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Abstract. This article presents second-order difference schemes of 2-D and 3-D elliptic
problems with intersecting interfaces. The discretization is made using new Marchuk iden-
tities. It possesses the typical for the method advantages as conservatism, second-order
accuracy even at low smoothness of the differential problem solution. The convergence and
accuracy are discussed theoretically and experimentally. Numerical tests show the feasiblity
of the schemes.

1. INTRODUCTION

We consider the equation

Lu := −
∂

∂x

(

p(x, y)
∂u

∂x

)

−
∂

∂y

(

q(x, y)
∂u

∂y

)

+ r(x, y)u (1)

= f(x, y) + δ(x− ξ)Kx(y) + δ(y − η)Ky(x), (x, y) ∈ Ω ≡ (0, 1)× (0, 1),



278

where (ξ, η) ∈ Ω, δ(.) is the Dirac-delta function. We assume that the functions

p, q, Kx, Ky are piecewise continuous and

p(x, y) ≥ c0 > 0, q(x, y) ≥ c0 > 0 on Ω. (2)

We shall solve (1) subjected with the Dirichlet boundary conditions

u = gj(s) on Sj, j = w, s, e, n, (3)

where ∂Ω = S = Sw ∪ Ss ∪ Se ∪ Sn :

Sw = {(x, y) ∈ S : x = 0}, Ss = {(x, y) ∈ S : y = 0},

Se = {(x, y) ∈ S : x = 1}, Sn = {(x, y) ∈ S : y = 1},

gj(s) are functions defined on Sj.

The equation (1) is equivalent to the following ones:

Lu := f(x, y), (x, y) ∈ Ω \ Γ, (4)

[u]Γx ≡ u(ξ+, y)− u(ξ−, y) = 0, [u]Γy ≡ u(x, η+)− u(x, η−) = 0, (5)
[

p(x, y)
∂u

∂x

]

Γx

= Kx(y),

[

q(x, y)
∂u

∂y

]

Γy

= Ky(x), (6)

where Γx = {(x, y); x = ξ, 0 < y < 1}, Γy = {(x, y); 0 < x < 1, y = η} and

Γ = Γx
⋃

Γy.

Numerical solutions of second-order elliptic equations are often encountered in

modeling of processes in material sciences and fluid dynamics. This explains the

great interest in the recent years to numerical methods for such problems [1]-[8], [10],

[13], [15], [19], [19], [23].

Han [12] proposed an infinite element method for elliptic interface problems with

interface consisting of straight lines. In [8], [13], [23] for problems with continuous

fluxes (of type (1),(2) when Kx ≡ 0, Ky ≡ 0), finite volume schemes based on coupled

discretization of fluxes, are derived and investigated, theoretically and numerically.

Ill’in [13] derived integro-balance approximations with high order of accuracy (up
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Figure 1: a) The Domain Ω. b) Non-uniform mesh.

to three) for elliptic problems with a line interface. He showed that for the third-

order scheme the monotonicity of the difference equations system failed in the case of

strongly discontinuous (or called ”wild”) coefficients p(x, y), q(x, y). At the end of his

paper [13], Ill’in remarked that the construction and convergence analysis of approx-

imations to elliptic problems with self-intersected interfaces and Neumann boundary

conditions are interesting and difficulties open questions.

The famous Marchuk integral identity is a balance equation over a finite number of

control volumes [8]. Therefore, it is a modification of the finite volume method (FVM)

which starts in the works of Samarskii [22]. In the recent years the FVM which is

capable of producing accurate approximations of general triangular and quadrilateral

grids [7]. FEM formulation of the approximation obtained by Marchuk identity was

derived by Agoshkov [21].

