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Abstract. An alternative method to the method proposed in [10] for the numerical eval-
uation of integrals of the form

∫ 1
−1 eiφtf(t)dt, where f(t) has a simple pole in (−1, 1) and

φ ∈ R may be large, has been developed. The method is based on a special case of Hermite
interpolation polynomial and it is comparatively simpler and entails fewer function evalua-
tions and thus faster, but the two methods are comparable in accuracy. The validity of the
method is demonstrated in the provision of two numerical experiments and their results.

1. INTRODUCTION

The quadrature of oscillatory integrals has a wide range of applications in engi-

neering, quantum physics, image analysis, and fluid dynamics. If the oscillation is

high , and this is often the case in most applications, the classical methods of in-

tegration are unsuitable and a non-classical method is then required. The earliest

numerical method for the treatment of this problem is probably due to Filon [3] who



92

approximates the non-oscillatory factor of the integrand by second-degree polynomi-

als over an even number of subintervals and analytically integrates out the oscillatory

factor. A full account of this method is given in Davis and Rabinowitz [2, Eq.(1.10.2)].

A notable later work is due to Luke [8], who approximates f by polynomials of degree

≤ 10. Since then a considerable literature has evolved on the subject and one may,

for example, see [4, 7, 9, 10].

In [10] the following integral

Iτ,ω =
∫ 1

−1

eiωx

x− τ
f(x)dx, ω > 0, i2 = −1, −1 < τ < 1, f ′(τ) 6= 0 (1)

which is oscillatory and of Cauchy type and therefore has two practical difficulties, was

considered for numerical treatment over [−1, 1] using a method based on a modified

Lagrangian interpolation formula and on properties of some orthogonal polynomials.

In the current paper we propose an alternative approach based on a special

Hermite interpolation polynomial which in general consists of the following [5,6]:

Given any (n + 1) distinct points x0, x1, . . . , xn in [a, b] and corresponding inte-

gers ur ≥ 1, r = 0, 1, . . . , n, and given a function f(x) ∈ CH−1[a,b], and where

H = max {u0, u1 . . . , un}, and ur is the multiplicity of the point xr , a polynomial can

be found such that

P (s)(xr) = f (s)(xr) = f (s)
r , s = 0, 1, . . . , ur − 1, r = 0, 1, . . . , n (2)

where f (s)
r is the s-th derivative of f at xr.

It is well known that the interpolating polynomial P (x) can be given by

P (x) =
n∑

r=0

ur−1∑

j=0

βr,j(x)f (j)(xr)

where each βr,j(x) is a polynomial of degree N =
∑n

r=0 ur − 1, such that β
(j)
r,j (xr) = 1

and β
(j)
r,j (xk) = 0, k 6= r; k = 0, 1, . . . , n.

From here and throughout the rest of the paper we shall asssume that f(x) is

a monotone and f(x) ∈ CN+1[−1, 1]. The outcome of this approach is a truncated

asymptotic series in inverse powers of the frequency ω and the integral is approximated
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as a linear combination of the function value and derivatives at x = τ , with coefficients

that may depend on frequency ω.

2. THE NEW APPROACH

Consider the special Hermite polynomial Pn[f, τ ](x) which satisfies the interpo-

lating conditions

P (s)
n [f, τ ](τ) = f (s)(τ), s = 0, 1, 2, . . . , n (3)

where f (s)(τ) = f (s)
τ and f(τ) = fτ (this is a special case of the Hermite interpolation

polynomial, which is a Taylor series).

Then, ∀x ∈ [−1, 1] and −1 < τ < 1 we have

Pn[f, τ ](x) = fτ + (x− τ)f ′τ +
(x− τ)2

2!
f ′′τ + · · ·+ (x− τ)n

n!
f (n)

τ (4)

and the interpolating error is given by

E[f, τ ](x) = f(x)− Pn[f, τ ](x) =
(x− τ)n+1

(n + 1)!
f (n+1)(ξ); ξ ∈ (x, τ) (5)

The proof follows from standard techniques in [6], and which is exact if f is a polyno-

mial of degree ≤ n.

Suppose we set L[x, τ ] =
1

x− τ
Pn[f, τ ](x)

then,

L[x, τ ] =
fτ

x− τ
+

n∑

k=1

(x− τ)k−1

k!
f (k)

τ (6)

and it follows that

∫ 1

−1
L[x, τ ]eiωxdx = fτ

∫ 1

−1

eiωx

x− τ
dx +

n∑

k=1

f (k)
τ

k!

∫ 1

−1
(x− τ)k−1eiωxdx (7)

Theorem. If δk−1 =
∫ 1

−1
(x − τ)k−1eiωxdx and δm = 0, ∀m < 0, m ∈ Z, then

δk−1 satisfies the linear non-homogeneous recurrence relation

iωδk−1 + (k − 1)δk−2 = [(1− τ)k−1eiω + (−1)k(1 + τ)k−1e−iω]; k = 1, . . . , n (8)
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Proof. The proof follows by integrating δk−1 by parts.

Thus, in view of (7) and the preceding theorem, our desired quadrature rule

becomes

Iτ,ω ≈ Ĩτ,ω = ψτ,ωfτ +
n∑

k=1

δk−1

k!
f (k)

τ (9)

δ0 =
2

ω
sin ω + 0i (10)

and where

ψτ,ω =
∫ 1

−1

eiωx

x− τ
dx

we have shown in [10] the following analytical results.

