$L_{\mathbb{A}P}^{\mathrm{rat}}$ LOGIC AND COMPLETENESS THEOREM

Vladimir Ristić

Faculty of Teacher Education, Milana Mijalkovića 14, 35000 Jagodina, Serbia (e-mail: vladimir.ristic@pefja.kg.ac.yu)

(Received August 01, 2008)

Abstract. To the list of axioms of $L_{\mathbb{A}P}$ logic is added axiom which will provide that measures on probability models have only rational values of [0,1] interval. Completeness Theorem is proved.

INTRODUCTION

In this paper we will introduce the logic $L_{\mathbb{A}P}^{\text{rat}}$. This logic is similar to infinitary logic $L_{\mathbb{A}P}$ (see [2, 3]). Our logic will include a new types of axiom. A model of this logic is also a classical model with a probability measure in the universe, such that each relation is measurable and measure ranges are sets of rationals of [0, 1] interval.

1. BASIC DEFINITION

Syntax. We assume that \mathbb{A} is an admissible set (see [1]) such that $\mathbb{A} \subseteq \mathbb{HC}$ and $\omega \in \mathbb{A}$.

Let L be a countable, Σ -definable set of finitary relation and constant symbols (no function symbols).

We need the following logical symbols:

- (1) The parentheses (,).
- (2) The variables $v_0, v_1, \ldots, v_n, \ldots, n \in \mathbb{N}$.
- (3) The connectives \neg and \bigwedge .
- (4) The quantifiers $(P\vec{x} \ge r)$, where $r \in \mathbb{A} \cap [0, 1]$
- (5) The equality symbol = (optional).

Definition 1.1. The formulas of $L_{\mathbb{A}P}^{\text{rat}}$ are defined as follows:

- (1) An atomic formula of first-order logic is a formula of $L^{\mathrm{rat}}_{\mathbb{A}P};$
- (2) If φ is a formula of $L_{\mathbb{A}P}^{\mathrm{rat}}$, then $\neg \varphi$ is a formula of $L_{\mathbb{A}P}^{\mathrm{rat}}$;
- (3) If $\Phi \in \mathbb{A}$ is a set of formulas of $L_{\mathbb{A}P}^{\mathrm{rat}}$ with only finitely many free variables, then $\wedge \Phi$ is a formula of $L_{\mathbb{A}P}^{\mathrm{rat}}$;
 - (4) If φ is a formula of $L_{\mathbb{A}P}^{\mathrm{rat}}$, then $(P\vec{x} \geqslant r)\varphi$ is a formula of $L_{\mathbb{A}P}^{\mathrm{rat}}$; We shall assume that $L_{\mathbb{A}P}^{\mathrm{rat}} \subseteq \mathbb{A}$ where $\mathbb{A} = \mathbb{HC}$.

Definition 1.2. We shall use the following abbrevations:

- (a) $(P\vec{x} < r)\varphi$ for $\neg (P\vec{x} \ge r)\varphi$;
- (b) $(P\vec{x} \leqslant r)\varphi$ for $(P\vec{x} \geqslant 1 r)\neg\varphi$;
- (c) $(P\vec{x} > r)\varphi$ for $\neg (P\vec{x} \ge 1 r)\neg \varphi$;
- (d) The connectives \vee , \rightarrow and \leftrightarrow define as usual.

Models.

Definition 1.3. A probability model for L is a structure

$$\mathfrak{A} = \langle A, R_i^{\mathfrak{A}}, c_j^{\mathfrak{A}}, \mu \rangle_{i \in I, j \in J}$$

where $\langle A, R_i^{\mathfrak{A}}, c_j^{\mathfrak{A}} \rangle_{i \in I, j \in J}$ is a classical model, μ is a countably additive probability measure on A. Such that each singleton is measurable, each n-placed relation $R_i^{\mathfrak{A}}$ is $\mu^{(n)}$ -measurable and rang of measure μ is set of rationals of [0,1] interval.

