
37

Kragujevac J. Math. 29 (2006) 37–48.

ON THE BOUNDEDNESS AND THE STABILITY

RESULTS FOR THE SOLUTIONS OF CERTAIN THIRD

ORDER NON-LINEAR DIFFERENTIAL EQUATIONS

B. S. Ogundare

Department of Mathematics Obafemi Awolowo University, Ile-Ife, Nigeria
Department of Pure and Applied Mathematics, UFH, Alice, 5700 RSA

(e-mails: ogundareb@yahoo.com, bogunda@oauife.edu.ng)

(Received April 10, 2006)

Abstract. In this paper, we show the asymptotic stabilty of the trivial solution x = 0
for p ≡ 0 and the boundedness as well as the ultimate boundedness result for p 6= 0 with
the use of a single complete Lyapunov function. The results obtained here improves on the
results already obtained for this class of third order nonlinear differential equations.

1. INTRODUCTION

In this paper, we study the third order differential equation

...
x +aẍ + bẋ + h(x) = P (t), (1.1)

where a and b are positive constants. The functions h and P are continuous in the

respective argument displayed explicitly.

The corresponding linear equation to (1.1) assumes the form

...
x +aẍ + bẋ + cx = 0 (1.2)
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To the above, it is well known that all solutions tend to the trivial solution, as t →∞,

provided that the Routh-Hurwitz conditions a > 0, ab− c > 0 are satisfied.

Intresting results have been obtained by several authors on the boundedness and

stability properties of solutions for various equations of 2nd, 3rd, 4th and even 5th

order. Some of these results have been summarised in [10].

In earlier studies Andres[1-2], Chukwu[4], Ezeilo[5-9], and Tejumola[11] have stud-

ied (1.1) using Lyapunov functions to investigate the boundedness and ultimate

boundeness of solution on one side and stability and asymptotic stability on the other

side. In their work, they all employed incomplete Lyapunov functions for their studies,

except for Chukwu[4] who made an attempt and indeed used a complete (Yoshizawa)

function with the use of signum function. By using a complete Lyapunov function not

necessarily with signum function, ultimate boundedness of solution could easily be

discussed while with incomplete functions, there may be need to have the space path

or trajectories examination before conclusion on ultimate boundedness of solution

could be made.

In particular the equation (1.1) is better handled as a system of three-coupled

first order equations by letting;

ẋ = y
ẏ = z
ż = −az − by − h(x) + P (t)

(1.3)

In this our study, we shall use a single complete Lyapunov function without the use

of any signum function to show that the equation considered has stable and bounded

solutions on a real line.

Definition 1.1. A Lyapunov function V defined as V : I ×<n → < is said to be

COMPLETE if for X ∈ <n

(i) V (t,X) ≥ 0

(ii) V (t, X) = 0, if and only if X = 0

and

(iii) V̇ |1.3 (t, X) ≤ −c |X|where c is any positive constant and |X| given by

|X| = (
∑

(x2
i ))

1
2 such that
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|X| → ∞ as X →∞

Definition 1.2. A Lyapunov function V defined as V : I ×<n → < is said to be

INCOMPLETE if for X ∈ <n (i) and (ii) of the above definition is satisfied and in

addition

(iii) V̇ (t,X) |1.3 ≤ −c |X|∗ where c is any positive constant and |X|∗ given by

|X|∗ = (x2 + y2)
1
2 or |X|∗ = (y2 + z2)

1
2 or |X|∗ = (x2 + z2)

1
2 or |X|∗ = (x2 + y2)

1
2 or

|X|∗ = (x2)
1
2 or |X|∗ = (y2)

1
2 or |X|∗ = (z2)

1
2 such that

|X|∗ →∞ as X →∞

2. FORMULATION OF RESULTS

We considered (1.1) in two major ways and we have prove the following . In the

case when P ≡ 0 we shall prove:

Theorem 2.1. Let h be continuous with the following conditions

(i) H0 = h(x)−h(0)
x

∈ I0 ,x 6= 0 with I0 = [δ, ab]

(ii) ab ≥ H0, ∀x ∈ <.

