ON ORBITS FOR PAIRS OF OPERATORS ON AN INFINITE-DIMENSIONAL COMPLEX HILBERT SPACE

Sonja Mančevska

Faculty of Technical Sciences, Ivo Lola Ribar b.b. 7000 Bitola, R. Macedonia (e-mail: sonja.manchevska@uklo.edu.mk)

Abstract. The results presented in this paper are motivated by some of the results obtained by B. Beauzamy in [1, Chap. III] for a single operator on an infinite-dimensional complex Hilbert space that imply existence of a dense set of vectors with orbits tending strongly to infinity. For the case of invertible operator T, one of B. Beauzamy's results implies that the space actually contains a dense set of vectors for which both the orbits under T and its inverse tend strongly to infinity. We are going to show that this is also true for any suitable pair of operators.

1. INTRODUCTION

Throughout this paper H will denote an infinite-dimensional complex Hilbert space with inner product $\langle \cdot | \cdot \rangle$ and B(H) the algebra of all bounded linear operators on H. For $T \in B(H)$, with r(T), $\sigma(T)$, $\sigma_p(T)$ and $\sigma_a(T)$ we will denote the spectral radius, the spectrum, the point spectrum and the approximate point spectrum of T, respectively. Recall that $\sigma_p(T)$ is the set of all eigenvalues of T, while $\sigma_a(T)$ is the set of all $\lambda \in \sigma(T)$ for which there is a sequence of unit vectors $(x_n)_{n\geq 1}$ such that $||Tx_n - \lambda x_n|| \to 0$, as $n \to +\infty$; any such sequence is called a sequence of *almost eigenvectors* for λ . Unlike the point spectrum, which can be empty, the approximate point spectrum is nonempty for every $T \in B(H)$. As a mater of fact, $\emptyset \neq \partial \sigma(T) \cup \sigma_p(T) \subseteq \sigma_a(T), [2, \text{Prop.VII.6.7}].$

Orbit of the vector $x \in H$, under the operator T, is the sequence

$$\operatorname{Orb}(T, x) = \left\{ x, Tx, T^2x, \ldots \right\}.$$

In [1, Thm.III.2.A.1] B. Beauzamy showed that, if $T \in B(H)$ and the circle $\{\lambda \in \mathbb{C} : |\lambda| = r(T)\}$ contains a point in $\sigma(T)$ which is not an eigenvalue for T then, for every positive sequence $(\alpha_n)_{n\geq 1}$ strictly decreasing to 0, in every open ball in H with radius strictly larger then α_1 , there is a vector z with $||T^n z|| \geq \alpha_n r(T)^n$, for all $n \geq 1$. As its proof suggests, this result will remain true if r(T) is replaced with $|\lambda|$, for any $\lambda \in \sigma_a(T) \setminus \sigma_p(T)$. Note that, if r(T) > 1 or, in the later case, if $|\lambda| > 1$, then the space will contain a dense set of vectors $z \in H$ with Orb(T, z) tending strongly to infinity.

B. Beauzamy also stated, almost without a proof, a similar result for the case of invertible operator $T \in B(H)$, [1, Thm.III.2.A.10]: If both the circles $\{\lambda \in \mathbb{C} : |\lambda| = r(T)\}$ and $\{\lambda \in \mathbb{C} : |\lambda| = 1/r(T^{-1})\}$ contain a point in $\sigma(T)$ which is not an eigenvalue for T then, for any two positive sequences $(\alpha_n)_{n\geq 1}$ and $(\beta_n)_{n\geq 1}$ strictly decreasing to 0, in every open ball in H with radius strictly larger then $(\alpha_1^2 + \beta_1^2)^{1/2}$, there is a vector z which satisfies simultaneously: $||T^n z|| \geq \alpha_n r(T)^n$ and $||T^{-n} z|| \geq \beta_n r(T^{-1})^n$, for all $n \geq 1$. We are going to generalize this result for pairs of operators on H.

2. PRELIMINARY RESULTS

Proposition 2.1. Let $T \in B(H)$ and $\lambda \in \sigma_a(T) \setminus \sigma_p(T)$.

- (a) For every sequence of almost eigenvectors $(x_n)_{n\geq 1}$ for λ and every $h \in H$, $\lim_{n \to +\infty} \langle x_n | h \rangle = 0.$
- (b) If E is any orthonormal basis for H then, there is a sequence $(y_k)_{k\geq 1}$ of almost eigenvectors for λ , such that the sets $\{e \in E : \langle e|y_k \rangle \neq 0\}$, $k \geq 1$ are all finite and pairwise disjoint.