Definition 1.4. A graded probability model for L is a structure

$$\mathfrak{A} = \langle A, R_i^{\mathfrak{A}}, c_j^{\mathfrak{A}}, \mu_n \rangle_{i \in I, j \in J, n \in \mathbb{N}}$$

such that:

- (1) $\langle A, R_i^{\mathfrak{A}}, c_j^{\mathfrak{A}} \rangle_{i \in I, j \in J}$ is a classical model;
- (2) Each μ_n is a countably additive probability measure on A^n ;
- (3) Every measure range of μ_n is subset of rationals of [0, 1] interval;
- (4) For all $m, n \in \mathbb{N}$, μ_{m+n} is an extension of the product measure $\mu_m \times \mu_n$;
- (5) Each μ_n is invariant under permutations, that is, whenever π is a permutation of $\{1, 2, \ldots, n\}$ and $B \in \text{dom}(\mu_n)$, if

$$\pi B = \{ (a_{\pi(1)}, \dots, a_{\pi(n)}) \mid (a_1, \dots, a_n) \in B \},$$

then $\pi B \in \text{dom}(\mu_n)$ and $\mu_n(\pi B) = \mu_n(B)$;

- (6) $\langle \mu_n \mid n \in \mathbb{N} \rangle$ has the Fubini property: If B is μ_{m+n} -measurable, then
 - (a) for each $\vec{x} \in A^m$, the section $B\vec{x} = \{\vec{y} \in A^n \mid (\vec{x}, \vec{y}) \in B\}$ is μ_n -measurable;
 - (b) the function $f(\vec{x}) = \mu_n(B\vec{x})$ is μ_m -measurable;
 - (c) $\int f(\vec{x}) d\mu_m = \mu_{m+n}(B)$.
- (7) Each atomic formula with n free variables is measurable with respect to μ_n .

The satisfaction relation is defined recursively in the same way as it was for $L_{\mathbb{A}P}$.

Theorem 1.5. (Fubini theorem) Let μ be a probability measure such that each singleton is measurable, and let $B \subseteq A^{m+n}$ be $\mu^{(m+n)}$ -measurable. Then:

- (1) Every section $B\vec{x} = \{\vec{y} \in A^n \mid (\vec{x}, \vec{y}) \in B\}$ is $\mu^{(n)}$ -measurable;
- (2) The function $f(\vec{x}) = \mu^{(n)}(B\vec{x})$ is $\mu^{(m)}$ -measurable;
- (3) $\mu^{(m+n)}(B) = \int f(\vec{x}) d\mu^{(m)}$.

Proof theory. We now give a list of axioms and rules of inference for $L_{\mathbb{A}P}^{\mathrm{rat}}$. In what follows, φ , ψ are arbitrary formulas of $L_{\mathbb{A}P}$, $\Phi \in \mathbb{A}$ is an arbitrary set of formulas of $L_{\mathbb{A}P}^{\mathrm{rat}}$ and $r, s \in \mathbb{A} \cap [0, 1]$.

Definition 1.6. The axioms of the weak $L_{\mathbb{A}P}^{\text{rat}}$ are the following:

- (W_1) All axioms of $L_{\mathbb{A}}$ without quantifiers;
- (W_2) Monotonicity: $(P\vec{x} \geqslant r)\varphi \rightarrow (P\vec{x} \geqslant s)\varphi$, where $r \geqslant s$;
- $(W_3) (P\vec{x} \geqslant r)\varphi(\vec{x}) \rightarrow (P\vec{y} \geqslant r)\varphi(\vec{y});$
- $(W_4) (P\vec{x} \geqslant 0)\varphi;$

 (W_5) Finite additivity:

(a)
$$(P\vec{x} \leqslant r)\varphi \land (P\vec{x} \leqslant s)\psi \rightarrow (P\vec{x} \leqslant r + s)(\varphi \lor \psi);$$

(b)
$$(P\vec{x} \geqslant r)\varphi \land (P\vec{x} \geqslant s)\psi \land (P\vec{x} \leqslant 0)(\varphi \land \psi) \rightarrow (P\vec{x} \geqslant r + s)(\varphi \lor \psi);$$