In this paper we present a modification of the Mdrchuk identity method for con-

struction of second-order difference approximation of problem (4)-(6). The paper is

organized as follows. In Section 2, we present a discretization based on new Msrchuk

identities [21]. The convergence is discussed at assumptions for regularity of the dif-

ferential problem solution. Section 4 contains a generalization of the 2-D results to

the 3-D case. Numerical experiments in the last section support our claims.
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2. CONSTRUCTION OF THE DIFFERENCE SCHEME

Let define the meshes:

ω̄ = ω̄h × ω̄k, ω = ω̄ ∩ Ω, σ = ω̄\ω , where

ω̄h = {x0 = 0, xi = xi−1 + hi, i = 1, . . . , N1 − 1, xN1
= xN1−1 + h = ξ, xN1+1 =

ξ + h, xi = xi−1 + hi, i = N1 + 2, . . . , N, xN = 1},

ω̄k = {y0 = 0, yj = yj−1 + kj, j = 1, . . . ,M1 − 1, yM1
= yM1−1 + h = η, yM1+1 =

η + h, yj = yj−1 + kj, j =M1 + 2, . . . ,M, yM = 1}.

Let V be a discrete function defined on ωhk. By ‖V ‖ωhk = maxωhk |Vij|, we denote

the discrete maximum norm on ωhk. The finite-difference operators are defined in

standard manner by U(x, y):

Ux̄ = Ux̄,i = (U(xi, yj)− U(xi−1, yj))/hi, Ux = Ux,i = Ux̄,i+1,

Uȳ = Uȳ,j = (U(xi, yj)− U(xi, yj−1))/kj, Uy = Uy,j = Uȳ,j+1,

Ux̂ = Ux̂,i = (U(xi+1, yj)− U(xi, yj))/~i, ~i =
1

2
(hi + hi+1), ~0 =

h1
2
, ~N =

hN
2
,

Uŷ = Uŷ,j = U(xi, yj+1)− U(xi, yj))/k̄j, k̄j =
1

2
(kj + kj+1), k̄0 =

k1
2
, k̄N =

kM
2
,

Ux̄x̂ = Ux̄x̂,i =
1

~i
(Ux,i − Ux̄,i), Uȳŷ = Uȳŷ,j =

1

k̄j
(Uy,j − Uȳ,j).

Here Vij is any discrete function. Note that when it is clear that u(x, y) is a continuous

function, we shall sometimes use the notation uij := u(xi, yj), while when it is clear

that Vij is a discrete function, we shall sometimes use the notation V (xi, yj) := Vij.

Let g(x, y) is a piecewise continuous function define in Ω.

gx̆ = gx̆i(y) =
hig(xi−, y) + hi+1g(xi+, y)

hi + hi+1

,

gy̆ = gy̆j(x) =
kjg(x, yj−) + kj+1g(x, yj+)

kj + kj+1

,

gx̆y̆ = gx̆iy̆j = (gx̆i)y̆j =
(

gy̆j
)

x̆i
.

If hi = hi+1, then gx̆ = {g}xi . Ifkj = kj+1, then gy̆ = {g}yj .
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First we explain our idea for construction of the difference scheme to 1-d elliptic

problem. Setting in (1) p(x, y) = p(x), q(x, y) = 0, r(x, y) = r(x), f(x, y) = f(x),

we have:

w(x) = p(x)
du

dx
, −

dw

dx
+ r(x)u = f(x), x ∈ (0, ξ) ∪ (ξ, 1), (7)

[u]ξ = 0, [w]ξ = K. (8)

Integrating the left equality in (7) first on (xi−1, xi) and next on (xi, xi+1) and

subtracting the results, we get

−
1

~i

(

ui+1 − ui
ξi(xi+)

)−
ui − ui−1
ξi(xi−)

)

(9)

= −
1

~i
[w]xi −

1

~i

(
∫ xi

xi−1

dw

dx

ξi(x)

ξi(xi−)
dx+

∫ xi+1

xi

dw

dx

ξi(x)

ξi(xi+)
dx

)

,

where

ξi (x) =























x
∫

xi−1

dt
p(t)
, xi−1 ≤ x < xi,

xi+1
∫

x

dt
p(t)
, xi < x ≤ xi+1,

0, x /∈ [xi−1, xi+1].

An application of the trapezoid numerical integration with accuracy O(~2
i ) leads

to the equality:

hi
hi + hi+1

X1 +
hi+1

hi + hi+1

X2 =
1

~i

(

ui+1 − ui
ξi(xi+)

−
ui − ui−1
ξi(xi−)

)

−
1

~i
[w]xi +O(~2

i ),

where

X1 =
dw

dx
(xi−) = r(xi−)ui − f(xi−), X2 =

dw

dx
(xi + 0) = r(xi+)ui − f(xi+).