Proof. The assertion under (a) follows from the Riesz's theorem for representation of bounded linear functional on a Hilbert space and from the fact that, if T is a bounded linear operator on a reflexive Banach space and $\lambda \in \sigma_a(T) \setminus \sigma_p(T)$, then every corresponding sequence of almost eigenvectors for λ tends weakly to 0 [1, Prop.I.1.13].

To prove the assertion under (b) fix any corresponding sequence of almost eigenvectors $(x_n)_{n\geq 1}$ for λ . For $h \in H$, let $E(h) = \{e \in E : \langle h | e \rangle \neq 0\}$.

Since E(h) is countable for each $h \in H$, [2, Cor.I.4.9], there is a sequence $(e_k)_{k\geq 1}$ in E such that $\bigcup_{n\geq 1} E(x_n) \subseteq \{e_k : k \in \mathbb{N}\}$. Then, each x_n can be represented as $x_n = \sum_{k=1}^{+\infty} \langle x_n | e_k \rangle \cdot e_k$, and

$$\left\| x_n - \sum_{k=1}^m \langle x_n | e_k \rangle \cdot e_k \right\| \to 0, \text{ as } m \to +\infty, \text{ for all } n \ge 1.$$
 (1)

By (a), applied on $h = e_1$, we can find a positive integer n_1 so that $|\langle x_n | e_1 \rangle| < 1/2^3$, for all $n \ge n_1$. Let $n \in \{1, ..., n_1\}$. By (1) there is $s(n) \ge 1$ such that

$$\left\| x_n - \sum_{k=1}^{s(n)} \langle x_n | e_k \rangle \cdot e_k \right\| < 1.$$

Put $z_n = \sum_{k=1}^{s(n)} \langle x_n | e_k \rangle \cdot e_k.$

Suppose that we have found integers $n_0 = 0 < n_1 < \ldots < n_l$ for some $l \ge 1$, with the following property: for all $1 \le j \le l$

- (i) $|\langle x_n | e_k \rangle| < 1/(j+1)^{j+2}$, for all $1 \le k \le j$ and $n \ge n_j$; and
- (ii) if $n \in \{n_{j-1} + 1, \dots, n_j\}$ then, there is $s(n) \ge j$ so that the vector z_n , defined with $z_n = \sum_{k=j}^{s(n)} \langle x_n | e_k \rangle \cdot e_k$, satisfies $||x_n - z_n|| < 1/2^{j-1}$.

Now, applying (a) on each $h \in \{e_1, e_2, \ldots, e_{l+1}\}$, we can find an integer $n_{l+1} > n_l$ so that $|\langle x_n | e_k \rangle| < 1/(l+2)^{l+3}$, for all $1 \le k \le l+1$ and $n \ge n_{l+1}$. Let $n \in \{n_l+1, \ldots, n_{l+1}\}$. In the same way as above, we can find $s(n) \ge l+1$ such that $||x_n - \sum_{k=1}^{s(n)} \langle x_n | e_k \rangle \cdot e_k|| < 1/2^{l+1}$. Put $z_n = \sum_{k=l+1}^{s(n)} \langle x_n | e_k \rangle \cdot e_k$. Since $n \ge n_l + 1$, applying (i) for j = l, we obtain

$$\left\|\sum_{k=1}^{l} \langle x_n | e_k \rangle \cdot e_k \right\| \le \sum_{k=1}^{l} \frac{1}{(l+1)^{l+2}} = \frac{l}{(l+1)^{l+2}} < \frac{1}{(l+1)^{l+1}} \le \frac{1}{2^{l+1}} \ .$$

Then

$$\|x_n - z_n\| \le \left\|x_n - \sum_{k=1}^{s(n)} \langle x_n | e_k \rangle \cdot e_k\right\| + \left\|\sum_{k=1}^l \langle x_n | e_k \rangle \cdot e_k\right\| < \frac{1}{2^{l+1}} + \frac{1}{2^{l+1}} = \frac{1}{2^l}$$

The previous discussion implies that there is a sequence of integers $n_0 = 0 < n_1 < \ldots < n_j < \ldots$, and a sequence $(z_n)_{n\geq 1}$ in H such that (i) and (ii) hold for every $j \geq 1$. Moreover, the sequence $(z_n)_{n\geq 1}$ has the following properties:

- 1. $z_n \neq 0$, for all $n \ge 1$ (this follows from (ii) and from the fact that $(x_n)_{n\ge 1}$, as a sequence of almost eigenvectors is with $||x_n|| = 1$, for every $n \ge 1$);
- 2. $||z_n|| \to 1$, as $n \to +\infty$;
- 3. $E(z_n)$ is finite for each $n \ge 1$ (by construction); and
- 4. for every $n \ge 1$ there is m > n such that $E(z_n) \cap E(z_m) = \emptyset$ (if $j \ge 1$ is such that $n_{j-1} + 1 \le n \le n_j$ and if $z_n = \sum_{k=j}^{s(n)} \langle x_n | e_k \rangle \cdot e_k$, choose any $p \ge s(n) + 1$ and $m \ge n_p$; clearly p > j, $m > n_j \ge n$ and $E(z_n) \cap E(z_m) = \emptyset$).