(iii) h(0) = 0

then every solution (x(t), y(t), z(t)) of the system (1.3) satisfies x2(t)+y2(t)+z2(t) →
0 as t →∞ (Asymptotic stability )

In the case when P (t) 6= 0:

Theorem 2.2. Suppose the following conditions are satisfied:

(i) Conditions(i)-(iii) of Theorem 2.1 hold; and

(ii) |P (t)| ≤ M (constant) for all t ≥ 0 then there exists a constant µ(0 < µ < ∞)

depending only on a, b,and δ such that every solution of (1.1) satisfies

x2(t) + ẋ2(t) + ẍ2(t) ≤ e−
1
2
µt

{
A1 + A2

∫ t

t0
|P (τ)| e 1

2
µτdτ

}2

for all t ≥ t0, where the constant A1 > 0, depends on a, b, δ as well as on t0, x(t0), ẋ(t0)

and ẍ(t0); and the constant A2 > 0 depends on a, b, and δ. We now consider the case

when P (t) in (1.1) is replaced with P (t, x, ẋ, ẍ).
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Theorem 2.3. Following the assumptions of Theorem 2.2 and condition (ii)

replaced with |P (t, x, ẋ, ẍ)| = (|x|+ |y|+ |z|) r(t), where r(t) is a non negative and

continuous function of t, and satisfies
∫ t

0
r(s)ds ≤ M < ∞M > 0.

Then there exists a constant K0 which depends on M,K1, K2 and t0 such that

every solution x(t) of the equation (1.1) satisfies

|x(t)| ≤ K0, |ẋ| ≤ K0, |ẍ| ≤ K0

for all sufficiently large t.

Remark. When h(x) = cx, equation (1.1) reduces to the linear differential equa-

tion with constant coefficients

...
x +aẍ + bẋ + cx = P (t)

and conditions (i) H0 = h(x)−h(0)
x

= c and (ii) read as ab > c, i.e. ab−c > 0 which is the
Routh Hurwitz criterion for stability of solution of third order differential equations.

Notations. Throughout this paper K,K0, K1, . . . K12 will denote finite positive

constants whose magnitudes depend only on the functions h and P as well as constants

a, b and δ but are independent of solutions of (1.1). K ′
is are not neccessarily the same

for each time they occur, but each Ki, i = 1, 2... retains its identity throughout.

3. PRELIMINARY RESULTS

The main tool besides the equation (1.1) itself in the proof of the Theorems (2.1)-

(2.3) is the function V = V (x, y, z) defined by

2V (x, y, z) =
(

δb`
`−1

)
x2 + δ

{
b(b+1)(`−1)+a2[(`−1)+a`

ab(`−1

}
y2 + δ

{
(b+1)(`−1)+a`

ab(`−1

}
z2

+ 2aδ`
`−1

xy + 2δ`
`−1

xz + 2δ
{

(`−1)+a`
b(`−1)

}
yz

(3.1)

where δ > 0, ` > 1 and m2 > 1 for all x, y, z.

Lemma 3.1. Subject to the assumptions of Theorem 2.1 there exist positive con-

stants Ki = Ki(a, b, `, m, δ), i = 1, 2 such that

K1(x
2 + y2 + z2) ≤ V (x, y, z) ≤ K2(x

2 + y2 + z2). (3.2)
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Proof. Clearly V (0, 0, 0) ≡ 0

By rearranging (3.1) we have

2V (x, y, z) =
(

δb`
`−1

)
( b

m
x + my + m

a
z)2 + δ(m2−1)`

m2(`−1)
x2

+ δ`
b(`−1)

{
z + [(`−1)+a`(1−m2)]

b`(`−1)
y
}2

+δ
{

4b2`(b+1)(`−1)3+4a2b`(`−1)2[(`−1)+a`]+a(`−1)[2a`(m2−1)−(`−1)]
4ab2`(`−1)2

+−a3`[4bm2(`−1)−(1−m2)2]
4ab2`(`−1)2

}
y2 + δ

{
(b+1)(`−1)−am2`

ab(`−1)

}
z2

(3.3)

2V (x, y, z) ≥ δ(m2−1)`
m2(`−1)

x2 + δ
{

(b+1)(`−1)−am2`
ab(`−1)