Considering the last three relations as a system of three algebraic equations for

two unknowns X1, X2, we find:

−
1

~i

(

ui+1 − ui
ξi(xi+)

−
ui − ui−1
ξi(xi−)

)

+
hir(xi−) + hi+1r(xi+)

hi + hi+1

ui

=
hif(xi−) + hi+1f(xi+)

hi + hi+1

−
1

~i
[w]xi +O(~2

i ),

where [w]xi = 0 for xi 6= ξ and [w]ξ = K. From here we get the difference scheme

−

(

1

ξ(x)
Ux

)

x̂

+ rx̆u = fx̆ −
1

~i
[w]xi . (10)
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Now we turn to the two-dimensional case. For 1 < i < N − 1, 1 < j < M − 1 we

introduce the functions

ξi(x, y) =























x
∫

xi−1

dt
p(t,y)

, xi−1 ≤ x < xi,

xi+1
∫

x

dt
p(t,y)

, xi < x ≤ xi+1,

0, x /∈ [xi−1, xi+1] ,

ηj(x, y) =



























y
∫

yj−1

ds
q(x,s)

, yj−1 ≤ y < yj,

yj+1
∫

y

ds
q(x,s)

, yj < y ≤ yj+1,

0, y /∈ [yj−1, yj+1]

and the flows w1(x, y) = p(x, y)∂u
∂x
, w2(x, y) = q(x, y)∂u

∂y
.

Also, we will use the functions:

ϕi(y) =
1

~i

(

ui+1(y)− ui(y)

ξi(xi+, y)
−
ui(y)− ui−1(y)

ξi(xi−, y)

)

=

1

~i
[w1]xi +

1

~i

(
∫ xi

xi−1

dw1

dx

ξi(x, y)

ξi(xi−, y)
dx+

∫ xi+1

xi

dw1

dx

ξi(x, y)

ξi(xi+, y)
dx

)

, i = 1, ..., N − 1,

ψj(x) =
1

k̄j

(

uj+1(x)− uj(x)

ηj(x, yj+)
−
uj(x)− uj−1(x)

ηj(x, yj−)

)

=

1

k̄j
[w2]yj +

1

k̄j

(

∫ yj

yj−1

dw2

dy

ηj(x, y)

ηj(x, yj−)
dy +

∫ yj+1

yj

dw2

dy

ηj(x, y)

ηj(x, yj+)
dy

)

, j = 1, ...,M − 1.

Following the procedure described for the 1-d case, we find

ϕi(yj±) =
1

~i
[w1]xi(yj±) +

1

~i

(

hi
2

dw1

dx
(xi−, yj±) +

hi+1

2

dw1

dx
(xi+, yj±)

)

+O(~2
i ),

(11)

ψj(xi±) =
1

k̄j
[w2]yj(xi±) +

1

k̄j

(

kj
2

dw2

dy
(xi±, yj−) +

kj+1

2

dw2

dy
(xi±, yj+)

)

+O(k̄2j ).

(12)

Setting

dw1

dx
(xi−, yj−) = X1,

dw2

dy
(xi−, yj−) = Y1,

dw1

dx
(xi+, yj−) = X2,

dw2

dy
(xi+, yj−) = Y2,

dw1

dx
(xi+, yj+) = X3,

dw2

dy
(xi+, yj+) = Y3,

dw1

dx
(xi−, yj+) = X4,

dw2

dy
(xi−, yj+) = Y4.

we obtain from (1), (11-12) the linear system of algebraic equations for the unknowns

Xi, Yi, i = 1, 2, 3, 4:

X1 + Y1 = (ru− f)(xi−, yj−), X2 + Y2 = (ru− f)(xi+, yj−),



283

X2 + Y3 = (ru− f)(xi+, yj+), X4 + Y4 = (ru− f)(xi−, yj+),

hiX1 + hi+1X2 = −2[w1]xi(yj−) + (hi + hi+1)ϕi(yj−) +O(~3
i ),

hiX4 + hi+1X3 = −2[w1]xi(yj+) + (hi + hi+1)ϕi(yj+) +O(~3
i ),

kjY1 + kj+1Y4 = −2[w2]yj(xi−) + (kj + kj+1)ψj(xi−) +O(k̄3j ),

kjY2 + kj+1Y3 = −2[w2]yj(xi+) + (kj + kj+1)ψj(xi+) +O(k̄3j ).