By 4. we can find a subsequence $(z_{n_k})_{k\geq 1}$ of $(z_n)_{n\geq 1}$ so that the sets $E(z_{n_k})$, $k\geq 1$ are pairwise disjoint. Put $y_k = z_{n_k}/||z_{n_k}||$, k = 1, 2, ... Obviously, the sets $\{e \in E : \langle e|y_k \rangle \neq 0\}$, $k \geq 1$ are all finite and pairwise disjoint, and

$$||x_{n_k} - y_k|| \le ||x_{n_k} - z_{n_k}|| + ||z_{n_k} - y_k|| = ||x_{n_k} - z_{n_k}|| + ||z_{n_k}|| \cdot |1 - ||z_{n_k}||^{-1}| \to 0,$$

as $k \to +\infty$. This will imply that $||Ty_k - \lambda y_k|| \to 0$, as $k \to +\infty$, and so $(y_k)_{k\geq 1}$ would be the required sequence of almost eigenvectors for λ .

Lemma 2.2. If $(u_n)_{n\geq 1}$ is a sequence in H which tends weakly to 0 and $A \in B(H)$ then, for every $u \in H$ and every $\delta > 0$:

- (a) $\limsup_{n \to +\infty} \|A(u + \delta u_n)\|^2 \ge \|Au\|^2$; and
- (b) if $||Au_n|| \to \alpha$ as $n \to +\infty$, then $||A(u+\delta u_n)||^2 \to ||Au||^2 + \alpha^2 \delta^2$.

Proof. For each $n \ge 1$

$$||A(u+\delta u_n)||^2 = ||Au||^2 + 2\delta \operatorname{Re} \langle u_n | A^*Au \rangle + ||Au_n||^2, \qquad (2)$$

296

where A^* denotes the Hilbert space adjoint of A.

Since $(u_n)_{n\geq 1}$ tends weakly to 0, $\langle u_n|h\rangle \to 0$, as $n \to +\infty$, for all $h \in H$. Thus, by the continuity of the function $\lambda \mapsto \operatorname{Re} \lambda$, we have that $\operatorname{Re} \langle u_n|A^*Au\rangle \to 0$, as $n \to +\infty$, for all $u \in H$. Now, by (2) we obtain that

$$\begin{split} \limsup_{n \to +\infty} \|A(u + \delta u_n)\|^2 &\geq \lim_{n \to +\infty} \sup(\|Au\|^2 + 2\delta \operatorname{Re} \langle u_n | A^* Au \rangle) \\ &= \lim_{n \to +\infty} (\|Au\|^2 + 2\delta \operatorname{Re} \langle u_n | A^* Au \rangle) = \|Au\|^2 \end{split}$$

which proves (a) and, if $||Au_n|| \to \alpha$ then, by taking limits in (2), we obtain (b). \Box

3. MAIN RESULTS

Theorem 3.1. If $T, S \in B(H)$, $\lambda \in \sigma_a(T) \setminus \sigma_p(T)$ and $\mu \in \sigma_a(S) \setminus \sigma_p(S)$ then, for any two sequences of positive numbers $(\alpha_n)_{n\geq 1}$ and $(\beta_n)_{n\geq 1}$ strictly decreasing to 0, in every open ball in H with radius strictly larger then $(\alpha_1^2 + \beta_1^2)^{1/2}$ there is a vector $z \in H$ such that $||T^n z|| \geq \alpha_n |\lambda|^n$ and $||S^n z|| \geq \beta_n |\mu|^n$, for all $n \geq 1$.

Proof. By the assumptions in the theorem and Proposition 2.1 we can find sequences of unit vectors $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ with the following properties:

- (a) $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ tend weakly to 0;
- (b) $||Tx_n \lambda x_n|| \to 0$, $||Sy_n \mu y_n|| \to 0$ as $n \to +\infty$;
- (c) $\langle x_n | x_m \rangle = 0 = \langle y_n | y_m \rangle$ whenever $n \neq m$; and
- (d) $\langle x_n | y_m \rangle = 0$ for all $n \ge 1$ and $m \ge 1$.

