
327

Kragujevac J. Math. 30 (2007) 327–342.

ALGORITHMS FOR INVESTIGATING OPTIMALITY OF

CONE TRIANGULATION FOR A POLYHEDRON

Milica Stojanović and Milica Vučković

Faculty of Organizational Sciences, Jove Ilića, 11000 Beograd, Serbia
(e-mails: milicas@fon.bg.ac.yu, milica@fon.bg.ac.yu)

(Received October 25, 2006)

Abstract. The problem of finding minimal triangulation of a given polyhedra (dividing
polyhedra into tetrahedra) is very actual now. It is known that cone triangulation for a
polyhedron provides the smallest number of tetrahedra, or close to it. In earlier investiga-
tions when this triangulation was the optimal one, it was shown that conditions for vertices
to be of the order five, six or for separated vertices of order four was only the necessary
ones. It was shown that then if it exists the ”separating circle” of order less then six, for
two vertices of order six, cone triangulation is not the minimal one.

Here, test algorithms will be given, for the case when the given polyhedron has sepa-
rating circle of order five or less.

1. INTRODUCTION

It is known how to divide any polygon with n − 3 diagonals into n − 2 triangles

without gaps and overleaps. Such a division is called triangulation.

The generalization of this process to higher dimensions is also called triangulation.

It divides polyhedron (polytope) into tetrahedra (simplices). Problem of triangula-

tion in higher dimensions is much more complicated. It is impossible to triangulate

328

some nonconvex polyhedra [7] in three-dimensional space, and it is also proved that

triangulations of the same polyhedron may lead to different numbers of tetrahedra

[5], [8]. Considering the smallest and the largest number of tetrahedra in triangula-

tion (the minimal and the maximal triangulation, respectively), the authors obtained

values, which linearly, resp. squarely depend on the number of vertices. Some char-

acteristics of triangulation in three-dimensional space are given by Chin, Fung, Wang

[3], Develin [4] and Stojanović [9, 10, 11].

In this paper we shall consider convex polyhedra in which every 4 vertices are

noncoplanar and all faces are triangular. Furthermore, all considered triangulations

are face to face. The number of edges from the same vertex will be called the order or

degree of the vertex.

In Section 2 previous results are summarized while in Section 3 method for find-

ing separating circle with five or less edges is described. Section 4 is about graphs

and their applications to this problem. Abstract data type (ADT) of graph is also

presented [2, 6], including some elementary properties, and also two main data struc-

tures for representing graphs are given. In Sections 6 and 7 we will provide two graph

algorithms. These algorithms work on the graphs of polyhedron representations.

We would like to thanks to dr Emil Molnr for improving the text and suggesting

usage of the term separating circle.

2. PREVIOUS RESULTS

One of the triangulations, which gives a small number of tetrahedra, is the cone

triangulation [8] described as follows.

One of the vertices is the common apex, which builds a tetrahedron with each

triangular face of the polyhedron, except containing the vertex starting with.

By Eulers theorem, a polyhedron with n vertices has 2n−4 faces if all of them are

triangular. So, the number of tetrahedra in triangulation is 2n−10 at most, since, for

n ≥ 12, each polyhedron has at least one vertex of order 6 or more. Sleator, Tarjan

and Thurston in [8] considered some cases of ”bad” polyhedra, which need a large

329

number of tetrahedra for triangulation. It is proved, using hyperbolic geometry, that

the minimal number of triangulating tetrahedra is close to 2n − 10. That value is

tight for certain series of polyhedra, which exists for a sufficiently large n. Computer

investigation of the equivalent problem of rotatory distance confirms, for 12 ≤ n ≤ 18,

that there exist polyhedra, with the smallest necessary number of tetrahedra equal

to 2n − 10. This was the reason why the authors gave a hypothesis that the same

statement is true for any n ≥ 12. To prove this hypothesis, it would be enough to

check those cases where the cone triangulation of polyhedra gives the smallest number

of tetrahedra, and to show how to improve that in other cases. With this aim, in

[8] the authors gave a polyhedron example which has vertices of great order and for

which there exists a triangulation better than the cone one. They also gave advices

how to improve the method in this and some similar cases. Anyway, the polyhedra

with vertices of great order give less than 2 n−10 tetrahedra in the cone triangulation,

so, vertices of small order are considered in [9, 10, 11]. The obtained results are as

follows:

Theorem 2.1. Let V be one of the vertices of a polyhedron P whose order is

maximal. If the polyhedron P has a vertex of order 3 different and not connected

with V, or a sequence of at least 2 vertices of order 4 connected with a chain, each

of them not connected with V, then the cone triangulation of P with apex V will not

give the smallest number of tetrahedra.