}
z2

+δ
{

4b2`(b+1)(`−1)3+4a2b`(`−1)2[(`−1)+a`]+a(`−1)[2a`(m2−1)−(`−1)]
4ab2`(`−1)2

+−a3`[4bm2(`−1)−(1−m2)2]
4ab2`(`−1)2

}
y2

(3.4)

≥ K1(x
2 + y2 + z2) (3.5)

where
K1 = δ ·min

{
( (m2−1)`

m2(`−1)
), ( (b+1)(`−1)−am2`

ab(`−1)
), ∆

}

with

∆ =
{
(4b2`(b+1)(`−1)3+4a2b`(`−1)2[(`−1)+a`]+a(`−1)[2a`(m2−1)−(`−1)]−a3`[4bm2(`−1)−(1−m2)2]

4ab2`(`−1)2
)
}

.

Therefore,

2V (x, y, z) ≥ K1(x
2 + y2 + z2).

Also from (3.1), by using the Schwartz inequality |xy| ≤ 1
2
|x2 + y2| , we have

2V ≤ ( bδ`
`−1

)x2 + δ
{

b(b+1)(`−1)+a2[(`−1)+a`
ab(`−1)

}
y2 +

{
(b+1)(`−1)+a`

ab(`−1)

}
z2

+ ( aδ`
`−1

)(x2 + y2) + ( δ`
`−1

)(x2 + z2) + ( δ`
b(`−1)

) {(`− 1) + a`} (y2 + z2) .

≤ ( δ
`−1

) (b` + a` + `) x2 + ( δ
`−1

)
{

b(b+1)(`−1)+a2[(`−1)+a`
ab

+ (`−1)+a`
b

+ a`
}

y2

+( δ
`−1

)
{

(b+1)(`−1)+a`
ab

+ ` + (`−1)+a`
b

}
z2.

(3.6)

Hence,

2V ≤ K2(x
2 + y2 + z2). (3.7)

where

K2 = ( δ
`−1

) max
{
`(a + b + 1), b(b+1)(`−1)+a2[(`−1)+a`]

ab
+ (`−1)+a`

b
+ a`,

(b+1)(`−1)+a`
ab

+ ` + (`−1)+a`
b

}
> 0.



42

From (3.5) and (3.7), we have

K1(x
2 + y2 + z2) ≤ V (x, y, z) ≤ K2(x

2 + y2 + z2). (3.8)

This proves Lemma 3.1.

Lemma 3.2. Suppose that the conditions of Theorem 2.2 hold and in addition,

let εi > 0(i = 1, 2) and σ be constant such that,

H0 =
h(x)− h(0)

x
≤ H1 = min

{
4(σ − 1)2

σ2ε2
2

,
4(σ − 1)2

σ2ε2
1

}
,

then there are positive constants Kj = Kj(a, b, `, m, δ)(j = 3, 4) such that for any

solution (x, y, z) of system (1.3),

V̇ |(1.3) ≡ d
dt

V |(1.3) (x, y, z) ≤ −K3(x
2 + y2 + z2) + K4(|x|+ |y|+ |z|) |P (t)| .

(3.9)

Proof. From (1.1) and (1.3) we have,

V̇ |(1.3) = ∂V
∂x

ẋ + ∂V
∂y

ẏ + ∂V
∂z

ż

= ∂V
∂x

y + ∂V
∂y

z + ∂V
∂z

(−az − by − h(x) + P (t))

= −h(x)x− y2 − z2 −
{

(b+1)(`+1)+a`
ab(`−1)

z + (`−1)+a`
b(`−1)

y + `
`−1

x
}

h(x)

+
{

(b+1)(`+1)+a`
ab(`−1)

z + (`−1)+a`
b(`−1)

y + `
`−1

x
}

P (t).
(3.10)

Set
(

(b+1)(`+1)+a`
ab(`−1)

)
= ε1,

(
(`−1)+a`

b(`−1)

)
ε2,

(
`

`−1

)
= ε3 , then by the condition on h(x)

V̇ |(1.3) = −{H0x
2 + y2 + z2 + H0ε1xz + H0ε2xy + H0ε3x

2}
− h(0) (ε1z + ε2y + (1 + ε3)x) + (ε1z + ε2y + ε3x) P (t),

(3.11a)

which can be written as

V̇ |(1.3) = −{(H0x
2 + H0ε2xy + y2) + (H0ε3x

2 + H0ε1xz + z2)}
− h(0) (ε1z + ε2y + (1 + ε3)x) + (ε1z + ε2y + ε3x) P (t).