Since λ , as an element of the set $\sigma_a(T) \setminus \sigma_p(T) \subseteq \sigma(T)$, is with $|\lambda| \leq r(T) \leq ||T||$, for every integer $k \geq 1$

$$\begin{aligned} \left\| T^{k} x_{n} - \lambda^{k} x_{n} \right\| &= \left\| (T^{k-1} + \lambda T^{k-2} + \ldots + \lambda^{k-2} T + \lambda^{k-1}) (T x_{n} - \lambda x_{n}) \right\| \\ &\leq k \left\| T \right\|^{k-1} \left\| T x_{n} - \lambda x_{n} \right\|. \end{aligned}$$

and so $||T^k x_n - \lambda^k x_n|| \to 0$, as $n \to +\infty$. In the same way, $||S^k y_n - \mu^k y_n|| \to 0$, as $n \to +\infty$, and consequently, since x_n 's and y_n 's are unit vectors,

$$||T^k x_n|| \to |\lambda|^k$$
 and $||S^k y_n|| \to |\mu|^k$ as $n \to +\infty$, for all $k \ge 1$. (3)

Now, fix $x \in H$ and $\varepsilon > 0$. Let $A_k = (\alpha_k^2 - \alpha_{k+1}^2)^{1/2}$ and $B_k = (\beta_k^2 - \beta_{k+1}^2)^{1/2}$, $k \ge 1$.

First, we look at the sequence $(x + (1 + \varepsilon)A_1x_n)_{n \ge 1}$. By (a), (3) and Lemma 2.2.(b)

$$\lim_{n \to +\infty} \|T(x + (1 + \varepsilon)A_1x_n)\|^2 = \|Tx\|^2 + (1 + \varepsilon)^2 A_1^2 |\lambda|^2 > A_1^2 |\lambda|^2 ,$$

which allows us to find a positive integer n_1 such that the vector $z'_1 = x + (1+\varepsilon)A_1x_{n_1}$ is with $||Tz'_1|| > A_1 |\lambda|$.

In the same way, we obtain that

$$\lim_{n \to +\infty} \|S(z_1' + (1+\varepsilon)B_1y_n)\|^2 = \|Sz_1'\|^2 + (1+\varepsilon)^2 B_1^2 |\mu|^2 > B_1^2 |\mu|^2.$$

So, we can find an integer $m'_1 > n_1$ such that $||S(z'_1 + (1 + \varepsilon)B_1y_n)|| > B_1^2 |\mu|^2$ for all $n \ge m'_1$. Now we look at the sequence $(T(z'_1 + (1 + \varepsilon)B_1y_n))_{n\ge 1}$. By Lemma 2.2.(a)

$$\sup_{n \ge m'_1} \|Tz'_1 + (1+\varepsilon)B_1y_n\|^2 \ge \limsup_{n \to +\infty} \|Tz'_1 + (1+\varepsilon)B_1y_n\|^2 \ge \|Tz'_1\|^2 > A_1^2 |\lambda|^2.$$

This implies that, there is an integer $m_1 \ge m'_1$ such that the vector

$$z_1 = z_1' + (1+\varepsilon)B_1 y_{m_1} = x + (1+\varepsilon)(A_1 x_{n_1} + B_1 y_{m_1})$$

is with $||Tz_1|| > A_1 |\lambda|$ and $||Sz_1|| > B_1 |\mu|$.

Suppose that we have found integers $0 < n_1 < m_1 < \ldots < n_{l-1} < m_{l-1}$, for some $l \ge 2$, such that the vectors $z_k = x + (1 + \varepsilon) (A_1 x_{n_1} + B_1 y_{m_1} + \ldots + A_k x_{n_k} + B_k y_{m_k})$, $1 \le k \le l-1$ satisfy both (4) and (5) below.

$$\left\|T^{j}z_{k}\right\| > (A_{j}^{2} + \ldots + A_{k}^{2})^{1/2} |\lambda|^{j}, \text{ for all } 1 \le j \le k \le l-1,$$
 (4)

$$\left\|S^{j} z_{k}\right\| > (B_{j}^{2} + \ldots + B_{k}^{2})^{1/2} |\mu|^{j}, \text{ for all } 1 \le j \le k \le l - 1.$$
(5)

Now, we start with the sequence $(z_{l-1} + (1 + \varepsilon)A_l x_n)_{n \ge 1}$. Applying again (a), (3) and Lemma 2.2.(b), we have

$$\lim_{n \to +\infty} \left\| T^{j} (z_{l-1} + (1+\varepsilon)A_{l}x_{n}) \right\|^{2} = \left\| T^{j} z_{l-1} \right\|^{2} + (1+\varepsilon)^{2} A_{l}^{2} \left| \lambda \right|^{2j}, \text{ for all } 1 \le j \le l.$$

298

By (4) for $1 \le j \le k = l - 1$, and $\left\| T^l z_{l-1} \right\|^2 + (1 + \varepsilon)^2 A_l^2 \left| \lambda \right|^{2l} > A_l^2 \left| \lambda \right|^{2l}$, for j = l, $\lim_{n \to +\infty} \left\| T^j (z_{l-1} + (1 + \varepsilon) A_l x_n) \right\|^2 > (A_j^2 + \ldots + A_l^2) \left| \lambda \right|^{2j} \text{ for all } 1 \le j \le l.$

