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Abstract. In this paper, we introduce the notion of Bertrand and Mannheim curve in
Galilean space G3 and give characterizations of such curves.

1. INTRODUCTION

The notion of Bertrand curves was discovered by J. Bertrand in 1850 and it plays

an important role in classical differential geometry. A Bertrand curve is a curve in

Euclidean 3-space whose principal normal is the principal normal of another curve

[3]. We can see in most textbooks, a characteristic property of Bertrand curve which

asserts the existence of a linear relation between curvature and torsion. The cha-

racteristic property-linear relation -is deduced as an application of the Frenet-Serret

formulas. Well known, every space curve is uniquely determined by its curvature and

torsion up to Euclidean motions. A space curve with prescribed curvature and torsion

functions are obtained by integrations of a Riccati equations. However, in general,
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it is impossible to carry out the integration explicitly except for some simple cases

e.g., helices. Although the general theorem due to Lie is of interest and valuable,

it doesn’t provide us sample information of Bertrand curves. J. A. Serret proved in

1850 that curves with prescribed curvature or curves with prescribed torsion can be

found by quadratures. Based on this result, L. Bianchi proved that Bertrand curves

with prescribed linear relation of curvature and torsion can be found by quadratures.

Recently, null Bertrand curves and nonnull Bertrand curves in 3-dimensional

Lorentzian space are studied in [1,2]. In this regards, we introduce the notion of

Bertrand curves in 3-dimensional Galilean space and investigate Bertrand curves in

detail. Also we obtained a characterization on Mannheim curves for curves in 3-

dimensional Galilean space.

2. PRELIMINARIES

Differential geometry of the Galilean space G3 has been largely developed in O.

Röschel’s paper [5].

The Galilean space is a three dimensional complex projective space P3 in which

the absolute figure {w, f, I1, I2} consists of a real plane w (the absolute plane), a

real line f ⊂ w (the absolute line) and two complex conjugate points I1, I2 ∈ f (the

absolute points).

We shall take, as a real model of the space G3 , a real projective space P3 with

the absolute {w, f} consisting of a real plane w ⊂ G3 and a real line f ⊂ w on which

an elliptic involution ε has been defined.

Let it be in homogeneous coordinates

w ... x0 = 0, f ... x0 = x1 = 0

ε : (0 : 0 : x2 : x3) → (0 : 0 : x3 : −x2).

In the nonhomogeneous coordinates the similarity group H8 has the form

x
′

= a11 + a12x,
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y
′

= a21 + a22x + a23 cos ϕy + a23 sin ϕz, (2.1)

z
′

= a31 + a32x− a23 sin ϕy + a23 cos ϕz,

where aij and ϕ are real numbers.

For a12 = a23 = 1 we have the subgroup B6 -the group of Galilean motions:

x
′

= a + x

B6 ... y
′

= b + cx + y cos ϕ + z sin ϕ

z
′

= d + ex− y sin ϕ + z cos ϕ.

In G3 there are four classes of lines:

a) (proper) nonisotropic lines - they don’t meet the absolute line f.

b) (proper) isotropic lines - lines that don’t belong to the plane w but meet the

absolute line f.

c) unproper nonisotropic lines - all lines of w but f.

d) the absolute line f.

Planes x = const. are Euclidean and so is the plane w. Other planes are isotropic.

In what follows the coefficients a12 and a23 will play the special role.

In particular, for a12 = a23 = 1 (2.1) defines the group B6 ⊂ H8 of isometries of

the Galilean space G3 [4].

3. CURVES IN THE GALILEAN SPACE

Let α : I −→ G3, I ⊂ R be a curve given by

α(t) = (x(t), y(t), z(t)),

where x(t), y(t), z(t) ∈ C3 (the set of three times continuously differentiable functions)

and t run through a real interval [4].