 (W_6) The Archimedean property:

$$(P\vec{x} > r)\varphi \leftrightarrow \bigvee_{n \in \mathbb{N}} \left(P\vec{x} \geqslant r + \frac{1}{n}\right)\varphi$$

 (W_7)

$$\left(\psi \to \bigwedge_{q \in [0,1] \cap Q} (P\vec{x} \neq q)\varphi\right) \to \neg \psi.$$

Definition 1.7. The axioms for graded $L_{\mathbb{A}P}^{\text{rat}}$ consist of the axioms for weak $L_{\mathbb{A}P}^{\text{rat}}$ plus following set of axioms:

 (H_1) Countable additivity:

$$\bigwedge_{\Psi \subset \Phi} (P\vec{x} \geqslant r) \bigwedge \Psi \ \rightarrow \ (P\vec{x} \geqslant r) \bigwedge \Phi,$$

where Ψ ranges over the finite subset of Φ .

 (H_2) Symmetry:

$$(Px_1 \ldots x_n \geqslant r)\varphi \leftrightarrow (Px_{\pi(1)} \ldots x_{\pi(n)} \geqslant r)\varphi$$

where π is a permutation of $\{1, 2, \ldots, n\}$.

 (H_3) Product independence:

$$(P\vec{x} \geqslant r)(P\vec{y} \geqslant s)\varphi \rightarrow (P\vec{x}\vec{y} \geqslant r \cdot s)\varphi,$$

where all variables in \vec{x} , \vec{y} are distinct.

Definition 1.8. The axioms for the full $L_{\mathbb{A}P}^{\text{rat}}$ consist of the axioms for graded $L_{\mathbb{A}P}^{\text{rat}}$ plus the following Keisler's axiom:

(K) Product measurability:

$$(P\vec{x} \geqslant 1)(P\vec{y} > 0)(P\vec{z} \geqslant r)(\varphi(\vec{x}, \vec{z}) \leftrightarrow \varphi(\vec{y}, \vec{z}))$$

for each r < 1, where all variables in \vec{x} , \vec{y} , \vec{z} are distinct.

The rules of inference for all of the above logics are: Modus ponens, Conjuction and Generalization, as in $L_{\mathbb{A}P}$ logic (see [3]).

2. COMPLETENESS THEOREM

Consistency properties and weak models.

Definition 2.1. A weak model for $L_{\mathbb{A}P}^{\text{rat}}$ is a structure

$$\mathfrak{A} = \langle A, R_i^{\mathfrak{A}}, c_i^{\mathfrak{A}}, \mu_n \rangle_{i \in I, j \in J, n \in \mathbb{N}}$$

such that $\langle A, R_i^{\mathfrak{A}}, c_j^{\mathfrak{A}} \rangle_{i \in I, j \in J}$ is a classical model, each μ_n is a finitely additive probability measure on A^n with each singleton measurable, every μ_n rang is subset of $[0,1]_{\mathbb{Q}}$, and with the set $\{\vec{c} \in A^n \mid \mathfrak{A} \models \varphi [\vec{a}, \vec{c}]\}$ μ_n -measurable for each $\varphi(\vec{x}, \vec{y}) \in L_{\mathbb{A}P}^{\mathrm{rat}}$ and each $\vec{a} \in A$.

 φ^{\neg} is defined same as in $L_{\mathbb{A}P}$ logic. Without loss of generality, we can suppose in this chapter that \mathbb{A} is a countable admissible set.

Let C be a countable set of new constant symbols, and let $K = L \cup C$. Then we form the logic $K_{\mathbb{A}P}^{\mathrm{rat}}$ corresponding to K.