Remark When V is connected with a vertex at the end of chain the cone trian-

gulation is not the minimal one whenever the chain contains at least 3 vertices.

Besides the order of vertices it is also necessary to consider the order of separating

circle (now is better then in [11] called it separating ring). Let us define the following:

• A circle of p vertices of the polyhedron P is a p-sided closed polygonA1, A2, ..., Ap

where Ai (i = 1, ... , p) are different vertices of P and AiAi+1 (i = 1, ... , p-1),

ApA1 are edges of P.

• Let c be a circle on the polyhedron P, moreover M and N two vertices of P

330

different from Ai . If all paths on P with end points M and N pass through some

of the vertices Ai then we say that a separating circle c separates M and N. We

also say that M and N are on the different sides of c. If the circle c does not

separate the vertices M and N, they are on the same side of the circle.

Theorem 2.2. If a polyhedron contains a circle of p vertices, which separates

vertices A and B of order ν(A) and ν(B), where ν(A) ≥ ν(B) > p, then the cone

triangulation with apex A is not the minimal one.

From everything mentioned before, it is clear that candidates for the minimal

triangulation with 2n− 10 tetrahedra, are polyhedra with all vertices of order 5 or 6,

occasionally some of order 4 which are not connected between themselves, and with

separating circles of order six or more.

Condition for order of circles will be considered here, while conditions for order

of vertices are considered in [12].

3. METHOD OF FINDING SEPARATING CIRCLE OF ORDER AT MOST FIVE

The first of all it is necessary to find the series of neighbor circles in the following

way: Start with a vertex of the polyhedron and take all its neighbor vertices. They

are connected to form a circle - the first one in series. The new neighbor vertices

of those in the first circle form the second circle. The third circle is formed of new

neighbors of the vertices of the second circle, and so on. The process is finished when

unused neighbors of the vertices of the last circle form a chain, not a circle.

If in this series of neighbors circles all of them (except may be the first and the

last one) are of order six or more, then we are searching for a circle of smaller order.

Let p, q, r denote consequitive neighbour circles of order at least six. Let a circle

now be inserted with A1, A2, ..., Ak (k = 3, 4,5) and edges AiAi+1 (i = 1, ... , k-1),

AkA1 . Then there are the following combinatorial possibilities:

a) Vertex A1 lies on p, A2, A3 are on q;

331

b) Vertices A1, A2 lie on p, A3, A4 are on q;

c) Vertices A1, A3 lie on p, A2, A4 are on q;

d) Vertex A1 lies on p, A2, A3 are on q and A4 is on r;

e) Vertices A1, A2, A3 lie on p, A4, A5 are on q;

f) Vertices A1, A3, A4 lie on p, A2, A5 are on q;

g) Vertex A1 lies on p, A2, A3, A4, A5 are on q;

h) Vertex A1 lies on p, A2, A5 are on q, A3, A4 are on r.

In cases when vertices Ai are positioned on two of neighbor circles p and q, our

inserted circle A1, ..., Ak have to separate other vertices of the circle p from those of

circle q.

Although these cases have more subcases, if we require vertices to have order

not greater then six, then the only possible case is e) when p is circle of order six.

For example in case a) vertices A2 and A3 have to be connected with as follows:

themselves, each of them with neighbor vertex of q, each with at least one vertex of

another neighbor circle, and with all vertices of circle p (of order at least 6) - both

with A1 and one more vertex. That means that sum of orders of vertices A2 and A3

is at least 14 so, at least one of them have order greater than 6.

4. GRAPH METHODS

In the present paper, the graph structure is used as a model for polyhedron rep-

resentation [1]. Graph provides more natural and consistent approach for this class

of algorithms.