Let α be a curve in G3, parameterized by arclength t = s, given in coordinate

form

α(s) = (s, y(s), z(s)). (3.1)
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Then the curvature κα(s) and the torsion τα(s) are defined by

κα(s) =
√

y′′2(s) + z′′2(s) (3.2)

τα(s) =
det(α′(s), α′′(s), α′′′(s))

κ2
α

and associated moving trihedron is given by

Tα(s) = α′(s) = (1, y′(s), z′(s))

Nα(s) =
1

κα(s)
α′′(s) =

1

κα(s)
(0, y′′(s), z′′(s)) (3.3)

Bα(s) =
1

κα(s)
(0,−z′′(s), y′′(s)).

The vectors Tα, Nα, Bα are called the vectors of the tangent, principal normal and

binormal line of α, respectively. For their derivatives the following Frenet formulas

hold

T ′
α = καNα

N ′
α = ταBα (3.4)

B′
α = −ταNα

4. BERTRAND CURVES IN GALILEAN SPACE G3

Definition 4.1. Let α and α be the curves with κα(s) 6= 0, κα(s) 6= 0,

τα(s) 6= 0, τα 6= 0 for each s ∈ I in G3 and {Tα, Nα, Bα} and {Tα, Nα, Bα}
be the Frenet frames in G3 along α and α, respectively. If {Nα, Nα} is linearly

dependent, in other words if the normal lines of α and α at s ∈ I are parallel, then a

pair of curves (α, α) is said to be a Bertrand pair in G3.

The curve α is called a Bertrand mate of α and vice versa. A Frenet framed curve

is said to be a Bertrand curve if it admits a Bertrand mate.

By definition, for a Bertrand pair (α, α), there exists a functional relation

s = s(s) such that

u(s(s)) = u(s)
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Let (α, α) be Bertrand pair in G3. Then we can write

α(s) = α(s) + u(s)Nα(s). (4.1)

Theorem 4.1. Let (α, α) be a Bertrand pair in G3. Then the function u defined

by relation (4.1) is a constant.

Proof. Let {Tα, Nα, Bα} and {Tα, Nα, Bα} be the Frenet frames in G3 along α

and α, respectively. Since (α, α) is a Bertrand pair, from (4.1) we can write

α = α + uNα. (4.2)

By differentiation of the equation (4.2) with respect to s, we obtain

Tα
ds

ds
= Tα + u′Nα + uN ′

α (4.3)

where s and s are parameters on α and α, respectively and ds
ds
6= 0. By using relation

(3.4) we have

T α
ds

ds
= Tα + u′Nα + uταBα. (4.4)

Since {Tα, Nα, Bα} is the Frenet frame on G3 along α and α is a Bertrand mate of

α, we obtain

u′ = 0.

This means that u is constant. Hence the proof is completed. 2

Now, let us define T α by

Tα = cos θTα + sin θBα (4.5)

such that θ is the angle between Tα and T α.

If we differentiate of the equation (4.5) with respect to s, then we obtain

καNα
ds

ds
=

d(cos θ)

ds
Tα + (κα cos θ − τα sin θ)Nα +

d(sin θ)

ds
Bα. (4.6)

Since {Tα, Nα, Bα} is the Frenet frame on G3 along α and α is a Bertrand mate of

α, we have

θ = const. (4.7)
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Theorem 4.2. Let α be a curve in G3. Then α is a Bertrand curve if and only

if α is a curve with constant torsion τα.

Proof. Let (α, α) be a Bertrand pair. By using (4.4) and Theorem 4.1., we have

Tα
ds

ds
= Tα + uταBα. (4.8)

If we consider (4.5) and (4.8), we get

uτα cot θ = 1.

Taking λ = u cot θ using (4.7) as well as theorem 4.1, we get

τα =
1

λ
, (4.9)

this means that τα is constant.

