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Abstract. To the list of axioms of LAP logic is added axiom which will provide that
measures on probability models have only rational values of [0, 1] interval. Completeness
Theorem is proved.

INTRODUCTION

In this paper we will introduce the logic Lrat
AP . This logic is similar to infinitary

logic LAP (see [2, 3]). Our logic will include a new types of axiom. A model of this

logic is also a classical model with a probability measure in the universe, such that

each relation is measurable and measure ranges are sets of rationals of [0, 1] interval.

1. BASIC DEFINITION

Syntax. We assume that A is an admissible set (see [1]) such that A ⊆ HC and

ω ∈ A.

Let L be a countable, Σ-definable set of finitary relation and constant symbols

(no function symbols).
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We need the following logical symbols:

(1) The parentheses ( , ) .

(2) The variables v0, v1, . . . , vn, . . . , n ∈ N.

(3) The connectives ¬ and
∧

.

(4) The quantifiers (P~x > r), where r ∈ A ∩ [0, 1]

(5) The equality symbol = (optional).

Definition 1.1. The formulas of Lrat
AP are defined as follows:

(1) An atomic formula of first-order logic is a formula of Lrat
AP ;

(2) If ϕ is a formula of Lrat
AP , then ¬ϕ is a formula of Lrat

AP ;

(3) If Φ ∈ A is a set of formulas of Lrat
AP with only finitely many free variables,

then ∧Φ is a formula of Lrat
AP ;

(4) If ϕ is a formula of Lrat
AP , then (P~x > r)ϕ is a formula of Lrat

AP ;

We shall assume that Lrat
AP ⊆ A where A = HC.

Definition 1.2. We shall use the following abbrevations:

(a) (P~x < r)ϕ for ¬(P~x > r)ϕ;

(b) (P~x 6 r)ϕ for (P~x > 1− r)¬ϕ;

(c) (P~x > r)ϕ for ¬(P~x > 1− r)¬ϕ;

(d) The connectives ∨, → and ↔ define as usual.

Models.

Definition 1.3. A probability model for L is a structure

A = 〈A, RA
i , cA

j , µ〉i∈I, j∈J

where 〈A, RA
i , cA

j 〉i∈I, j∈J is a classical model, µ is a countably additive probability

measure on A. Such that each singleton is measurable, each n-placed relation RA
i is

µ(n)-measurable and rang of measure µ is set of rationals of [0, 1] interval.

Definition 1.4. A graded probability model for L is a structure

A = 〈A, RA
i , cA

j , µn〉i∈I, j∈J, n∈N
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such that:

(1) 〈A, RA
i , cA

j 〉i∈I, j∈J is a classical model;

(2) Each µn is a countably additive probability measure on An;

(3) Every measure range of µn is subset of rationals of [0, 1] interval;

(4) For all m,n ∈ N, µm+n is an extension of the product measure µm × µn;

(5) Each µn is invariant under permutations, that is, whenever π is a permutation

of {1, 2, . . . , n} and B ∈ dom(µn), if

πB =
{(

aπ(1), . . . , aπ(n)

) | (a1, . . . , an) ∈ B
}

,

then πB ∈ dom(µn) and µn(πB) = µn(B);

(6) 〈µn | n ∈ N〉 has the Fubini property: If B is µm+n-measurable, then

(a) for each ~x ∈ Am, the section B~x = {~y ∈ An | (~x, ~y) ∈ B} is µn-measurable;

(b) the function f(~x) = µn(B~x) is µm-measurable;

(c)
∫

f(~x)dµm = µm+n(B).

(7) Each atomic formula with n free variables is measurable with respect to µn.

The satisfaction relation is defined recursively in the same way as it was for LAP .

Theorem 1.5. (Fubini theorem) Let µ be a probability measure such that each

singleton is measurable, and let B ⊆ Am+n be µ(m+n)-measurable. Then:

(1) Every section B~x = {~y ∈ An | (~x, ~y) ∈ B} is µ(n)-measurable;

(2) The function f(~x) = µ(n)(B~x) is µ(m)-measurable;

(3) µ(m+n)(B) =
∫

f(~x)dµ(m).

Proof theory. We now give a list of axioms and rules of inference for Lrat
AP . In

what follows, ϕ, ψ are arbitrary formulas of LAP , Φ ∈ A is an arbitrary set of formulas

of Lrat
AP and r, s ∈ A ∩ [0, 1].