Viewed abstractly, a graph G = (V, E) consists of a set V of vertices and a set E

of edges connecting the vertices in V. An edge e = (u, v) is a pair of two vertices u

and v. The vertices u and v are called endpoints of the edge (u, v).

332

An abstract data type (ADT) is a mathematical model of a data structure that

specifies the type of data stored, the operations supported on them, and the types

of parameters of the operations. An ADT specifies what each operation makes, but

it does not describe the way. In modern object-oriented program languages, (such as

Java and C#) an ADT can be expressed by an interface, which is simply a list of

method declarations.

An ADT is realized by a concrete data structure, which is modeled in object-

oriented program languages by a class. A class defines the data stored and the

operations supported by the objects that are instances of the class. Also, unlike

interfaces, classes specify how the operations are performed. A Java class is said to

implement an interface if its methods give life to all of those of the interface.

As an abstract data type, a graph is a positional container whose positions are its

vertices and its edges. Hence, the graph ADT stores elements at either its edges or

vertices (or both). A position in graph is always defined relatively, that is, in terms

of its neighbors.

To abstract and unify the ways of storing elements in the various implementations

of a graph, we introduce the concept of position in a graph, which formalizes the

intuitive notion of ”place” of an element relative to others in the graph.

A position itself is an abstract data type that supports a simple element() method,

which returns to the element that is stored at this position. We also use specialized

iterators for vertices and edges. An iterator is an enumeration whose traversal order

can be guaranteed in some way. In order to simplify the presentation, we denote with

v a vertex position and with e an edge position.

There are admittedly a lot of methods in the graph ADT. Some methods, how-

ever, is unavoidable to a certain extent, since graphs are rich structures. We need

different methods for accessing and updating some positions in a graph, as well as

dealing with the relationships that can exist between these positions. We divide the

graph methods into three main categories: general methods, accessor methods and

methods for updating and modifying graphs. We do not discuss error conditions that

may occur. In addition, we take into consideration only methods for dealing with

333

undirected edges.

We begin by describing the fundamental methods for a graph, which ignore the

direction of the edges. Each of the following methods returns global information

about a graph G:

numVertices() Return the number of vertices in G
numEdges() Return the number of edges in G
vertices() Return an iterator of the vertices of G
edges() Return an iterator of the edges of G

The following accessor methods take vertex and edge positions as arguments:

degree(v) Return the degree of v.
adjacentVertices(v) Return an iterator of the vertices adjacent to v.
incidentEdges(v) Return an iterator of the edges incident upon v.
opposite(v,e) Return the endpoint of edge e distinct from v.
areAdjacent(v,w) Return whether vertices v and w are adjacent.

We can also allow for update methods that add or delete edges and vertices:

insertEdge(v,w) Insert and return an undirected edge between vertices
v and w

insertVertex(v) Insert and return a new (isolated) numbering vertex v
storing the object o at this position

removeVertex(v) Remove vertex v and all its incident edges
removeEdge(e) Remove edge e

In order to perform graph algorithms in a computer, we have to decide how to

store the graph. There are several ways to realize the graph ADT with a concrete

data structure. In this section, we discuss two popular approaches, usually referred

to as the adjacency list structure and the adjacency matrix, [2, 6].

There is a fundamental difference between the adjacency list and the adjacency

matrix. The adjacency list structure only store the edges actually present in the graph,

while the adjacency matrix stores a placeholder for every pair of vertices (whether

there is an edge between them or not). This difference implies that, for a graph G with

n vertices and m edges, an edge list or adjacency list representation uses O(n + m)

space, whereas an adjacency matrix representation uses O(n2) space.

334

5. ALGORITHM FOR FORMING NEIGHBOR CIRCLES

Input to the algorithm is an undirected graph G with n vertices and the spe-

cific starting vertex s ∈ G. This algorithm forms circles C0, C1, . . . , Cm and lists

L0, L1, . . . , Lm−1. Each Ci represents neighbor circle. Each list Li store the edges

whose connect pairs (u,v) of vertices, where u ∈ Ci and v ∈ Ci+1.

