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Abstract. In this paper we investigate the asymptotic relation between maximum moduli
of a class of functions analytic on the unit disc and their partial sums, i.eẇe formulate
the problem of best λ-approximations. We give a solution of the best λ-approximation
for analytic functions of rapid growth on the unit disc such as, for example, is the Hardy-
Ramanujan generating partition function. Using Ingham Tauberian Theorem we give some
interesting applications. Results for functions of medium growth and for entire functions of
finite order are also quoted. In growth-measuring an essential role is played by Karamata’s
class of regularly varying functions.

1. INTRODUCTION

Let f(z) :=
∑∞

i=0 aiz
i, |z| < 1 be an analytic function and Sn(z) :=

∑
i≤n aiz

i its

partial sums.

Define also the maximum modulus Mf (r) := max |f(z)||z|=r = |f(reiφ0 | = |f(z0)|;
it increases with r and we suppose that Mf (r) → ∞ (r → 1−). The problem of

maximum moduli of the partial sums of an analytic function defined inside the unit

disc is a classical one and has been investigated in many ways. For example, it is well
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known that the maximum moduli of partial sums of a bounded function need not be

bounded, but on the contrary, this is always true (with the same bound) inside the

circle |z| ≤ 1/2 (see [8], pp. 236–238).
In general, for a given analytic function f(z) :=

∑∞
i=0 aiz

i, |z| < 1, the moduli of
its partial sums Sn(z) =

∑
i≤n aiz

i depend on z and n.

We want to compare f(z) with the partial sums at the point z0 of maximal growth

in the following way: determine a real-valued function n := n(r, λ) → ∞, r → 1−;

monotone increasing in both variables, such that

Sn(r,λ)(z0)

f(z0)
=

{
o(1), 0 < λ < 1
1 + o(1), λ > 1

(r → 1−). (I)

In this sense we are going to find the “shortest” partial sum which is well approximat-

ing f(z0) for r sufficiently close to 1. We call such partial sums best λ-approximating

(BLAS). It is evident from (I) that an analogous relation is valid between moduli of

BLAS and Mf (r).

Some other questions are related to this one; for a given n(r, λ) what can be said

about Mf (r) or, how does the ratio Sn(r,λ)(z0)/f(z0) behave when λ ↑ ↓ 1, r → 1−?

Apart from self-evident role in numerical calculus, the notion of BLAS appears to

be very useful in the theory of Hadamard-type convolutions ([7], [8]).

We shall solve the problem of BLAS for a class of analytic functions of rapid

growth inside the unit disc.

Of particular importance here is the class of Karamata’s regularly varying func-

tions Kρ(x) i.e., which can be written in the form Kρ(x) := xρL(x), ρ ∈ R.

Here ρ is the index of regular variation and L(x) is the so-called slowly varying

function i.e., positive, measurable and satisfying L(λx) ∼ L(x), ∀λ > 0 (x → ∞).
Some examples of slowly varying functions are:

loga x, logb(log x), e
log x

log log x , elogc x; a, b ∈ R, 0 < c < 1.

For further theory of regular variation we recommend [2] and [5]. We quote some

facts for latter use:

Kρ(λx) ∼ λρKρ(x), λ > 0; logL(x) = o(log x) (x→∞).
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If a(x) ∼ b(x)→∞ (x→∞), then Kρ(a(x)) ∼ Kρ(b(x)) (x→∞).
If L1(x), L2(x) are slowly varying functions, then L1(x) + L2(x); L1(x)L2(x);

L1(x)/L2(x); (L1(x))
a, a ∈ R, are also slowly varying.

Analogously to Valiron’s proximate order (cf[̇2], [8]) in the theory of entire func-

tions, we are using here Karamata’s class for measuring the growth of a given analytic

function on the unit disc.