Definition 1.6. The axioms of the weak Lrat
AP are the following:

(W1) All axioms of LA without quantifiers;

(W2) Monotonicity: (P~x > r)ϕ → (P~x > s)ϕ, where r > s;

(W3) (P~x > r)ϕ(~x) → (P~y > r)ϕ(~y);

(W4) (P~x > 0)ϕ;
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(W5) Finite additivity:

(a) (P~x 6 r)ϕ ∧ (P~x 6 s)ψ → (P~x 6 r + s)(ϕ ∨ ψ);

(b) (P~x > r)ϕ ∧ (P~x > s)ψ ∧ (P~x 6 0)(ϕ ∧ ψ) → (P~x > r + s)(ϕ ∨ ψ);

(W6) The Archimedean property:

(P~x > r)ϕ ↔
∨

n∈N

(
P~x > r +

1

n

)
ϕ

(W7)

(
ψ →

∧

q∈[0,1]∩Q

(P~x 6= q)ϕ
)
→ ¬ψ.

Definition 1.7. The axioms for graded Lrat
AP consist of the axioms for weak Lrat

AP

plus following set of axioms:

(H1) Countable additivity:

∧
Ψ⊆Φ

(P~x > r)
∧

Ψ → (P~x > r)
∧

Φ,

where Ψ ranges over the finite subset of Φ.

(H2) Symmetry:

(Px1 . . . xn > r)ϕ ↔ (Pxπ(1) . . . xπ(n) > r)ϕ,

where π is a permutation of {1, 2, . . . , n}.
(H3) Product independence:

(P~x > r)(P~y > s)ϕ → (P~x~y > r · s)ϕ,

where all variables in ~x , ~y are distinct.

Definition 1.8. The axioms for the full Lrat
AP consist of the axioms for graded

Lrat
AP plus the following Keisler’s axiom:

(K) Product measurability:

(P~x > 1)(P~y > 0)(P~z > r)(ϕ(~x, ~z) ↔ ϕ(~y, ~z))



153

for each r < 1, where all variables in ~x , ~y , ~z are distinct.

The rules of inference for all of the above logics are: Modus ponens, Conjuction

and Generalization, as in LAP logic (see [3]).

2. COMPLETENESS THEOREM

Consistency properties and weak models.

Definition 2.1. A weak model for Lrat
AP is a structure

A = 〈A, RA
i , cA

j , µn〉i∈I, j∈J, n∈N

such that 〈A, RA
i , cA

j 〉i∈I,j∈J is a classical model, each µn is a finitely additive probabil-

ity measure on An with each singleton measurable,every µn rang is subset of [0, 1]Q,

and with the set {~c ∈ An | A ² ϕ [~a,~c]} µn-measurable for each ϕ(~x, ~y) ∈ Lrat
AP and

each ~a ∈ A.

ϕ¬ is defined same as in LAP logic. Without loss of generality, we can suppose in

this chapter that A is a countable admissible set.

Let C be a countable set of new constant symbols, and let K = L ∪ C. Then we

form the logic Krat
AP corresponding to K.

Definition 2.2. A consistency property for Lrat
AP is a set S of countable sets s of

sentences of Krat
AP which satisfies the following conditions for each s ∈ S:

(C1) (Triviality rule) ∅ ∈ S;

(C2) (Consistency rule) Either ϕ /∈ s or ¬ϕ /∈ s;

(C3) (¬ -rule) If ¬ϕ ∈ s, then s ∪ {ϕ¬} ∈ S;

(C4) (
∧

-rule) If
∧

Φ ∈ s, then for all ϕ ∈ Φ, s ∪ {ϕ} ∈ S;

(C5) (
∨

-rule) If
∨

Φ ∈ s, then for some ϕ ∈ Φ, s ∪ {ϕ} ∈ S;

(C6) (P-rule) If (P~x > 0)ϕ(~x) ∈ s, then for some ~c ∈ C, s ∪ {ϕ(~c)} ∈ S;

(C7) If ϕ(~x) ∈ Krat
AP is an axiom,then

(a) s ∪ {(P~x > 1)ϕ(~x)} ∈ S,

(b) s ∪ {ϕ(~c)} ∈ S, where ~c ∈ C.
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Theorem 2.3. (Model Existence Theorem) If S is a consistency property,

then any s0 ∈ S has a weak model.