1. We begin with initializing graph (circle) C0 so it contains a specific vertex s

2. At each iteration, the algorithm forms a new graph (circle) Ci+1 and a new list

Li . The process is repeated until the graph G becomes empty

3. For each vertex w ∈ Ci we find its incident edges in the graph G. Algorithm for

each discovered edge (w,q)

i. insert sits endpoint q to graph Ci+1

ii. inserts edge (w,q) to the list Li

iii. removes edge (w,q) from the graph G

4. Away, algorithm for each vertex w ∈ Ci+1 finds all vertices in G adjacent to

vertex w; for each found vertex v ∈ G adjacent to w we check if v in Ci+1 . If

vertex v ∈ Ci+1 then edge (w,v) is inserted in Ci+1 .

5. When Ci+1 is formed then all edges in Ci+1 are removed from G.

We give the pseudo-code for this algorithm in Figure 1.

Algorithm for forming neighbor circles
Input: An undirected graph G with n vertices and a specific starting vertex

s ∈ G
Output: Graphs C0 ,C1 , . . . ,Cm and lists L0 ,L1 , . . . ,Lm−1

initialize circle graph C0 to contain a specific vertex s;
i = 0;
while (G is not empty)
{ create circle graph Ci+1 to initially be empty;

335

initialize new empty list Li ;// list store edges which connect two adjacency
graph Ci and Ci+1

for each vertex w in Ci .vertices()
{ for each edge e in G.incidentEdges(w)

{ q = G.opposite(w,e);// returns the endpoint of edge e distinct
from w

Ci+1 .insertVertex (q); // Add vertex q to graph Ci+1

Li .insertLast((w , q)); //edge (w,q) connects two vertices w and
q, w ∈ Ci , q ∈ Ci+1

G.removeEdge((w,q)); // remove edge (w,q) from G
}

}
for each w in Ci+1 .vertices() // add edges to graph Ci+1

{ for each v in G.adjacentVertices(w)
{
if (Ci+1 .containsVertex (v)) then Ci+1 .insertEdge((w , v));
}

}
for each e in Ci+1 .eges() {

G.removeEdge(e); // remove edge e from G
}
i++;

} m=i-1;
writeLine(”formed neighbor circles”);
for (i = 0; i<= m; i++)
{ writeLine(”ordinal number of circle: 0, degree of circle: 1”, i, Ci .degree());

writeLine (”vertices of circle:”);
for each u in Ci .vertices() {

write (”0,”,u);
}
writeLine (”edges of circle”);
for each edge (u,v) in Ci .edges() {

write (”(0, 1)” u,v);
}
if ((Li is not empty) then

writeln (”edges that connect two adjacent circles C0 and C1”, i, i+1);
for each edge (w,u) in Li .elements() {

write (”(0, 1)”, w,u); i++;
}

} return C0, C1, . . . , Cm; L0, L1, . . . , Lm−1

Figure 1. Pseudo-code for forming neighbor circles

Example. The undirected graph G with 14 vertices, shown below and vertex B5

336

is used as algorithm’s input.

Figure 2. Input to the algorithm

The algorithm has generated the following output:

formed neighbor circles:

ordinal number of circle: 0 degree of circle: 1

vertices of circle: B5

edges of circle:

edges that connect two adjacent circles C0 and C1:

(B5, B1)(B5, B2)(B5, B3)(B5, B4)

ordinal number of circle: 1 degree of circle: 4

vertices of circle: B1, B2, B3, B4,

edges of circle: (B1, B2)(B2, B3)(B3, B4)(B4, B1)

edges that connect two adjacent circles C1 and C2:

(B1, A1)(B1, A2)(B1, A5)(B2, A2)(B2, A3)(B3, A3)

(B3, A4)(B4, A4)(B4, A5)

ordinal number of circle: 2 degree of circle: 5

.

ordinal number of circle: 3 degree of circle: 4

.

337

6. ALGORITHM FOR FORMING INSERTED CIRCLES

Input to this algorithm are graphs C0 ,C1 , . . . ,Cm and lists L0 ,L1 , . . . ,Lm−1 ,

which are formed by preceedent algorithm (see previous Section). Each graph Ci

represents neighbor circle. Each list Li store the edges whose connect pairs (u, v) of

vertices, where u ∈ Ci and v ∈ Ci+1. A pseudo-code description of the main algorithm

is given in Figure 3.