2. RESULTS ON FUNCTIONS OF RAPID GROWTH

Let f(z), Sn(z), Mf (r), n(r, λ), Kρ(x), z0 be defined as above. Throughout the

paper we suppose that λ is a fixed positive number 6= 1 and r is sufficiently close to
1−.

Theorem 1. If logMf (r) ∼ Kρ(
1

1−r ), ρ > 0 (r → 1−) and

n(r, λ) ∼ Cρ(λ)

1− r
logMf (r) (r → 1−),

where

Cρ(λ) :=





ρλρ, ρ > 1,
λ2, ρ = 1,
ρλ, 0 < ρ < 1,

(1)

then (I) holds; i.e., Sn(r,λ)(z0) is the best λ-approximating partial sum.

Proof. A simple implementation of Cauchy Integral formula gives:

1

2πi

∫

D

f(w)
(z0/w)

n+1

w − z0

dw =

{
−Sn(z0), z0 /∈ intD,
f(z0)− Sn(z0), z0 ∈ intD. (2)

Let the contour D be a circle w = Reiφ, where R = R(r, λ) := 1 − 1
λ
(1 − r). Since

|z0| = r > R for 0 < λ < 1; r < R for λ > 1; from (2) follows

I :=
1

2π

∫ π

−π

f(Reiφ)

f(reiφ0)

( r
R
ei(φ0−φ))n

R
r
ei(φ−φ0) − 1dφ =

{
−Sn(z0)

f(z0)
, 0 < λ < 1,

1− Sn(z0)
f(z0)

, λ > 1.
(3)

Since |f(z0)| =Mf (r), estimating integral on the left side of (3), we get

I ≤ Mf (R)

Mf (r)

en log(r/R)

|R/r − 1| . (4)
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But, when r → 1− we have

logMf (R) ∼ Kρ

( 1

1−R

)
= Kρ

( λ

1− r

)
∼ λρKρ

( 1

1− r

)
∼ λρ logMf (r)

∣∣∣R
r
− 1
∣∣∣ > (1− r)

∣∣∣1− 1
λ

∣∣∣; log r
R
∼ (1− r)

(1
λ
− 1
)
; log

1

1− r
= o(logMf (r)).

Putting this in (4) with n = n(r, λ) = Cρ(λ)

1−r logMf (r)(1 + o(1)), we obtain for

r → 1−

|I| ≤ λ

|λ− 1| exp(logMf (r)(λ
ρ − 1 + Cρ(λ)(

1

λ
− 1) + o(1)) =

λ

|λ− 1|Mf (r)
−Bρ(λ).

It is easy to check that Bρ(λ) := 1 − λρ + Cρ(λ)

λ
(λ − 1) + o(1) is strictly positive

for each fixed positive λ 6= 1 and r sufficiently close to 1. 2

Therefore, Theorem 1 is proved and moreover we have a good estimation for the

o terms in (I), i.e.,

Theorem 2. Under the conditions of Theorem 1 we have

Sn(r,λ)(z0)

f(z0)
=

{
Aλ e

logMf (r)(−Bρ(λ)), 0 < λ < 1,
1 + Aλe

logMf (r)(−Bρ(λ)), λ > 1.
(r → 1−) (5)

with |Aλ| ≤ λ
|λ−1| .

3. SUPPLEMENTARIES

Functions of rapid growth on the unit disc naturally arise from Laplace-Stieltjes

transforms of the so-called partition functions (cf. [1], [3], [4]). The main tool in

dealing with the partition problem is the now classical Ingham Tauberian Theorem

(cf. [3]):

Let

Â(x) :=

∫ ∞

0

e−uxdA(u), x = s+ it, s > 0,

and A(u) satisfy

1) A(0) = 0; 2) A(u) is non-decreasing for sufficiently large u;

3) Â(x) ∼ C(M/x)mρ−1/2e(M/x)ρ/ρ, (C,M, ρ ∈ R+, m ∈ R), uniformly for x → 0

in each angle of the form t ≤ ∆s, 0 < ∆ <∞.
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Then

A(u) ∼ C

√
1− θ

2π
(uM)mθ−1/2e(uM)θ/θ, θ =

ρ

1 + ρ
, (u→∞).

