \) and \(B_h \) it follows that

\[\int_Q (\nabla \eta(u) - \nabla \eta(u_h)) \cdot (B[u] - B_h[u_h]) \, d \]

\[= \mu \int_Q (v - v_h) \cdot (\Delta v - \Delta v_h) \, dx + (\mu + \nu) \int_Q (v - v_h) \cdot (\nabla (\text{div} v) - \nabla_h (\text{div}_h v_h)) \, dx. \]
Partial integration yields
\[
\int_{\Omega} (\mathbf{v} - \mathbf{v}_h) \cdot (\Delta \mathbf{v} - \Delta \mathbf{v}_h) \, dx = - \int_{\Omega} \| \partial \mathbf{v} - \partial_h \mathbf{v}_h \|^2 \, dx + \sum_{K \in T_h} \sum_{j=1}^d \varphi_{K,j}(\mathbf{v}) \cdot (\mathbf{v}_h)_{x_j}(x),
\]
where \(x \in K \) in the sum above, and
\[
\varphi_{K,j}(\mathbf{v}) = h \int_{e^K_j} \frac{\partial \mathbf{v}}{\partial x_j} \, d\sigma + \frac{1}{h} \left(\int_{K_j^+} \mathbf{v} \, dx - \int_K \mathbf{v} \, dx \right) - 2 \int_K \frac{\partial \mathbf{v}}{\partial x_j} \, dx.
\]
Similarly,
\[
\int_{\Omega} (\mathbf{v} - \mathbf{v}_h) \cdot (\nabla (\text{div} \mathbf{v}) - \nabla_h (\text{div} \mathbf{v}_h)) \, dx =
\]
\[
- \int_{\Omega} (\text{div} \mathbf{v} - \text{div}_h \mathbf{v}_h)^2 \, dx + \sum_{K \in T_h} \sum_{j=1}^d \bar{\varphi}_{K,j}(\mathbf{v}) \cdot (\mathbf{v}_h)_{x_j}(x),
\]
where \(x \in K \) and
\[
\bar{\varphi}_{K,j}(\mathbf{v}) = \sum_{i=1}^d \frac{1}{h} \left(\int_{K_i^+} \mathbf{v}^i \, dx - \int_K \mathbf{v}^i \, dx \right) (\mathbf{v}_h^i)_{x_j} + \int_{e^K_j} \text{div} \mathbf{v} \, d\sigma - 2 \int_K \text{div} \mathbf{v} \, dx.
\]
Let \(| \cdot |_{2,A} \) denote the Sobolev 2-seminorm on an open set \(A \subset \mathbb{R}^d \). Employing the Bramble-Hilbert lemma, one concludes that
\[
|\varphi_{K,j}(\mathbf{v})| \leq Ch^{\frac{\alpha+1}{2}}|v|_{2,K_{x_j}^+}, \quad |\bar{\varphi}_{K,j}(\mathbf{v})| \leq Ch^{\frac{\alpha+1}{2}}|v|_{2,K_{x_j}^+},
\]
which, together with (25), implies the assertion of the Lemma.

Thus we deduce the main result of the paper.

Theorem 2. Let \(u = (\rho, m, \dot{m} = \rho \dot{v} \) be the solution of (6), (7) (or equivalently of (1), (2)) satisfying (8)–(11). As the numerical scheme for the underlying system let us consider (18). If the numerical solution \(u_h \) given by (19) satisfies (22)–(24), then the following a-priori error estimate
\[
\frac{l}{2} \int_0^T \int_{\Omega} e^{-\alpha t} |u - u_h|^2 \, dx \, dt + \mu \int_0^T \int_{\Omega} \| \partial \mathbf{v} - \partial_h \mathbf{v}_h \|^2 \, dx \, dt
\]
\[
+ (\mu + \nu) \int_0^T \int_{\Omega} (\text{div} \mathbf{v} - \text{div}_h \mathbf{v}_h)^2 \, dx \, dt \leq C(h + \Delta t),
\]
holds, where \(C \) does not depend on the mesh and \(\alpha, l \) are given in (16), (15), respectively.
Proof. Applying Lemmas 1 – 3, we obtain

\[
\frac{l}{2} \int_0^T \int_Q e^{-\alpha t}|u - u_h|^2 \, dx \, dt \leq C(h + \Delta t) + P_3 + R_3
\]

\[
+ \int_0^T \int_Q \theta(\nabla \eta(u) - \nabla \eta(u_h)) \cdot (B[u] - B_h[u_h]) \, dx \, dt.
\]

Due to \(P_3 + R_3 = 0 \) (see the proof of Theorem 4.4 in [11]) and Lemma 4, we conclude that the assertion holds.

Acknowledgements: The author was supported by the Republika Srpska’s Ministry of Science and Technology (Project # 2005: Konveksnost, varijacione nejednakosti, parcijalne diferencijalne jednačine).

References