Re[ψτ,ω] = cos τω Ci (u1)− sin τω Si (u1) + sin τω Si (u2)− cos τω Ci (u2) (11)

Im[ψτ,ω] = cos τω Si (u1) + sin τω Ci (u1)− cos τωSi (u2)− sin τω Ci (u2) (12)

u1 = ω(1− τ), u2 = −ω(1 + τ) (13)

Ci and Si are cosine and sine integrals defined in [1] by

Ci (z) = γ + ln z +
∞∑

n=1

(−1)nz2n

2n(2n)!
, γ = Euler’s constant. (14)

Si (z) =
∞∑

n=0

(−1)nz2n+1

(2n + 1)(2n + 1)!
(15)

Ci (−z) = Ci (z)− iπ, 0 < arg z < π (16)

Si (−z) = −Si (z) (17)

Asymptotic Expansions

Si(z) =
π

2
− f(z) cos z − g(z) sin z (18)

Ci(z) = f(z) sin z − g(z) cos z (19)

f(z) ∼ 1

z
(1− 2!

z2
+

4!

z4
− 6!

z6
+ · · ·), | arg z| < π (20)

g(z) ∼ 1

z2
(1− 3!

z2
+

5!

z4
− 7!

z6
+ · · ·), | arg z| < π (21)
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To evaluate each f (s)(α), s ≥ 1, one may have to assume that f can be continued

analytically into the complex plane and then use the Cauchy’s integral formula to

obtain

f (s)(α) =
s!

2π

∫ 2π

0

f(α + cos θ + i sin θ)

(cos sθ + i sin sθ)
dθ, s ≥ 1 (22)

Any quadrature rule (e.g. Newton–Cotes) can then be applied to (22) but since we

started with real variables only the real part of the result may be considered.

3. THE ERROR

The resulting quadrature error may be expressed as

Eτ,ω(k) =
∞∑

k=n

δk

(k + 1)!
f (k+1)

τ (23)

and we have assumed that f is analytic in [−1, 1].

Rewriting (8),

δk + rkδk−1 = rbk, k = 1, 2, . . . (24)

δ0 =
2

ω
sin ω + 0i

b0 = 0 + 2 sin ωi

where r =
1

iω
, and bk = [(1− τ)keiw + (−1)k+1(1 + τ)ke−iw]

The particular solution of (24) using standard techniques can be expressed by

δk = (−1)k(k!)rkδ0 +
k−1∑

s=0

(−1)s k!

(k − s)!
rs+1bk−s, k = 1, 2, . . . (25)

and by direct calculation obtain

δ1 = −rδ0 + rb1

δ2 = 2r2δ0 − 2r2b1 + rb2

δ3 = −6r3δ0 + 6r3b1 − 3r2b2 + rb3

δ4 = 24r4δ0 − 24r4b1 + 12r3b2 − 4r2b3 + rb4

...
...

...
...

...
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Without proof but by observation, we note that if ω → ∞, then r → 0 and

δk ≈ rbk. It can be shown also that |bk| ≤ 2(1 + τ)k. Since f is analytic and bounded

in [−1, 1] and |δk| < M , for each k ∈ N , then by (23) Eτ,ω(k) → 0 as k →∞, which

is an indication of convergence.

4. NUMERICAL EXAMPLES

For our numerical experiment, two simple but typical problems are presented and

their numerical results are shown to demonstrate the potential of the method devel-

oped. All computations were done with MATLAB (version 6.5 release 13) running

on Windows 2000.

(a) Consider the integral [10]

Im(I0,12) =
∫ 1

−1

ex sin 12x

x
dx

which has the exact value

2Si(12)− 2
∞∑

m=1

1

(2m)!

2m−1∑

j=0

j!

(
2m− 1

j

)
1

12j+1
cos(12 +

π

2
j) = 2.929140054093

Note that for this integral τ = 0, ω = 12. Therefore for some fixed values of n we

obtained the following approximate values to the integral using eqn.(9)

n Im(Ĩ0,12) |Eτ,ω|
7 2.92914374390664 3.6e−6
9 2.92914009129263 3.7e−8
11 2.92914005434454 2.5e−10
15 2.92914005409237 6.3e−13

(b) Our final experiment is with the integral

Re(I− 1
2
,100) =

∫ 1

−1

cosh x cos 100x

x + 1
2

dx

For this problem also, τ = −1
2
, ω = 100. Since ω is large, we have used the asymptotic

values of Ci(x) and Si(x) in our computation. The results follow.
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n Re(Ĩ− 1
2
,100)

7 −0.91524640126011
9 −0.91524639524348
11 −0.91524639520922
15 −0.91524639520912

Although the exact value of this integral is not immediately known, we believe

the result in the last row is correct to 12 decimal digits.

An Extension:

Eqn (9) can be modified without much extra effort to deal with the numerical

evaluation of the integrals of the form

Ĩτ,ω =
∫ 1

1

eiωxf(x)

(x− τ)2
dx (26)

in which the point x = τ is a pole of order 2. Consequently, the modification of eqn

(9) then gives,

Ĩτ,ω = (z + iωψτ,ω)fτ + ψτ,ωf ′τ +
sin ω

ω
f ′′τ +

n∑

k=3

δk−2

k!
f (k)

τ (27)

z = −2(1− τ 2)−1(cos ω + iτ sin ω) (28)
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