So, we can find an integer $n'_l > m_{l-1}$ such that

$$\left\|T^{j}(z_{l-1} + (1+\varepsilon)A_{l}x_{n})\right\|^{2} > (A_{j}^{2} + \ldots + A_{l}^{2})|\lambda|^{2j}, \text{ for all } 1 \le j \le l \text{ and } n > n_{l}'.$$
(6)

On the other hand, by (5), (a) and Lemma 2.2.(a)

$$\limsup_{n \to +\infty} \left\| S^{j}(z_{l-1} + (1+\varepsilon)A_{l}x_{n}) \right\|^{2} \ge \left\| S^{j}z_{l-1} \right\|^{2} > (B_{j}^{2} + \ldots + B_{l-1}^{2}) \left| \mu \right|^{2j},$$

for all $1 \leq j \leq l-1$. This implies that there are strictly increasing sequences of positive integers $(N_j(n))_{n\geq 1}$, $1\leq j\leq l-1$ such that

$$\left\|S^{j}(z_{l-1} + (1+\varepsilon)A_{l}x_{N_{1}(\dots(N_{j}(n))\dots)})\right\| > (B_{j}^{2} + \dots + B_{l-1}^{2})^{1/2} |\mu|^{j},$$
(7)

for all $1 \leq j \leq l-1$ and $n \geq 1$.

By (6) and (7) we can find a positive integer n_0 so that $n_l = N_1(\dots(N_{l-1}(n_0))\dots) \ge n'_l > m_{l-1}$ and the vector $z'_l = z_{l-1} + (1 + \varepsilon)A_l x_{n_l}$ satisfies both (8) an (9) below

$$\left\|T^{j}z_{l}'\right\| > (A_{j}^{2} + \ldots + A_{l}^{2})^{1/2} |\lambda|^{j}, \text{ for all } 1 \le j \le l,$$
(8)

$$\left\|S^{j}z_{l}'\right\| > (B_{j}^{2} + \ldots + B_{l-1}^{2})^{1/2} |\mu|^{j}, \text{ for all } 1 \le j \le l-1.$$
(9)

Now, we look at the sequence $(z'_l + (1 + \varepsilon)B_l y_n)_{n \ge 1}$. In the same way as before, we obtain that

$$\lim_{n \to +\infty} \left\| S^{j} (z_{l}' + (1+\varepsilon)B_{l}y_{n}) \right\|^{2} = \left\| S^{j} z_{l}' \right\|^{2} + (1+\varepsilon)^{2} B_{l}^{2} \left| \mu \right|^{2j}$$

which, together with (9) will imply that

$$\lim_{n \to +\infty} \left\| S^{j}(z_{l}' + (1 + \varepsilon)B_{l}y_{n}) \right\|^{2} > (B_{j}^{2} + \ldots + B_{l}^{2}) \left| \mu \right|^{2j}, \text{ for all } 1 \le j \le l,$$

and that (by (8) and Lemma 2.2.(a))

$$\begin{split} \limsup_{n \to +\infty} \left\| T^j (z'_l + (1+\varepsilon) B_l y_n) \right\|^2 &\geq \left\| T^j z'_l \right\|^2 \\ &> \left(A_j^2 + \ldots + A_l^2 \right) |\lambda|^{2j}, \text{ for all } 1 \leq j \leq l. \end{split}$$

But then we can find integer $m_l > n_l$ so that the vector

$$z_l = z'_l + (1+\varepsilon)B_l y_{m_l} = x + (1+\varepsilon)(A_1 x_{n_1} + B_1 y_{m_1} + \dots + A_l x_{n_l} + B_l y_{m_l})$$
(10)

satisfies

$$\left\|T^{j}z_{l}\right\| > (A_{j}^{2} + \ldots + A_{l}^{2})^{1/2} \left|\lambda\right|^{j} = (\alpha_{j}^{2} - \alpha_{l+1}^{2})^{1/2} \left|\lambda\right|^{j}$$
(11)

and

$$\left\|S^{j}z_{l}\right\| > (B_{j}^{2} + \ldots + B_{l}^{2})^{1/2} |\mu|^{j} = (\beta_{j}^{2} - \beta_{l+1}^{2})^{1/2} |\mu|^{j}, \qquad (12)$$

for all $1 \leq j \leq l$. Moreover, by (c) and (d),

$$\begin{aligned} \|z_l - x\|^2 &= (1 + \varepsilon)^2 \|A_1 x_{n_1} + B_1 y_{m_1} + \ldots + A_k x_{n_l} + B_k y_{m_l}\|^2 \\ &= (1 + \varepsilon)^2 (A_1^2 + B_1^2 + \ldots + A_l^2 + B_l^2) < (1 + 2\varepsilon)^2 (\alpha_1^2 + \beta_1^2 - \alpha_{l+1}^2 - \beta_{l+1}^2), \end{aligned}$$

i.e.