Eliminating Xi, Yi, i = 1, 2, 3, 4 we find the approximation in the mesh point (xi, yj)

of the equation (1) :

−
1

2~ikj

[(

kj
ξi(xi+, yj−)

+
kj+1

ξi(xi+, yj+)

)

(ui+1j − uij)

−

(

kj
ξi(xi−, yj−)

+
kj+1

ξi(xi−, yj+)

)

(uij − ui−1j)

+

(

hi
ηj(xi−, yj+)

+
hi+1

ηj(xi+, yj+)

)

(uij+1 − uij)

−

(

hi
ηj(xi−, yj−)

+
hi+1

ηj(xi+, yj−)

)

(uij − uij−1)

]

+
hikjr(xi−, yj−) + hi+1kjr(xi+, yj−) + hi+1kj+1r(xi+, yj+) + hikj+1r(xi−, yj+)

(hi + hi+1)(kj + kj+1)
uij

=
hikjf(xi−, yj−) + hi+1kjf(xi+, yj−) + hi+1kj+1f(xi+, yj+) + hikj+1f(xi−, yj+)

(hi + hi+1)(kj + kj+1)

−
kj[w1]xi(yj−) + kj+1[w1]xi(yj+)

~i(kj + kj+1)
−
hi[w2]yj(xi−) + hi+1[w2]yj(xi+)

k̄j(hi + hi+1)
+O(~2

i + k̄2j ).

From here we get the difference scheme

−

(

1

ξ(x, y)
Ux

)

x̂y̆

−

(

1

η(x, y)
Uy

)

ŷx̆

+ rx̆y̆u = fx̆y̆ −
1

~i
([w1]xi)y̆ −

1

kj

(

[w2]yj
)

x̆
, (13)

where [w1]xi = 0 for xi 6= ξ and [w1]ξ = Kx(y), [w2]yj = 0 for yj 6= η and [w2]η =

Ky(x).
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3. CONVERGENCE

Let introduce the scalar products and the corresponding norms:

(U, V )ω̄ =
N
∑

i=0

M
∑

j=0

~ik̄j(UV )x̆iy̆j , ‖U‖
2
0 = (U,U)ω̄ ,

(U, V )ω =
N−1
∑

i=1

M−1
∑

j=1

~ik̄j(UV )x̆iy̆j ,

(U, V )ω+

1
×ω̄2

=
N
∑

i=1

M
∑

j=0

hik̄j(UV )y̆j ,i, ‖Ux̄‖
2
0 = (Ux̄, Ux̄)ω+

1
×ω̄2

,

(U, V )ω̄1×ω
+

2

=
N
∑

i=0

M
∑

j=1

~ikj(UV )x̆i,j, ‖Uȳ‖
2
0 = (Uȳ, Uȳ)ω̄1×ω

+

2

,

(U, V )ω+

1
×ω+

2

=
N
∑

i=1

M
∑

j=1

hikj(UV )i,j ,

‖∇U‖20 = ‖Ux̄‖
2
0 + ‖Uȳ‖

2
0, ‖U‖

2
1 = ‖U‖

2
0 + ‖∇U‖

2
0,

where ω̄1 = ω̄h, ω̄2 = ω̄k, ω̄ = ω̄1 × ω̄2, σ = ∂Ω ∩ ω̄.

It is well known that the rate of convergence of the difference schemes essentially

depends on the smoothness of the differential problem solution [9]. A corresponding

treatment for problem (1)-(3) is beyond the scope of this paper and we will explain

this on the following example of R.B. Kellog [16]. Let Ωi = {x ∈ Ω : (i−1)π
2

< ϕ <

iπ
2
, 1 ≤ i ≤ 4} , see Fig.1, where (r, ϕ) are polar coordinates. We consider (4)-

(6), (1)-(3) in case of piecewise constant coefficients, Fig.1, and zero singular sources

Kx ≡ Ky ≡ 0 with zero Dirichlet conditions gj ≡ 0, j = w, s, e, n. Then every weak

solution u ∈ W 1
2 (Ω) of (4)-(6), (1)-(3) admits the following asymptotic expansion

near the intersection interface point I [17].