(3.11b)

Re-writing (3.11b) we have,

V̇ |(1.3) = −
{
(H0

τ
x2 + 1

τ
y2 + 1

τ
z2) + (H0ε3x

2 + H0ε1xz + (τ−1)
τ

z2)

+( τ−1
τ

H0x
2 + H0ε2xy + τ−1

τ
y2)

}

−h(0)(ε1z + ε2y + (1 + ε3)x) + (ε1z + ε2y + ε3x)P (t).

(3.12)
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Let

U = U1 + U2 + U3 + U4 − U5 (3.13)

with

U1 = 1
τ

(H0x
2 + y2 + z2) , (3.14)

U2 =
(
H0ε3x

2 + H0ε1xz + 1
τ
z2

)
, (3.15)

U3 =
(

τ−1
τ

H0x
2 + H0ε2xy + τ−1

τ
y2

)
, (3.16)

U4 = h(0) (ε1z + ε2y + ε3x) . (3.17)

U5 = (ε1z + ε2y + ε3x) P (t) (3.18)

From (3.14),

U1 ≤ K3(x
2 + y2 + z2)

where K3 = 1
τ
·max (H0, 1) . We also have from (3.18) that,

U5 ≤ K4(|x|+ |y|+ |z|)P (t)

with

K4 = max (ε1, ε2, ε3`) .

But U ≥ U1 + U4 − |U5| ,
by the hypothesis that h(0) = 0, then U4 vanishes, hence

U ≥ U1 − |U5| .

Note: U is positive definite, since U2 and U3 are quadratic forms in x and z, and

x and y respectively. Since it is known that any quadratic form AX2 + BX + C is

positive definite if 4AC −B2 ≥ 0. Therefore,

dV

dt
= V̇ = −U ≤ −K3(x

2 + y2 + z2) + K4(|x|+ |y|+ |z|) |P (t)| . (3.19)

Since

(|x|+ |y|+ |z|) ≤
√

3(x2 + y2 + z2)
1
2 ,

(3.19) becomes

dV

dt
≤ −K3(x

2 + y2 + z2) + K5(x
2 + y2 + z2)

1
2 |P (t)| (3.20)
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where K5 =
√

3K4.

This completes the proof of Lemma 3.2.

4. PROOF OF THE MAIN RESULTS

We shall now give the proofs of the Theorems stated in Section 2 of this paper.

Proof of Theorem 2.1. From Lemma 3.1 and Lemma 3.2 it had been established

(or shown) that the function V (x, y, z) is a Lyapunov function of system (1.3). Hence,

the trivial solution of system (1.3) is asymptotically stable. 2

Proof of Theorem 2.2. Indeed from (3.20),

dV

dt
≤ −K3(x

2 + y2 + z2) + K5(x
2 + y2 + z2)

1
2 |P (t)|

from (3.5), we have

(x2 + y2 + z2)
1
2 ≤

(
2V

K1

) 1
2

.

Thus (3.20) becomes
dV

dt
≤ −K6V + K7V

1
2 |P (t)| (4.1)

We note that

K3(x
2 + y2 + z2) = K3 · V

K1

and
dV

dt
≤ −K6V + K7V

1
2 |P (t)| (4.2)

where K6 = K3

K2
and K7 = K5

K
1
2
2

.

This implies that

V̇ ≤ −K6V + K7V
1
2 |P (t)|

and this can be written as

V̇ ≤ −2K8V + K7V
1
2 |P (t)| (4.3)

where K8 = 1
2
K6.

Therefore

V̇ + K8V ≤ −K8V + K7V
1
2 |P (t)| (4.4)
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≤ K7V
1
2

{
|P (t)| −K9V

1
2

}
, (4.5)

where K9 = K8

K7
.