$$||z_l - x|| < (1 + 2\varepsilon)(\alpha_1^2 + \beta_1^2 - \alpha_{l+1}^2 - \beta_{l+1}^2)^{1/2}.$$
(13)

Thus, by induction, we obtain that there are positive integers $n_1 < m_1 < \ldots < n_l < m_l < \ldots$ such that the sequence $(z_l)_{l\geq 1}$ given with (10) satisfies (11) – (13), for all $l \geq 1$ and $1 \leq j \leq l$. The sequence $(z_l)_{l\geq 1}$ is a Cauchy sequence: since $\alpha_l \to 0$ and $\beta_l \to 0$, for every positive integers l and k with l > k

$$\begin{aligned} \|z_{l} - z_{k}\|^{2} &= (1 + \varepsilon)^{2} \left\| A_{k+1} x_{n_{k+1}} + B_{k+1} y_{m_{k+1}} + \dots + A_{l} x_{n_{l}} + B_{l} y_{m_{l}} \right\|^{2} \\ &= (1 + \varepsilon)^{2} (A_{k+1}^{2} + B_{k+1}^{2} + \dots + A_{l}^{2} + B_{l}^{2}) \\ &= (1 + \varepsilon)^{2} (\alpha_{k+1}^{2} + \beta_{k+1}^{2} - \alpha_{l+1}^{2} - \beta_{l+1}^{2}) \to 0, \text{ when } k, l \to +\infty. \end{aligned}$$

Since H is Hilbert space, there is $z \in H$ such that

$$z = \lim_{l \to +\infty} z_l = x + (1 + \varepsilon) \sum_{i=1}^{+\infty} (A_i x_{n_i} + B_i y_{m_i}).$$

This vector is with the desired properties:

1.
$$||z - x|| = \lim_{l \to +\infty} ||z_l - x|| < (1 + 2\varepsilon) (\alpha_1^2 + \beta_1^2)^{1/2}$$
, (by (13));

and, for all $n \ge 1$

2.
$$||T^n z|| = \lim_{l \to +\infty} ||T^n z_l|| \ge \lim_{l \to +\infty} (\alpha_n^2 - \alpha_{l+1}^2)^{1/2} |\lambda|^n = \alpha_n |\lambda|^n$$
 (by (11) and $\alpha_l \to 0$);

3.
$$||S^n z|| = \lim_{l \to +\infty} ||S^n z_k|| \ge \lim_{l \to +\infty} (\beta_n^2 - \beta_{l+1}^2)^{1/2} |\mu|^n = \beta_n |\mu|^n$$
 (by (12) and $\beta_l \to 0$).
nich completes the proof.

which completes the proof.

Corollary 3.2. If the sets $\sigma_a(T) \setminus \sigma_p(T)$ and $\sigma_a(S) \setminus \sigma_p(S)$ both have a nonempty intersection with the domain $\{\lambda \in \mathbb{C} : |\lambda| > 1\}$ then, there is a dense set of vectors $z \in H$ such that both the orbits Orb(T, z) and Orb(S, z) tend strongly to infinity.

We turn now to the original Beauzamy's result on invertible operator $T \in B(H)$. For its spectrum we have

$$\sigma(T) \subseteq \left\{ \lambda \in \mathbb{C} : \frac{1}{r(T^{-1})} \le |\lambda| \le r(T) \right\}.$$
 (14)

If both the circles $\{\lambda \in C : |\lambda| = r(T)\}$ and $\{\lambda \in C : |\lambda| = 1/r(T^{-1})\}$ contain a point in $\sigma(T)$ which is not an eigenvalue for T then, there are points $\lambda, \mu \in \sigma(T) \setminus \sigma_p(T)$ with $|\lambda| = r(T)$ and $|\mu| = 1/r(T^{-1})$. By (14), this points must be contained in the boundary $\partial \sigma(T)$, and consequently $\lambda, \mu \in \sigma_a(T) \setminus \sigma_p(T)$. It is easy to verify that

$$\alpha \in \sigma_p(T)$$
 if and only if $\alpha^{-1} \in \sigma_p(T^{-1})$ (15)

and

$$\alpha \in \sigma_a(T)$$
 if and only if $\alpha^{-1} \in \sigma_a(T^{-1})$. (16)