Definition 2.2. A consistency property for $L_{\mathbb{A}P}^{\text{rat}}$ is a set S of countable sets s of sentences of $K_{\mathbb{A}P}^{\text{rat}}$ which satisfies the following conditions for each $s \in S$:

- (C_1) (Triviality rule) $\varnothing \in S$;
- (C_2) (Consistency rule) Either $\varphi \notin s$ or $\neg \varphi \notin s$;
- (C_3) $(\neg -rule)$ If $\neg \varphi \in s$, then $s \cup \{\varphi^{\neg}\} \in S$;
- (C_4) $(\bigwedge \text{-rule})$ If $\bigwedge \Phi \in s$, then for all $\varphi \in \Phi$, $s \cup \{\varphi\} \in S$;
- (C_5) (\bigvee -rule) If $\bigvee \Phi \in s$, then for some $\varphi \in \Phi$, $s \cup \{\varphi\} \in S$;
- (C_6) (P-rule) If $(P\vec{x} > 0)\varphi(\vec{x}) \in s$, then for some $\vec{c} \in C$, $s \cup \{\varphi(\vec{c})\} \in S$;
- (C_7) If $\varphi(\vec{x}) \in K_{\mathbb{A}P}^{\mathrm{rat}}$ is an axiom, then
 - (a) $s \cup \{(P\vec{x} \ge 1)\varphi(\vec{x})\} \in S$,
 - (b) $s \cup \{\varphi(\vec{c})\} \in S$, where $\vec{c} \in C$.

Theorem 2.3. (Model Existence Theorem) If S is a consistency property, then any $s_0 \in S$ has a weak model.

Proof. Let $\varphi_0, \ \varphi_1, \ \varphi_2, \dots$ be an enumeration of the sentences of $K_{\mathbb{A}P}^{\mathrm{rat}}$. We shall construct a sequence $s_0 \subseteq s_1 \subseteq s_2 \subseteq \dots$ of elements of S as follows. s_0 is given. Given s_n choose s_{n+1} to satisfy the following conditions:

- (1) $s_n \subseteq s_{n+1}$.
- (2) If $s_n \cup \{\varphi_n\} \in S$, then $\varphi_n \in s_{n+1}$.
- (3) If $s_n \cup \{\varphi_n\} \in S$, $\varphi_n = \bigvee \Phi$, then for some $\theta \in \Phi$, $\theta \in s_{n+1}$.
- (4) If $s_n \cup \{\varphi_n\} \in S$, $\varphi_n = (P\vec{x} > 0)\psi(\vec{x})$, then for some $\vec{c} \in C$, $\psi(\vec{c}) \in s_{n+1}$.

We now define a model \mathfrak{A} of s_0 . Let $s_{\omega} = \bigcup_{n < \omega} s_n$. Let T be a set of constants of $K_{\mathbb{A}P}^{\mathrm{rat}}$. For $c, d \in T$, let $c \sim d$ iff $c = d \in s_{\omega}$. Then, \sim is an equivalence relation. Let [c] denote the equivalence class of the constant c. Let \mathfrak{A} have the universe set $A = \{[c] \mid c \in T\}$. If R is an n-placed relation symbol and $c_1, \ldots, c_n \in C$, then

$$\mathfrak{A} \vDash R([c_1], \ldots, [c_n]) \quad \text{iff} \quad R(c_1, \ldots, c_n) \in s_\omega.$$

Define μ_n on the subsets of A^n definable by formulas of $L_{\mathbb{A}P}^{\mathrm{rat}}$ with parameters from A, by

$$\mu_n \{ \vec{a} \in A^n \mid \mathfrak{A} \vDash \varphi[\vec{a}, \vec{c}] \} = q \quad \text{iff} \quad (P\vec{x} = q)\varphi(\vec{x}, \vec{c}) \in s_\omega.$$

It is not difficult to show that everything is well-defined, μ_n 's are finitely additive probability measures, which ranges are subsets of $[0,1]_{\mathbb{Q}}$, and it is routine to check that

$$\mathfrak{A} \vDash \varphi[[c_1], \ldots, [c_n]] \quad \text{iff} \quad \varphi(c_1, \ldots, c_n) \in s_\omega.$$

Therefore \mathfrak{A} is a weak model of s_{ω} , and hence a model of s_0 .

Theorem 2.4. (Weak Completeness Theorem) Every countable set T of sentences which is consistent in weak $L_{\mathbb{A}P}^{rat}$ has a weak model.

Proof. Let S be the set of all countable sets s of sentences of $K_{\mathbb{A}P}^{\mathrm{rat}}$ such that only finitely many $c \in C$ occur in s and not $\vdash_{K_{\mathbb{A}P}^{\mathrm{rat}}} \neg \bigwedge s$.