We use this Theorem in the following way: let, as before, f(z) :=
∑

anz
n, |z| < 1,

and suppose that the coefficients an are non-negative, a0 := 0. Then, denoting by

A(u) :=
∑

n≤u an, we obtain A(0) = 0, A(u) non-decreasing and its LS transform

Â(x) :=
∫∞
0
e−uxdA(u) = f(e−x), Rex > 0.

On the other hand, for x = s+ it,

|f(e−x)| =
∣∣∣
∑

ane
−nx
∣∣∣ ≤

∑
ane

−ns = f(e−s), s > 0;

i.e., for z = e−x, z0 = e−s, Mf (e
−s) = f(e−s).

Since 1 − e−s ∼ s, s → 0+, the condition from the Theorem 1 turns out to be

logMf (e
−s) ∼ Kρ(

1
s
) = (1

s
)ρL(1

s
) and n(e−s, λ) ∼ Cρ(λ)

s
logMf (e

−s) s→ 0+.

By the assumption 3) of Ingham’s Theorem we have that

logMf (e
−s) = log Â(s) ∼ 1

ρ

(M
s

)ρ
.

It is easy to derive from Ingham’s Theorem that, for nondecreasing an (cf[̇3]),

an ∼ CM

√
1− θ

2π
(Mn)(m+1)θ−3/2e

1
θ
(Mn)θ , n→∞.

This, along with the Theorem 1 (with L(1/s) :=M ρ/ρ), gives the next BLAS propo-

sition for Ingham’s class of functions:

Proposition 1. For any M,ρ ∈ R+, m ∈ R, θ = ρ/(1 + ρ), n(e−s, λ) :=

Cρ(λ)
1
ρs
(M/s)ρ,

1

f(e−s)

∑

n≤n(e−s,λ)

ane
−ns := smρ−1/2e−

1
ρ
(M/s)ρ

∑

n≤n(e−s,λ)

n(m+1)θ−3/2e
1
θ
(Mn)θ−ns

∼
{
0, 0 < λ < 1,√
2π(1 + ρ)M θ(mρ−1), λ > 1.

s→ 0+

The famous Hardy–Ramanujan partition problem is connected with functions of

rapid growth, too. Namely, let p(n), n ∈ N , denote the number of solutions of the

Diophantine equation n = 1x1 + 2x2 + · · ·+mxm + · · · in non-negative integers xi.
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A very interesting story about efforts to find an exact asymptotic formula for p(n)

is given in [4].

Let q(s) be the generating function for p(n) i.e., q(s) :=
∑

n p(n)e
−ns.

Since q(s) ∼
√

s
2π
e
π2

6
1
s , s → 0 (cf[̇1], [3]), by applying the Theorem 2 with

logMq(s) ∼ π2

6s
, ρ = 1, B1(λ) = (λ − 1)2 + o(1), we obtain a BLAS formula for

partitions p(n):

Proposition 2.

e−
π2

6s

√
s

∑

n≤λ π2

6s2

p(n)e−ns =

{
Aλ e

−π2

6s
((1−

√
λ)2+o(1))), 0 < λ < 1,

1√
2π
+ Aλ e

−π2

6s
((
√
λ−1)2+o(1))), λ > 1.

s→ 0+

with Aλ ≤
√
λ

|
√
λ−1| .

4. RESULTS ON FUNCTIONS OF MEDIUM GROWTH

Let f(z), Sn(z), Mf (r), n(r, l), Kρ(x), z0 be defined as above. We have (cf [6]),

Theorem 3. If lnMf (r) ∼ Kρ(log(
1

1−r )), ρ > 0, (r → 1−) then we can take

n(r, λ) ∼ ( 1

1− r
)λ (r → 1−),

independently of Kρ(·).
In the case ρ = 0, the form of n(r, λ) is drastically changed as the next example

shows.

