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Abstract. To the list of axioms of Lap logic is added axiom which will provide that
measures on probability models have only rational values of [0,1] interval. Completeness
Theorem is proved.

INTRODUCTION

In this paper we will introduce the logic L}5. This logic is similar to infinitary

logic Lap (see [2, 3]). Our logic will include a new types of axiom. A model of this
logic is also a classical model with a probability measure in the universe, such that

each relation is measurable and measure ranges are sets of rationals of [0, 1] interval.

1. BASIC DEFINITION

Syntax. We assume that A is an admissible set (see [1]) such that A C HC and
w € A.
Let L be a countable, -definable set of finitary relation and constant symbols

(no function symbols).
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We need the following logical symbols:
(1) The parentheses (, ).
(2) The variables v, v1,...,v,,...,n € N.

(3) The connectives = and A.

(4) The quantifiers (PZ > r), where r € AN [0, 1]
(5) The equality symbol = (optional).

Definition 1.1. The formulas of L}, are defined as follows:

(1) An atomic formula of first-order logic is a formula of Li%;

(2) If ¢ is a formula of L%, then —¢p is a formula of L}2%;

(3) If ® € A is a set of formulas of LI, with only finitely many free variables,
then A® is a formula of L};

(4) If p is a formula of L, then (PZ > r)p is a formula of L}%;

We shall assume that L}, C A where A = HC.

Definition 1.2. We shall use the following abbrevations:
(a) (P:I? < 1) for =(PZ = r)p;

(b) (PZ < r)p for (PZ > 1—1)—¢;

(c) (PZ >r)p for 2(PZ > 1—1)-p;

(

d) The connectives V, — and < define as usual.
Models.

Definition 1.3. A probability model for L is a structure
A= <A RQ[ ) M>ie], jeJ

where (A, R}, ¢]'icr, jes is a classical model, u is a countably additive probability
measure on A. Such that each singleton is measurable, each n-placed relation R is

p™-measurable and rang of measure p is set of rationals of [0, 1] interval.

Definition 1.4. A graded probability model for L is a structure

9’[ <A RQ‘ ]7 Mn>z€[ j€J, neN
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such that:
(1) (A, R, cMicr, jes is a classical model;
(2) Each p, is a countably additive probability measure on A";
(3) Every measure range of p, is subset of rationals of [0, 1] interval;
(4) For all m,n € N, 4, is an extension of the product measure i, X fi,;
)

(5) Each p,, is invariant under permutations, that is, whenever 7 is a permutation

of {1, 2, ..., n} and B € dom(u,), if

B = {(aﬂ(l),...,aﬁ(n)) | (a1,...,a,) € B},

then 7B € dom(u,) and p,(7B) = pn(B);
(6) (in | n € N) has the Fubini property: If B is fiy,+n-measurable, then
(a) for each & € A™, the section B¥ = {y € A" | (Z,9) € B} is p,-measurable;
(b) the function f(¥) = u,(BZX) is p,-measurable;
¢) [ f(@)dpm = pimin(B).

(7) Each atomic formula with n free variables is measurable with respect to p,.

The satisfaction relation is defined recursively in the same way as it was for Lyp.

Theorem 1.5. (Fubini theorem) Let i be a probability measure such that each
singleton is measurable, and let B C A™™ be p(™+™) -measurable. Then:

(1) Every section BT = {5j € A™ | (Z,%) € B} is u™-measurable;

(2) The function f(%) = "™ (BZF) is u™ -measurable;

(3) Wm0 (B) = [ f(@)dut™

Proof theory. We now give a list of axioms and rules of inference for L}25. In
what follows, ¢, 1 are arbitrary formulas of Lyp, ® € A is an arbitrary set of formulas

of L2L and r,s € AN0,1].

Definition 1.6. The axioms of the weak L} are the following:
(W1) All axioms of L, without quantifiers;

(Ws) Monotonlclty (PZ>71)p — (PZ > s)p, where r > s;
(Wa) (PZ = r)p(T) — (PY = 7)p(9);

(Wa) (PZ = 0)¢;
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(W) Finite additivity:

(a) (PE< 1) N (PZ<

(b) (PZ=r)p N (PT=s)Y N (PEL0)(pAY) — (PT>=1r+5s)(p V),
(Ws) The Archimedean property:

1
(PZ>r)p < \/(Pf}r—l——)gp

neN

(v= A Pitaw)— -v

q€[0,1]NQ

Definition 1.7. The axioms for graded L}, consist of the axioms for weak LI,
plus following set of axioms:

(Hy) Countable additivity:

NPz \v — (Pizr)\o,

VCP

where U ranges over the finite subset of ®.

(H2) Symmetry:
(P.Z'l e Ty = 7")@0 > (Pxﬂ-(l) <o Tr(n) P T)QO,

where 7 is a permutation of {1, 2, ..., n}.

(H3) Product independence:
(PZ=r)(Py > s)p — (PTy=r1-s)p,

where all variables in &,/ are distinct.

Definition 1.8. The axioms for the full L}, consist of the axioms for graded
L plus the following Keisler’s axiom:

(K') Product measurability:

(PZ > 1)(Py > 0)(PZ=7)(p(T,2) < @7, 7))
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for each r < 1, where all variables in 7', 1/, 2’ are distinct.

The rules of inference for all of the above logics are: Modus ponens, Conjuction

and Generalization, as in Lyp logic (see [3]).

2. COMPLETENESS THEOREM

Consistency properties and weak models.