(To obtain (16), apply the equality $T^{-1} - \alpha^{-1} = -\alpha^{-1}T^{-1}(T-\alpha)$.) This will imply that $\mu^{-1} \in \sigma_a(T^{-1}) \setminus \sigma_p(T^{-1})$. Now, since $|\mu^{-1}| = r(T^{-1})$, by applying Theorem 3.1 on T and $S = T^{-1}$, we obtain that in every open ball in H of radius strictly larger then $(\alpha_1^2 + \beta_1^2)^{1/2}$, there is a vector z which satisfies simultaneously: $||T^n z|| \ge \alpha_n r(T)^n$ and $||T^{-n}z|| \ge \beta_n r(T^{-1})^n$, for all $n \ge 1$. Note that, if both r(T) > 1 and $r(T^{-1}) > 1$, the previous discussion will imply that there is a dense set of vectors $z \in H$ such that both the orbits Orb(T, z) and $Orb(T^{-1}, z)$ tend strongly to infinity. Moreover, by (15), (16), Theorem 3.1 and Corollary 3.2 we have the following results.

Theorem 3.3. If $T \in B(H)$ is invertible operator and $\lambda \in \sigma_a(T) \setminus \sigma_p(T)$ then, for any two sequences of positive numbers $(\alpha_n)_{n\geq 1}$ and $(\beta_n)_{n\geq 1}$ strictly decreasing to 0, in every open ball in H with radius strictly larger then $(\alpha_1^2 + \beta_1^2)^{1/2}$ there is a vector $z \in H$ such that $||T^n z|| \ge \alpha_n |\lambda|^n$ and $||T^{-n} z|| \ge \beta_n / |\lambda|^n$ for all $n \ge 1$.

Corollary 3.4. If $T \in B(H)$ is invertible operator and the domains $\{\lambda \in \mathbb{C} : |\lambda| > 1\}$ and $\{\lambda \in \mathbb{C} : 0 < |\lambda| < 1\}$ both have nonempty intersection with $\sigma_a(T) \setminus \sigma_p(T)$ then, there is a dense set of vectors $z \in H$ such that both the orbits $\operatorname{Orb}(T, z)$ and $\operatorname{Orb}(T^{-1}, z)$ tend strongly to infinity.

4. ON ORBITS UNDER T AND f(T)

In this section Ω will denote a nonempty open subset of the complex plane whose boundary $\partial\Omega$ consists of finite number of rectifiable Jordan curves, oriented in the positive sense and Hol(Ω) the set of all holomorphic functions on some open neighborhood of the closure of Ω . We assume that the reader is familiar with the basics of the theory of the functional calculus for operators (see for example [1], [2] and [6]).

Theorem 4.1. If $T \in B(H)$, $\sigma(T) \subset \Omega$ and $f \in Hol(\Omega)$, then

- (a) $\sigma(f(T)) = f(\sigma(T));$
- (b) $f(\sigma_p(T)) \subseteq \sigma_p(f(T))$ and $f(\sigma_a(T)) \subseteq \sigma_a(f(T))$;
- (c) if f is nonconstant function on each of the components of Ω , then $f(\sigma_p(T)) = \sigma_p(f(T))$ and $f(\sigma_a(T)) = \sigma_a(f(T))$.

Proof. The assertion under (a) is the well known Spectral Mapping Theorem. The assertions on the point spectrum in (b) and (c) are parts of [6, Thm. 10.33]. We follow the same lines of the proof of this theorem to prove the assertions on the approximate point spectrum.

(b): Let $\lambda_0 \in \sigma(T)$. Then, there is $g \in \text{Hol}(\Omega)$ such that $f(\lambda) - f(\lambda_0) = g(\lambda)(\lambda - \lambda_0)$, and consequently, $f(T) - f(\lambda_0) = g(T)(T - \lambda_0)$. So, if $\lambda_0 \in \sigma_a(T)$ and $(x_n)_{n \ge 1}$ is any corresponding sequence of almost eigenvectors for λ_0 , then

$$||f(T)x_n - f(\lambda_0)x_n|| = ||g(T)(Tx_n - \lambda_0 x_n)|| \le ||g(T)|| \cdot ||Tx_n - \lambda_0 x_n|| \to 0,$$

as $n \to +\infty$, which implies that $||f(T)x_n - f(\lambda_0)x_n|| \to 0$, as $n \to +\infty$, which implies $f(\lambda_0) \in \sigma_a(f(T))$.