Thus (4.5) becomes

≤ K7V
1
2 V ∗ (4.6)

where

V ∗ = |P (t)| −K9V
1
2 (4.7)

≤ V
1
2 |P (t)|

≤ |P (t)| . (4.8)

When |P (t)| ≤ K9V
1
2 ,

V ∗ ≤ 0 (4.9)

and when |P (t)| ≥ K9V
1
2 ,

V ∗ ≤ |P (t)| · 1

K9

. (4.10)

Substituting (4.9) into (4.5), we have,

V̇ + K8V ≤ K10V
1
2 |P (t)|

where

K10 =
K7

K9

.

This implies that

V − 1
2 V̇ + K8V

1
2 ≤ K10 |P (t)| . (4.11)

Multiplying both sides of (4.11) by e
1
2
K8t we have,

e
1
2
K8t

{
V − 1

2 V̇ + K8V
1
2

}
≤ e

1
2
K8tK10 |P (t)| (4.12)

i.e

2
d

dt

{
V

1
2 e

1
2
K8t

}
≤ e

1
2
K8tK10 |P (t)| . (4.13)

Integrating both sides of (4.13) from t0 to t, gives

{
V

1
2 e

1
2
K8γ

}t

t0
≤

∫ t

t0

1

2
e

1
2
K8τK10 |P (τ)dτ | (4.14)
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which implies that

{
V

1
2 (t)

}
e

1
2
K8t ≤ V

1
2 (t0)e

1
2
K8t0 +

1

2
K10

∫ t

t0
|P (τ)| e 1

2
K8τdτ ,

or

V
1
2 (t) ≤ e−

1
2
K8t

{
V

1
2 (t0)e

1
2
K8t0 +

1

2
K10

∫ t

t0
|P (τ)| e 1

2
K8τdτ

}
.

Using (3.5) and (3.7) we have

K1(x
2(t) + ẋ2(t) + ẍ2(t)) ≤ e−

1
2
K8t

{
K2(x

2(t0) + ẋ2(t0) + ẍ2(t0))e
1
2
K8t0

+
1

2
K10

∫ t

t0
|P (τ)| e 1

2
K8τdτ

}2 (4.15)

for all t ≥ t0 Thus,

x2(t) + ẋ2(t) + ẍ2(t) ≤ 1

K1

{
e−

1
2
K8t

{
K2(x

2(t0) + ẋ2(t0) + ẍ2(t0))e
1
2
K8t0

+
1

2
K10

∫ t

t0
|P (τ)| e 1

2
K8τdτ

}2
}

≤
{

e−
1
2
K8t

{
A1 + A2

∫ t

t0
|P (τ)| e 1

2
K8τdτ

}2
}

.

(4.16)

By substituting K8 = µ in the inequality (4.16), we have

x2(t) + ẋ2(t) + ẍ2(t) ≤ e−
1
2
µt

{
A1 + A2

∫ t

t0
|P (τ)| e 1

2
µτdτ

}2

. (4.17)

Hence, the completion of the proof. 2

Proof of Theorem 2.3. From the function V defined above and the conditions

of Theorem 2.3, the conclusion of Lemma 3.1 can be obtained, as

V ≥ K1

(
x2 + y2 + z2

)
(4.18)

and since P 6= 0 we can revise the conclusion of Lemma 3.2 i.e

V̇ ≤ −K3(x
2 + y2 + z2) + K4(|x|+ |y|+ |z|) |P (t)| ,

and we obtained

V̇ ≤ K4(|x|+ |y|+ |z|)2r(t) (4.19)
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By using the Schwartz inequalities on (4.19), we have

V̇ ≤ K11(x
2 + y2 + z2)r(t) (4.20)

where K11 = 3K4

From equations (4.18) and (4.20) we have,

V̇ ≤ K11V r(t). (4.21)

Integrating equation (4.21) from 0 to t, we obtain

V (t)− V (0) ≤ K12

∫ t

0
V (s)r(s)ds. (4.22)

where K12 = K11

K1
= 3K4

K1
Using the condition (ii) of Theorem 2.3 we have

V (t) ≤ V (0) + K11

∫ t

0
V (s)r(s)ds (4.23)

By Grownwall-Bellman inequality equation (4.23) yields

V (t) ≤ V (0)exp
(
K12

∫ t

0
r(s)ds

)
. (4.24)

this completes the proof of Theorem 2.3. 2
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