It is not difficult to check that S is a consistency property.

Theorem 2.5. (Graded Completeness Theorem) Every countable set T of sentences which is consistent in graded $L_{\mathbb{A}P}^{rat}$ has a graded model.

Proof. Let $\mathbf{V}(S)$ be a superstructure over S and $\mathbb{R} \cup A \subseteq S$. We suppose that a formula $\varphi(\vec{x}, \vec{a})$ with parameters from A, a weak model \mathfrak{A} of T, and the relation \vDash are represented by sets in $\mathbf{V}(S)$. Then $*\varphi(\vec{x}, \vec{a})$ and $*\mathfrak{A}$ are sets in the nonstandard universe $\mathbf{V}(*S)$, and $*\vDash$ is an internal relation. If the context is clear we write simply \vDash .

Let \mathbb{A} be countable, and assume L has countably many constants not appearing in T. From the proof of the weak completeness theorem, T has a weak model $\mathfrak{A} = \langle A, R_i, c_j, \mu_n \rangle_{i \in I, j \in J, n \in \mathbb{N}}$ such that \mathfrak{A} satisfies each theorem of graded $L_{\mathbb{A}P}^{\mathrm{rat}}$, $A = \{c_j \mid j \in J\}$, and the domain of each μ_n is the set od $L_{\mathbb{A}P}^{\mathrm{rat}}$ -definable subsets of A^n . Form the internal structure \mathfrak{A} , let $\widehat{\mathfrak{A}} = \langle {}^*A, {}^*R_i, {}^*c_j, L(\mu_n) \rangle$, where $L(\mu_n)$ is the Loeb measure of μ_n . Every $L(\mu_n)$ -measurable set can be approximated above and below by *-definable sets in n variables. Using this fact and axioms (H_2) and (H_3) in \mathfrak{A} , it can be shown that $\widehat{\mathfrak{A}}$ is a graded probability structure. An induction of formulas will show that $\widehat{\mathfrak{A}}$ is $L_{\mathbb{A}P}^{\mathrm{rat}}$ -equivalent to \mathfrak{A} .

Remark 2.6. It is needed to be stressed that measures on graded model $\langle *\mathfrak{A}, L(\mu_n) \rangle$ also have for measure rang, set of rationals of [0,1] interval. Fact that some definable set S has measure $q \in [0,1]$ can be written by

$$\langle {}^*\mathfrak{A}, L(\mu_n) \rangle \vDash (P\vec{y} = q)\varphi_0(\vec{y}, \vec{c})$$

for some formula $\varphi_0(\vec{x}) \in L_{\mathbb{A}P}^{\mathrm{rat}}$.

Considering $L_{\mathbb{A}P}^{\text{rat}}$ -equivalent graded model $\widehat{\mathfrak{A}} = \langle *\mathfrak{A}, L(\mu_n) \rangle$ and weak model \mathfrak{A} , we'll have that $\langle \mathfrak{A}, \mu_n \rangle \vDash (P\vec{y} = q)\varphi_0(\vec{y}, \vec{c})$, where we can conclude that measure of set S is rational number of [0, 1] interval.

As consequence of Completness Theorem for full $L_{\mathbb{A}P}$ (see [3, 4]) and theorem 2.5 we have

Theorem 2.7. (Completeness Theorem for full $L_{\mathbb{A}P}^{\text{rat}}$) Every countable consistent set T of sentences of $L_{\mathbb{A}P}^{rat}$ has a probability model.

References

- [1] J. Barwise, Admissible sets and Structure, Springer Verlag, 1975.
- [2] D. N. Hoover, *Probability logic*, Annals of mathematical logic 14, 287-313, 1978.
- [3] H. J. Keisler, Probability quantifiers, in: Model-theoretic logics. etds. J. Barwise, S. Feferman, Perspectives in Mathematical Logic, Springer - Verlang. Berlin, 509-556, 1985.
- [4] M. Rašković, R. Djordjević, Probability quantifiers and operators, Vesta, Beograd, 1996.