Conversely, let us assume that τα is constant i.e., λ is nonzero constant. Now let

us define

α = α + uNα (4.10)

By using (4.8) and (4.9) we get

Tα

ds

ds

ds
=

κα − uτ 2
α√

1 + u2τ 2
α

Nα,

which means that, Nα and Nα are linearly dependent. According to definition 4.1, it

follows that (α, α) is a Bertrand Pair, which completes the proof of the theorem. 2

Theorem 4.3. (Schell’s Theorem)

Let (α, α) be a Bertrand pair in G3. Then the product of torsions τα and τα at

the corresponding points of the Bertrand curves is constant.

Proof. If we take α instead of α, then we can write the equation (4.2) as follows:

α = α− uNα.

Hence, we have

Tα = Tα
ds

ds
− uταBα

ds

ds
. (4.11)
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Also, we can write

Tα = cos θTα + sin θBα. (4.12)

From (4.11) and (4.12), we get

cos θ

sin θ
= − 1

uτα

. (4.13)

Using Theorem 4.2. and (4.13) we have

τατα = − sin2 θ

u2 cos2 θ
= const.

This completes the proof. 2

Let (α, α) be a Bertrand pair in G3. Let P , P be two corresponding points of (α,

α) and M and M be the curvature centers at these points. Then

∥∥PM
∥∥ = u− ρα = u− 1

κα∥∥PM
∥∥ = u + ρα = u +

1

κα

where ρα and ρα are the curvature radiuses of α and α, respectively. Then we have

∥∥PM
∥∥

‖PM‖ :

∥∥PM
∥∥

∥∥PM
∥∥ = (uκα − 1)(uκα + 1) 6= const.,

since κα and κα are not constant. Therefore ,we have following Theorem which is

valid in 3-dimensional Euclidean space R3 and 3-dimensional Lorentzian space L3.

Theorem 4.4. Mannheim Theorem for Bertrand curves in Galilean space G3 is

not valid.

5. MANNHEIM CURVES IN GALILEAN SPACE G3

Definition 5.1. Let γ be a curve in Galilean space G3. If its principal normal is

the binormal of another curve then γ is called Mannheim curve in G3.
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Theorem 5.1. Let γ be a curve in Galilean space G3. Then γ is Mannheim curve

if and only if its curvature κγ and torsion τγ satisfy the relation κγ = cτ 2
γ for some

constant c.

Proof. Let γ = γ(s) be a Mannheim curve. Let us denote by {Tγ, Nγ, Bγ} the

Frenet frame field of γ.

Assume that γ = γ(s) is a curve whose binormal direction coincides with the

principal normal of γ. Namely let us denote by {T γ, Nγ, Bγ} the Frenet frame field

of γ. Then Bγ(s) = ± Nγ(s).

The curve γ is parametrized by arclength s as

γ(s) = γ(s) + c(s)Nγ(s) (5.1)

for some function c(s) 6= 0. Differentiating (5.1) with respect to s, we find

γ
′
= Tγ + c′Nγ + cτγBγ. (5.2)

Since the binormal direction of γ coincides with the principal normal of γ, we have

c′ = 0. Hence c is constant. The second derivative γ
′′

with respect to s is

γ
′′

= (κγ − cτ 2
γ )Nγ + cτ ′γBγ. (5.3)

Since Nγ is in the binormal direction of γ, we have

κγ − cτ 2
γ = 0.

Conversely, let γ be a curve in Galilean space G3 with κγ = cτγ, for some constant

c. Then the curve

γ(s) = γ(s) + cNγ(s)

has binormal direction Nγ(s). It follows that γ is a Mannheim curve which proves

the theorem. 2
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[2] Balgetir, H., Bektaş, M. and Inoguchi, J., Null Bertrand curves in Minkowski

3-space and their characterizations, Note di Matematica, 23, No.1, 7-13,

2004/2005.

[3] Eisenhart, L.P., 1909, A treatise on the differential geometry of curves and sur-

faces, Ginn and Company, Boston, reprinted by Dover, 1960.
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[5] Röschel, O., Die Geometrie Des Galileischen Raumes, Berichte der Math.-Stat.

Sektion im Forschungszentrum Graz, Ber. 256, 1-20, 1986.