Definition 2.1. A weak model for L'} is a structure

2 = <A RQ{ ]v ,un>zEI j€J, neN

such that (A, RQl » >Ze 1.je 1s a classical model, each p,, is a finitely additive probabil-
ity measure on A" with each singleton measurable,every p,, rang is subset of [0, I]Q,
and with the set {¢€ A" | AFE ¢[d, ]} pn-measurable for each ¢(Z,y) € L and
each @ € A.

@~ is defined same as in Lyp logic. Without loss of generality, we can suppose in
this chapter that A is a countable admissible set.
Let C' be a countable set of new constant symbols, and let K = L U C. Then we

form the logic K32 corresponding to K.

Definition 2.2. A consistency property for L% is a set S of countable sets s of
sentences of K} which satisfies the following conditions for each s € S:
(C1) (Triviality rule) @ € S;
(Cy) (Consistency rule) Either ¢ ¢ s or - ¢ s;
(C3) (—-rule) If =p € s, then sU{p "} € S;
(C4) (N-rule) If A ® € s, then for all ¢ € ®, sU{p} € 5;
(C5) (\/-rule) If \/ @ € s, then for some ¢ € ®, sU{p} € S
(Co) (
(Cr) If
(
(b

Cr

P-rule) If (PZ > 0)p(Z) € s, then for some ¢ € C, sU{p(d)} € 5;
(%) € K32 is an axiom,then
a) sU{(PZ > 1)p(Z)} €S,
) sU{p(@)} €S, where ¢ e C.
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Theorem 2.3. (Model Existence Theorem) If S is a consistency property,

then any so € S has a weak model.

Proof. Let ¢g, ¢1, @2, ... be an enumeration of the sentences of K. We shall
construct a sequence so C s; C s9 C ... of elements of S as follows. sg is given. Given
S, choose s, to satisfy the following conditions:

(1) $p C Spy1-

(2) If s, U{p,} €S, then ¢, € sp41.

(3) If s, U{pn} €S, v, =\ @, then for some § € &, 0 € 5,,1;.

(4) If s, U{pn} € S, v, = (PZ > 0)1(Z), then for some ¢ € C, ¥(¢) € Spi1.

We now define a model 2 of sy. Let s, = Un@ s,. Let T be a set of constants
of Ki%. For ¢,d € T, let ¢ ~ d iff ¢ = d € s,. Then, ~ is an equivalence relation.
Let [¢] denote the equivalence class of the constant c. Let 2 have the universe set

A={[c] | ceT}. If Ris an n-placed relation symbol and ¢y, ..., ¢, € C, then
AFE R([c1], ..., [en]) iff Rlci, ..., cn) €5y -

Define p,, on the subsets of A™ definable by formulas of L}*, with parameters from
A, by
po{d € A" |AFE pld,c]} = q iff (PT=q)p(Z,0) € s,
It is not difficult to show that everything is well-defined, u,’s are finitely additive

probability measures, which ranges are subsets of [0, I]Q, and it is routine to check

that
AEpllal, ..., [e]] it (e, ..., cn) € 8y

Therefore 2 is a weak model of s,,, and hence a model of sg. O

Theorem 2.4. (Weak Completeness Theorem) FEvery countable set T of

sentences which is consistent in weak L% has a weak model.

Proof. Let S be the set of all countable sets s of sentences of K}% such that only
finitely many ¢ € C' occur in s and not Fgras = A s.

It is not difficult to check that S is a consistency property.
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Theorem 2.5. (Graded Completeness Theorem) FEvery countable set T of

sentences which is consistent in graded L)% has a graded model.

Proof. Let V(S5) be a superstructure over S and RU A C S. We suppose that
a formula ¢(7, @) with parameters from A, a weak model 2 of T', and the relation F
are represented by sets in V(S). Then *¢(Z,d) and *2 are sets in the nonstandard
universe V(*9), and *F is an internal relation. If the context is clear we write simply
E .

Let A be countable, and assume L has countably many constants not appearing
in T'. From the proof of the weak completeness theorem, T has a weak model 2 =
(A, Ry, ¢;, tn)ier, jes nen such that 2 satisfies each theorem of graded L5, A = {c¢; |
j € J}, and the domain of each p, is the set od L':-definable subsets of A”. Form
the internal structure *2, let A = (*A, *R;, *cj, L(pn)), where L(u,) is the Loeb
measure of p,. Every L(u,)-measurable set can be approximated above and below
by *-definable sets in n variables. Using this fact and axioms (Hs) and (Hs) in 2, it
can be shown that 2 is a graded probability structure. An induction of formulas will

show that 2 is L2 -equivalent to 2. O

Remark 2.6. It is needed to be stressed that measures on graded model
(*A, L(py,)) also have for measure rang, set of rationals of [0, 1] interval. Fact that

some definable set S has measure ¢ € [0, 1] can be written by

(A, L(pn)) F (PG = q)po(¥,¢)

for some formula oy (Z) € L}2%.

Considering Lih-equivalent graded model A = (*A, L(p,)) and weak model 2,
we'll have that (2, u,) E (PY = q)¢o(Yy, ), where we can conclude that measure of
set S is rational number of [0, 1] interval.

As consequence of Completness Theorem for full Lyp (see [3, 4]) and theorem 2.5

we have

Theorem 2.7. (Completeness Theorem for full L}3%) Every countable con-

sistent set T' of sentences of L% has a probability model.
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