We now describe in detail our algorithm for forming inserted circles.

1. Algorithm begins with process traverses circles (graphs) C0, C1, . . . , Cm by con-

sidering order of each graph.

2. If algorithm finds the graph Ci of order six then for each vertex v ∈ Ci

a) finds its two adjacency vertices x and y in Ci

b) adds vertices v, x, y to temporary queue Q

c) calls algorithm, (see pseudo-code in Figure 4.), for finding two vertices w

and q in circle Ci−1 neighbor to Ci, such that vertex w connects with vertex

x ∈ Ci , as vertex q connects with vertex y ∈ Ci. Also vertex w mast be

adjacent to vertex q. Algorithm returns queue D to contain five vertices

of inserted circle which is forming.

d) calls algorithm (see pseudo-code in Figure 5.), for forming inserted cir-

cle. The input in this algorithm are queue D and new empty graph Pk.

Algorithm’s output is formed inserted circle Pk of order five.

e) Further main algorithm repeats the above steps 2.3 i 2.4 for circle Ci+1

neighbor to Ci

3. The above process repeats while the circles Ci of order six exist

4. When the process is terminated, the algorithm returns inserted circles P0, P1, . . . , Pk

338

Algorithm for forming inserted circles
Input: Graphs C0, C1,. . . , Cm and lists L0, L1, . . . , Lm−1

Output: graphs (inserted circles) P0, P1, . . . , Pk

i=0;
while (i < n)
{ findCircleOrderSix = false;

j=i;
while ((j <= n) && (not findCircleOrderSix)) //finding circle of the order

six
{ if (Cj.numVertices()) == 6) then

findCircleOrderSix = true;
else j++;

{
i = j;
if (not findCircleOrderSix) then

writeLine (”No more circles of the order six”);
else

k=0; // ordinal number of inserted circle
// for each vertex v finds its two adjacency vertices in Ci

for each vertex v in Ci.vertices()
{ Let Q be an initially empty queue;

Q.AddRear(v); // Add vertex v at the rear of the queue
for each vertex w in Ci .adjacentVertex (v)

Q.AddRear(w);
{
call FindTwoVerticesOnNeigbourCircle(Ci−1, Ci, Li−1, Q, D)
if ((D is not empty) && (D.size() == 5)) then

initialize new graph (inserted circle) Pk;
call FormInsertedCircle (D, Pk);
k++;

call FindTwoVerticesOnNeigbourCircle(Ci+1, Ci, Li, Q,D);
if ((D is not empty) && (D.size() == 5))) then

initialize new graph (inserted circle) Pk;
call FormInsertedCircle(D, Pk);
k++;

}
i++;

}
k= k-1;
return P0, P1, . . . , Pk;

Figure 3. Pseudo-code for forming inserted circles (main algorithm)

339

Algorithm FindTwoVerticesOnNeigbourCircle // finding two vertices on the
neighbor circle U of the circle P

Input: Graph U, graph P, list S and queue Q
Output: queue D

Let D be an initially empty queue;
If (Q is not empty) && (Q.size() == 3) then

D ← Q; // copy Q to D
//remove three neighbor vertices from the front of the queue Q
v = Q.RemoveFront();
x = Q.RemoveFront();
y = Q.RemoveFront();
Let T be an initially empty list;
Let G be an initially empty list;
findVertices = false;
// finding all vertices in circle U adjacent to P, which are connect with vertex x ∈ P ,
as to with vertex y ∈ P

for each edge (w,q) in S.elements()
{ if (w == x) then T.insertLast (q);

if (q == x) then T.insertLast (w);
if (w == y) then G.insertLast (q);
if (q == y) then G.insertLast (w);

}
if ((T is not empty) && (G is not empty)) then

for each vertex w in T. elements()
{ // finding two adjacent vertices w and q in graph U

for each vertex q in G.elements() {
if (U.areAdjacent(w,q)) then

if ((S.ContainsElement((v,w)) or (S.ContainsElement(v,q)) then

// found all vertices of inserted circle of the order five
D.insertRear(w);
D.insertRear(q);
findVertices =true;
break;