Proof. Let ϕ0, ϕ1, ϕ2, . . . be an enumeration of the sentences of Krat
AP . We shall

construct a sequence s0 ⊆ s1 ⊆ s2 ⊆ . . . of elements of S as follows. s0 is given. Given

sn choose sn+1 to satisfy the following conditions:

(1) sn ⊆ sn+1.

(2) If sn ∪ {ϕn} ∈ S, then ϕn ∈ sn+1.

(3) If sn ∪ {ϕn} ∈ S, ϕn =
∨

Φ, then for some θ ∈ Φ, θ ∈ sn+1.

(4) If sn ∪ {ϕn} ∈ S, ϕn = (P~x > 0)ψ(~x), then for some ~c ∈ C, ψ(~c) ∈ sn+1.

We now define a model A of s0. Let sω =
⋃

n<ω sn. Let T be a set of constants

of Krat
AP . For c, d ∈ T , let c ∼ d iff c = d ∈ sω. Then, ∼ is an equivalence relation.

Let [c] denote the equivalence class of the constant c. Let A have the universe set

A = {[c] | c ∈ T}. If R is an n-placed relation symbol and c1, . . . , cn ∈ C, then

A ² R([c1], . . . , [cn]) iff R(c1, . . . , cn) ∈ sω .

Define µn on the subsets of An definable by formulas of Lrat
AP with parameters from

A, by

µn {~a ∈ An | A ² ϕ[~a,~c]} = q iff (P~x = q)ϕ(~x,~c) ∈ sω .

It is not difficult to show that everything is well-defined, µn’s are finitely additive

probability measures, which ranges are subsets of [0, 1]Q, and it is routine to check

that

A ² ϕ [[c1], . . . , [cn]] iff ϕ(c1, . . . , cn) ∈ sω .

Therefore A is a weak model of sω, and hence a model of s0. ¤

Theorem 2.4. (Weak Completeness Theorem) Every countable set T of

sentences which is consistent in weak Lrat
AP has a weak model.

Proof. Let S be the set of all countable sets s of sentences of Krat
AP such that only

finitely many c ∈ C occur in s and not `Krat
AP
¬∧

s.

It is not difficult to check that S is a consistency property.
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Theorem 2.5. (Graded Completeness Theorem) Every countable set T of

sentences which is consistent in graded Lrat
AP has a graded model.

Proof. Let V(S) be a superstructure over S and R ∪ A ⊆ S. We suppose that

a formula ϕ(~x,~a) with parameters from A, a weak model A of T , and the relation ²
are represented by sets in V(S). Then ∗ϕ(~x,~a) and ∗A are sets in the nonstandard

universe V(∗S), and ∗² is an internal relation. If the context is clear we write simply

² .

Let A be countable, and assume L has countably many constants not appearing

in T . From the proof of the weak completeness theorem, T has a weak model A =

〈A, Ri, cj, µn〉i∈I, j∈J, n∈N such that A satisfies each theorem of graded Lrat
AP , A = {cj |

j ∈ J}, and the domain of each µn is the set od Lrat
AP -definable subsets of An. Form

the internal structure ∗A, let Â = 〈∗A, ∗Ri,
∗cj, L(µn)〉, where L(µn) is the Loeb

measure of µn. Every L(µn) -measurable set can be approximated above and below

by ∗-definable sets in n variables. Using this fact and axioms (H2) and (H3) in A, it

can be shown that Â is a graded probability structure. An induction of formulas will

show that Â is Lrat
AP -equivalent to A. ¤

Remark 2.6. It is needed to be stressed that measures on graded model

〈∗A, L(µn)〉 also have for measure rang, set of rationals of [0, 1] interval. Fact that

some definable set S has measure q ∈ [0, 1] can be written by

〈∗A, L(µn)〉 ² (P~y = q)ϕ0(~y,~c )

for some formula ϕ0(~x) ∈ Lrat
AP .

Considering Lrat
AP -equivalent graded model Â = 〈∗A, L(µn)〉 and weak model A,

we’ll have that 〈A, µn〉 ² (P~y = q)ϕ0(~y,~c ), where we can conclude that measure of

set S is rational number of [0, 1] interval.

As consequence of Completness Theorem for full LAP (see [3, 4]) and theorem 2.5

we have

Theorem 2.7. (Completeness Theorem for full Lrat
AP ) Every countable con-

sistent set T of sentences of Lrat
AP has a probability model.
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