(c): Now, let $\mu_0 \in \sigma(f(T))$. Then, by (a), the set $Z(f - \mu_0)$ of all zeros of the function $f - \mu_0$ has a nonempty intersection with $\sigma(T)$. Since f is nonconstant on each component of Ω and $\sigma(T)$ is a compact subset of Ω , the set $Z(f - \mu_0) \cap \sigma(T)$ is finite [7, Thm. 10.18]. Let $Z(f - \mu_0) \cap \sigma(T) = \{\xi_1, \ldots, \xi_m\}$. Without lost of generality, we may assume that each zero is of order 1. So, we can find $g \in \text{Hol}(\Omega)$ such that $g(\lambda) \neq 0$ for all $\lambda \in \sigma(T)$ and $f(\lambda) - \mu_0 = g(\lambda)(\lambda - \xi_1) \dots (\lambda - \xi_m)$. Then g(T) is invertible operator and

$$f(T) - \mu_0 = g(T)(T - \xi_1) \dots (T - \xi_m).$$
(17)

Let $\mu_0 \in \sigma_a(f(T))$ and $(y_n)_{n\geq 1}$ is any corresponding sequence of almost eigenvector for μ_0 . Let us assume that none of the points ξ_1, \ldots, ξ_m belongs to $\sigma_a(T)$. Then, there are positive constants c_1, \ldots, c_m such that $||(T - \xi_j)x|| \geq c_j ||x||$, for all $x \in H$ and $1 \leq j \leq m$ [2, Prop.VII.6.4] and, since g(T) is invertible operator, a constant c > 0 such that $||g(T)x|| \geq c ||x||$ for all $x \in H$. This, together with (17) will give

$$||f(T)y_n - \mu_0 y_n|| = ||g(T)(T - \xi_1) \dots (T - \xi_m)y_n|| \ge cc_1 \dots c_m$$
, for all $n \ge 1$,

which contradicts $||f(T)y_n - \mu_0 y_n|| \to 0$, as $n \to +\infty$. So, there must be an integer $1 \le j \le m$ such that $\xi_j \in \sigma_a(T)$ and, consequently $\mu_0 = f(\xi_j) \in f(\sigma_a(T))$. \Box

If, in addition to the hypotheses of Theorem 4.1.(c), we assume that the function f is injective then, $f(\sigma_a(T)\setminus\sigma_p(T)) = f(\sigma_a(T))\setminus f(\sigma_p(T)) = \sigma_a(f(T))\setminus\sigma_p(f(T))$. Now, applying Theorem 3.1 on T and S = f(T) we obtain the following result.

Theorem 4.2. If $T \in B(H)$, $\lambda \in \sigma_a(T) \setminus \sigma_p(T)$ and $f \in \operatorname{Hol}(\Omega)$ is an injective and nonconstant function on each of the components of $\Omega \supset \sigma(T)$ then, for any two sequences of positive numbers $(\alpha_n)_{n\geq 1}$ and $(\beta_n)_{n\geq 1}$ strictly decreasing to 0, in every open ball in H with radius strictly larger then $(\alpha_1^2 + \beta_1^2)^{1/2}$ there is a vector $z \in H$ such that $||T^n z|| \ge \alpha_n |\lambda|^n$ and $||f(T)^n z|| \ge \beta_n |f(\lambda)|^n$, for all $n \ge 1$.

Remark 4.3 In view of this result, Theorem 3.3 can be derived as a consequence of Theorem 4.2. for the case $f(\lambda) = \lambda^{-1}$ and $T^{-1} = f(T)$. One only need to observe

that $\Omega = \{\lambda \in C : m < |\lambda| < M\} \supset \sigma(T)$ for any $0 < m < 1/r(T^{-1})$ and M > r(T), and that $f(\lambda) = \lambda^{-1}$ is injective, holomorphic and nonconstant function on Ω .

By Corollary 3.2 and Theorem 4.2 we also have the following

Corollary 4.4. If $T \in B(H)$, $\lambda \in \sigma_a(T) \setminus \sigma_p(T)$ is with $|\lambda| > 1$ and $f \in Hol(\Omega)$ is injective and nonconstant function on each of the components of $\Omega \supset \sigma(T)$ such that $|f(\lambda)| > 1$ then, there is a dense set of vectors $z \in H$ such that both the orbits Orb(T, z) and Orb(f(T), z) tend strongly to infinity.

References

- B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North Holland (1988).
- [2] J. B. Conway, A Course in Functional Analysis, Springer-Verlag (1985).
- [3] S. Mančevska, Operatori so orbiti što težat kon beskonečnost, 8th MSDE, Ohrid (2004), p. 131–140.
- [4] V. Müller, Orbits, weak orbits and a local capacity of operators, Int. Eq. Oper. Theory, 41 (2001), p. 230–253.
- [5] J. M. A. M. van Neerven, On orbits of an operator with spectral radius one, Czechoslovak Math. J., 45 (1995), p. 495–502.
- [6] W. Rudin, Functional Analysis, McGraw-Hill, Inc. (1973).
- [7] W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, Inc. (1974).