}
if (findVertices) then break;

}
return D

Figure 4. Pseudo-code for finding two vertices on the neighbor circle

340

Algorithm FormInsertedCircle // forming inserted circle
Input: queue D and empty graph Mk

Output: formed graph Mk

// remove vertices from the front of the queue D
v = D.removeFront();
x = D.removeFront();
y = D.removeFront();
w = D.removeFront();
q = D.removeFront();

// Insert vertices into graph Pk

Pk.insertV ertex(v); Pk.insertV ertex(x); Pk.insertV ertex(y); Pk.insertV ertex(w);
Pk.insertV ertex(q);

// insert edges to Pk connecting pairs of vertices
Pk.insertEdge(v, x); Pk.insertEdge(v, y); Pk.insertEdge(x,w); Pk.insertEdge(y, q);
Pk.insertEdge(w, q);

writeLine(”ordinal number of inserted circle: 0”, k);

writeLine (”edges of inserted circle”);
for each edge (u,w) in Pk .edges() {

write (”(0, 1)” u,w);
}
return Pk;

Figure 5. Pseudo-code for forming inserted circle

Example. Input to this algorithm is polyhedron shown in Figure 6., with neighbor

circles A01; A11, A12, A13, A14, A15, A16; A21, A22, A23, A24, A25, A26; A31 and edges

that connect two adjacent circles: A01A11, A01A12, A01A13, A01A14, A01A15, A01A16;

A11A21, A12A21, A12A22, A12A23, A13A23, A13A24, A14A24, A14A25, A14A26, A15A26,

A16A26, A16A21; A21A31, A22A31, A23A31, A24A31, A25A31, A26A31.

The algorithm is generates the following output:

ordinal number of inserted circle: 0

edges of inserted circle:

(A13, A14)(A13, A12)(A14, A26)(A12, A21)(A26, A21)

341

Figure 6. Input to the algorithm

References

[1] B. G. Baumgart, A Polyhedron Representation for Computer Vision, In Proceed-

ings of the 1975 National Computer Conference. AFIPS Conference Proceedings,

vol. 44. AFIPS Press, Reston, Va. (1975).

[2] M. Goodrich, R. Tamassia, Data Structures and Algorithms in Java, Second

Edition. John Wiley & Sons (2001).

[3] F. Y. L. Chin, S. P. Y. Fung, C. A. Wang, Approximation for minimum tri-

angulations of simplicial convex 3-polytopes, Discrete Comput. Geom., 26, No.4

(2001), 499–511.

[4] M. Develin, Maximal triangulations of a regular prism, J. Comb. Theory, Ser. A

106, No. 1 (2004), 159–164.

[5] H. Edelsbrunner, F. P. Preparata, D. B. West, Tetrahedrizing point sets in three

dimensions, J. Simbolic Computation, 10 (1990), 335–347.

342

[6] J. McConnell, Analysis of Algorithms: An Active Learning Approach, Jones and

Bartlett Publishers (2001).

[7] J. Ruppert, R. Seidel, On the difficulty of triangulating three - dimensional non-

convex polyhedra, Discrete Comput. Geom., 7 (1992), 227–253.

[8] D. D. Sleator, R. E. Tarjan, W. P. Thurston, Rotatory distance, triangulations,

and hyperbolic geometry, J. of the Am. Math. Soc., Vol. 1, No 3. (July 1988).

[9] M. Stojanović, Triangulation of convex polyhedra by small number of tetrahedra,

Proceedings of the 10th CONGRESS OF YUGOSLAV MATHEMATICIANS,

Belgrade (21-24.01.2001), 207–210.

[10] M. Stojanović, Algorithms for triangulating polyhedra with a small number of

tetrahedra, Mat. Vesnik, 57 (2005), 1–9.

[11] M. Stojanović, Triangulations of some cases of polyhedra with a Small Number

of tetrahedral, Kragujevac J. Math., 31 (2007). (!!!!)

[12] M. Stojanović, M. Vučković Algorithms for finding orders of the vertices of a

given polyhedra and incidence structures, manuscript.