ηIu = ηIureg + ηI
∑

α∈(0,1)

Cαr
αvα(ϕ)

Here, ηI is a cut-off function with respect I (see Fig. 1.a) and ηIureg|Ωi
∈ W 2,2(Ωi).

The sum extends over the eigenvalues α of related eigenvalue problem and functions
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vα are the corresponding eigenfunctions. The regularity of u is now given by the

smallest eigenvalue αmin in the interval (0, 1) [17] : for every ε > 0

ηIu|Ωi
∈ W 1+αmin−ε,2(Ωi).

For the special domain Ω introduced above and choice p1 = p3 = 1 and p2 = p4 =

ρ > 0 , it is shown [17] that α ∈ (0, 1) is exponent for the expansion [17] if and only

if

cos(απ) = 1−
8ρ

(1 + ρ)2
.

It follows from this relation that αmin → 0 as ρ → 0 or ρ → ∞ and therefore the

regularity of a weak solution can be arbitrary low, i.e u|Ωi
is from W 1+ε

2 , ε > 0 small.

This example shows that one can not guarantee a regularity of weak solution in a

space W 1+m
2 (Ωi) for fixed m > 0 without any further assumptions on the coefficients

p, q, r, and the right hand side Kx, Ky, f and the boundary condition function g.

Results in this direction for the case of one line interface, i.e. Ky ≡ 0 are obtained in

[11].

Theorem 1. Suppose that for the solution of the problem (4)-(6) u ∈ C(Ω̄)
⋂
(
⋂4

s=1C
4+α(Ωs)

)

,∂u
∂x
∈ C3+α

(

Ω1

⋃

Ω4

)
⋂

C3+α
(

Ω2

⋃

Ω3

)

, ∂u
∂y
∈ C3+α

(

Ω1

⋃

Ω2

)

⋂

C3+α
(

Ω3

⋃

Ω4

)

. Then the truncation error of the scheme (13) is of order one. The

problem

ΛU = − (pUx̄)x̂y̆ − (qUȳ)ŷx̆ + rx̆y̆U = ϕ, U |σ = 0 (14)

has unique solution that satisfies the estimate

‖U‖1 ≤ C‖ϕ‖−1,

where

‖Ψ‖−1 = sup
v|γ=0

|(Ψ, v)w|

‖v‖1
.

Theorem 2. Suppose that the assumptions for smoothness in Theorem 1 are

fulfilled. Then for the error zij = Uij − u(xi, yj) of the difference scheme (13) the

estimate holds

‖z‖1 ≤ C
(

‖h2‖0 + ‖k
2‖0
)

. (15)
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4. 3D INTERFACE PROBLEM

The results, obtained in the previous sections for 2-D problems can be generalized

to the 3-D case. Now we turn to the three-dimensional case. We consider the equation

Lu := −
∂

∂x

(

p(x, y, z)
∂u

∂x

)

−
∂

∂y

(

q(x, y, z)
∂u

∂y

)

−
∂

∂z

(

q(x, y, z)
∂u

∂y

)

+ s(x, y, z)u(16)

= f(x, y, z) + δ(x− ξ)Kx,z(y) + δ(y − η)Ky(x, z)

+ δ(z − ζ)Kz(x, y), (x, y, z) ∈ Ω ≡ (0, 1)3,

where (ξ, η, ζ) ∈ Ω, δ(.) is the Dirac-delta function. We assume that the functions

p, q, Kx, Ky, Kz are piecewise continuous and

p(x, y, z), q(x, y, z), r(x, y, z) ≥ c0 > 0, s(x, y, z) ≥ c0 > 0 on Ω. (17)

We shall solve (16) subjected with the Dirichlet boundary conditions

u|∂Ω = g(x, y, z). (18)

The equation (16) is equivalent to the following ones:

Lu := f(x, y, z), (x, y, z) ∈ Ω \ Γ, (19)

[u]Γx ≡ u(ξ+, y, z)− u(ξ−, y, z) = 0,

[u]Γy ≡ u(x, η+, z)− u(x, η−, z) = 0,

[u]Γz ≡ u(x, y, ζ+)− u(x, y, ζ−, z) = 0,

[

p(x, y, z)
∂u

∂x

]

Γx

= Kx(y, z),

[

q(x, y, z)
∂u

∂y

]

Γy

= Ky(x, z),

[

r(x, y, z)
∂u

∂z

]

Γz

= Kz(x, y),
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where Γx = {(x, y, z); x = ξ, 0 < y < 1, 0 < z < 1, }, Γy = {(x, y, z); 0 < x <

1, y = η, 0 < z < 1}, Γz = {(x, y, z); 0 < x < 1, 0 < y < 1, z = ζ}, Γ =

Γx
⋃

Γy
⋃

Γz.

We descretize on the mesh

ω̄ = ω̄h × ω̄k × ω̄t, ω = ω̄ ∩ Ω, σ = ω̄\ω,

where ω̄h, ω̄k were defined in Section 2 and

ω̄t = {z0 = 0, zl = zl−1 + tl, l = 1, . . . , P1 − 1, zP1
= zP1−1 + h = ζ, zP1+1 =

ζ + h, zl = zl−1 + tl, l = P1 + 2, . . . , P, zN = 1};

Uz̄ = Uz̄,l = (U(xi, yj, zl)− U(xi, yj, , zl−1))/tl, Uz = Uz,l = Uz̄,l+1,

Uz̄ẑ = Uz̄ẑ,l =
1

t̄l
(Uz,l − Uz̄,l), t̄l =

1

2
(tl + tl+1), t̄0 =

t0
2
, t̄P =

tP
2
,

gz̆ = gz̆l(x, y) =
tlg(x, y, zl−) + tl+1g(x, y, zl+)

tl + tl+1

.

For 1 < i < N − 1, 1 < j < M − 1, 1 < l < P − 1 we introduce the functions

ξi(x, y, z)| =























x
∫

xi−1

dt
p(t,y,z)

, xi−1 ≤ x < xi,

xi+1
∫

x

dt
p(t,y,z)

, xi < x ≤ xi+1,

0, x /∈ [xi−1, xi+1] ,

ηj(x, y, z) =



























y
∫

yj−1

ds
q(x,s,z)

, yj−1 ≤ y < yj,

yj+1
∫

y

ds
q(x,s,z)

, yj < y ≤ yj+1,

0, y /∈ [yj−1, yj+1] ,

ζl(x, y, z) =























z
∫

zl−1

dt
r(x,y,t)

, zl−1 ≤ z < zl,

zl+1
∫

z

dt
r(x,y,t)

, zi < z ≤ zl+1,

0, z /∈ [zl−1, zl+1] ,

and the flows w1(x, y, z) = p(x, y, z)∂u
∂x
, w2(x, y, z) = q(x, y, z)∂u

∂y
, w3(x, y, z) = r(x, y, z)∂u

∂z
.
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−

(

1

ξ(x, y, z)
Ux

)

x̂y̆z̆

−

(

1

η(x, y, z)
Uy

)

ŷx̆z̆

−

(

1

ζ(x, y, z)
Uz

)

ẑx̆y̆

+ rx̆y̆z̆u

= fx̆y̆z̆ −
1

~i
([w1]xi)y̆z̆ −

1

kj

(

[w2]yj
)

x̆z̆
−

1

tl
([w3]zl)x̆y̆ .

where [w1]xi = 0 for xi 6= ξ and [w1]ξ = Kx(y, z), [w2]yj = 0 for yj 6= η and [w2]η =

Ky(x, z), [w3]zl = 0 for zl 6= ζ and [w3]ζ = Kz(x, y).