It is not difficult to check that for

log(
1

1− r
) =

∞∑

k=1

rk

k
, r ∈ [0, 1),

the considered function n(r, λ) is

n(r, λ) = exp[log(1/(1− r))e−(log log(1/(1−r)))1−λ ].
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5. RESULTS FOR ENTIRE FUNCTIONS OF FINITE ORDER

For a given entire function f(z) :=
∑∞

k=0 akz
k we define, as usual, its partial sums

Sn(z) :=
∑

k≤n akz
k and maximum moduli Mf (r) := max |f(z)||z|=r = |f(reiφ0)| =

|f(z0)|. The order ρ of f(z) is ρ := lim supr→∞ log logMf (r)/ log r.

In [6], we gave a notion of best λ-approximating (BLAS) partial sums for functions

analytic on the unit disc. This can be easily reformulated for entire functions (analytic

on the whole complex plane) as:

If there is an integer-valued function n := n(r, λ)→∞ (r →∞) such that

Sn(r,λ)(z0)

f(z0)
=

{
o(1), 0 < λ < 1;
1 + o(1), λ > 1;

(r →∞) (I)

we call Sn(r,λ)(z0) the best λ-approximating partial sum (BLAS).

In order to study entire functions of order zero we shall consider a subclass of R0

i.e. de Haan’s class Πl,

h(x) ∈ Πl ⇐⇒
h(tx)− h(x)

l(x)
∼ log t, ∀t > 0; (x→∞) (0.2)

where l(x) ∈ R0 is called the auxiliary function and we can take h(x) = l(x) +
∫ x

1
l(t)/tdt [2, pp. 160–165].

We are going to apply our BLAS results to entire functions with non-negative

coefficients i.e., to determine the asymptotic behavior of Hadamard-type convolutions

Tf (r) :=
∑

nαlnanr
n, where (ln) are slowly varying sequences; therefore improving

our results from [7].

Let f(z), Mf (r), n(r, λ), ρ, z0 be defined as above. Then we have the following

Theorem 4. If logMf (r) ∈ Rρ, ρ > 0, and

n(r, λ) ∼ λρ logMf (r). (r →∞) (1)

Then
Sn(r,λ)(z0)

f(z0)
=

{
ε1(r, λ), 0 < λ < 1;
1 + ε2(r, λ), λ > 1,
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with

|εi(r, λ)| ≤
1

|λ1/ρ − 1|Mf (r)
−(λ log λ−λ+1+o(1)), i = 1, 2 (r →∞).

In the case of entire functions of order zero, we shall treat the subclass whose

logarithm of the maximum modulus belongs to de Haan’s class Πl with unbounded

auxiliary function l ∈ R0.

Hence,

Theorem 5. If logMf (r) ∈ Πl with auxiliary function R0 3 l(r)→∞ (r →∞),

and n(r, λ) ∼ λl(r) (r →∞), then

Sn(r,λ)(z0)

f(z0)
=

{
µ1(r, λ), 0 < λ < 1
1 + µ2(r, λ), λ > 1

with

|µi| ≤
1

|λ− 1|e
−l(r)((λ−1) log λ+o(1)), i = 1, 2; (r →∞).

Now, we give an application of our BLAS results. For a given entire function

f(r) :=
∑

n anr
n with non-negative coefficients, there is a classical problem of es-

timating asymptotic behavior of Hadamard-type convolutions Tf (r) :=
∑

n bnanr
n

(r →∞).

Theorem 6. Let an entire function f(r) :=
∑

n anr
n, an ≥ 0, of order ρ > 0,

satisfy log f(r) ∈ Rρ. Then

Tf (r) :=
∑

n

cnanr
n ∼ ρα c[log f(r)] f(r) (r →∞),

for any regularly varying sequence (cn) of arbitrary index α ∈ R.
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