5. NUMERICAL TESTS

In this section, we test the difference schemes derived in sections 2, 4 for 2-D and

3-D problems, respectively. In the 2-D case on each subdomain Ωs, s = 1, 2, 3, 4 we

seek an exact solution in the form

u(x, y) = u1

(

b− x

b− a

)v (
d− y

d− c

)w

+ u2

(

x− a

b− a

)v (
d− y

d− c

)w

+u3

(

x− a

b− a

)v (
y − c

d− c

)w

+ u4

(

b− x

b− a

)v (
y − c

d− c

)w

,

where, for example on Ω1 (the same procedure for Ω2, Ω3, Ω4) we take a = 0,

b = ξ, c = 0, d = η, u1 = u(0, 0), u2 = u(ξ, 0), u3 = u(ξ, η), u4 = u(0, η) are given

real numbers and v, w, m, n are integers (see Tables 1-4). The Dirichlet boundary

condition, and the functions f, Kx, Ky are taken from the exact solution.

The maximum error order over all grid points,

‖EN‖∞ = max
i, j
{|u (xi, yj)− Uij|}

is presented, where Uij is the computed approximation at the grid point (xi, yj). For

our schemes we give ‖TN‖∞, the infinity norm of the local truncation error over all

grid points. We also display the ratios of the successive errors

ratio1 = log2
‖TN‖∞
‖T2N‖∞

, ratio2 = log2
‖EN‖∞
‖E2N‖∞

.

The computational results are displayed in Tables 1,2.
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In the 3-D case on each subdomain Ωs, s = 1, ..., 8 we seek an exact solution in

the form

u(x, y, z) =

(

u1

(

b− x

b− a

)v (
d− y

d− c

)w

+ u2

(

x− a

b− a

)v (
d− y

d− c

)w

+ u3

(

x− a

b− a

)v (
y − c

d− c

)w

+ u4

(

b− x

b− a

)v (
y − c

d− c

)w)(
f − z

f − e

)ρ

+

(

u5

(

b− x

b− a

)v (
d− y

d− c

)w

+ u6

(

x− a

b− a

)v (
d− y

d− c

)w

+ u7

(

x− a

b− a

)v (
y − c

d− c

)w

+ u8

(

b− x

b− a

)v (
y − c

d− c

)w)(
z − e

f − e

)ρ

.

The computational results are similar to those of the 2-D case, Table3.

Table 1: Equal coefficients ps = qs = 1; rs = 2, s = 1, 2, 3, 4, ξ = 0.5628, η =
0.4067, v = w = 4.

N =M N1 =M1 ‖TN‖∞ ratio1 ‖EN‖∞ ratio2
8 4 8.0760 - 0.0589 -
16 8 4.3459 0.8940 0.0137 2.1023
32 16 2.2499 0.9498 0.0033 2.0554
64 32 1.1442 0.9755 8.0853e-4 2.0300
128 64 0.5769 0.9879 1.9988e-4 2.0162
256 128 0.2897 0.9940 4.9674e-5 2.0086

Table 2: Large contrasts coefficients p1 = q1 = p3 = q3 = 10−2, p2 = q2 = p4 = q4 =
104, r1 = r3 = 2.10−2, r2 = r4 = 2.104, ξ = 0.5628, η = 0.4067, v = w = 4.

N =M N1 =M1 ‖TN‖∞ ratio1 ‖EN‖∞ ratio2
8 4 4.0380e+4 - 0.0575 -
16 8 2.1729e+4 0.8940 0.0134 2.1021
32 16 1.1249e+4 0.9498 0.0032 2.0525
64 32 5.7209e+3 0.9755 7.9143e-4 2.0283
128 64 2.8845e+3 0.9879 1.9574e-4 2.0155
256 128 1.4483e+3 0.9940 4.8713e-5 2.0066
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Table 3: Large contrasts coefficients p2i−1 = q2i−1 = 1, p2i = q2i = 10, r2i−1 =
1, r2i = 2, i = 1, 2, 3, 4; ξ = 0.5628, η = 0.4067, ζ = .62, v = w = 4.

N =M = L N1 =M1 = L1 ‖TN‖∞ ratio1 ‖EN‖∞ ratio2
4 2 76.4365 - 0.0660 -
8 4 34.4407 1.1501 0.0192 1.7814
16 8 15.8447 1.1201 0.0050 1.9411
32 16 7.5245 1.0743 0.0013 1.9434
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