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Abstract. In this paper, we establish an integral inequality of the type of Hardy’s mainly
by Jensen’s Inequality. Our result is a generalization of the earlier results of the authors.

1. INTRODUCTION

Various methods have been employed for the establishment of necessary and suf-

ficient conditions on p, q, v, w for the Hardy-type inequality

[∫ b

a
|u(x)|qw(x)dx

] 1
q

≤ C

[∫ b

a
|u′(x)|pv(x)dx

] 1
p

(1.1)

to hold, where C is a constant depending on p and q. A recent trend in inequalities

has been to establish , mainly by Jensen’s inequality (see for example [1] and [3]) and

its generalization due to Steffensen, some general inequalities that include as special

cases many that are of independent interest and which were originally proved by quite

different methods.
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In this paper, we follow this trend in using Jensen’s inequality in conjunction

with a form of Minkowski’s integral inequality to establish a result that generalizes

inequality (1.1).

Jensen’s Inequality. Let ϕ be continuous and convex, h(x, t) non-negative for

x ≥ 0, t ≥ 0, λ nondecreasing and −∞ ≤ ξ(x) ≤ η(x) ≤ ∞. Suppose ϕ has a

continuous inverse ϕ−1 which is necessarily concave, then

ϕ−1




∫ η(x)
ξ(x) h(x, t)dλ(t)

∫ η(x)dλ(t)
ξ(x)


 ≥

∫ η(x)
ξ(x) ϕ−1 [h(x, t)] dλ(t)

∫ η(x)
ξ(x) dλ(t)

. (1.2)

The inequality (1.2) is the Jensen’s inequality for convex functions.

Taking the convex function ϕ(u) = up, p ≥ 1 and letting ξ(x) = a, η(x) = x we

obtain as a consequence of (1.2) the inequality

[∫ x
a h(x, t)dλ(t)∫ x

a dλ(t)

] 1
p

≥
∫ x
a h(x, t)

1
p dλ(t)∫ x

a dλ(t)
.

For 1 ≤ p ≤ q, we have




∫ x
a h(x, t)

1
q dλ(t)∫ x

a dλ(t)




1
p

≥
∫ x
a h(x, t)

1
pq dλ(t)∫ x

a dλ(t)
,

which we write as

∫ x

a
h(x, t)

1
pq dλ(t) ≤

[∫ x

a
dλ(t)

]1− 1
p

[∫ x

a
h(x, t)

1
q dλ(t)

] 1
p

. (1.3)

The inequality (1.3) is our main tool in the proof of the main result of this paper.

2. MAIN RESULTS

Our main result is the following:

Theorem 2.1. Let g be continuous and nondecreasing on [a, b],

0 ≤ a ≤ b < ∞, with g(x) > 0 for x > 0. Let q ≥ p ≥ 1 and f(x) be nonnegative and
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Lebesgue-Stieltjes integrable with respect to g(x) on [a, b]. Suppose δ is a real number

such that −p
q

< δ < 0, then

[∫ b

a
g(x)

δq
p

(∫ x

a
f(t)dg(t)

)q

dg(x)

] 1
q

≤ C(a, b, p, q, δ)

[∫ b

a
g(x)(p−1)(1+δ)f(x)pdg(x)

] 1
p

,

(2.1)

where

C(a, b, p, q, δ) = (−δ)
q(1−p)

p

(
p

p + δq

) p
q

g(b)p+δq
(
g(b)−δ − g(a)−δ

) q
p
(p−1)

> 0.

We shall need the following result of Minkowski for the proof of the theorem.

Lemma 2.2. [2] Let K(x, y) be a nonngative measurable function on (a, b)×(c, d),

and let r ≥ 1. Then,

[∫ b

a

[∫ d

c
K(x, y)dy

]r

dx

] 1
r

≤
∫ d

c

[∫ b

a
Kr(x, y)

] 1
r

dy. (2.2)

If K(x, y) = H(x)G(y) where x ∈ (a, b) and y ∈ (c, d), then (2.2) reduces to

(∫ b

a
G(x)

[∫ b

a
H(y)dy

]r

dx

) 1
r

≤
∫ b

a
H(y)

[∫ b

y
G(x)dx

] 1
r

dy . (2.3)

Proof of Theorem 2.1. In the inequality (1.3) let

h(x, t) = g(x)δqg(t)pq(1+δ)f(t)pq

dλ(t) = g(t)−(1+δ)dg(t).

Then the left-hand side of (1.3) becomes
∫ x

a
g(x)

δ
p g(t)(1+δ)f(t)g(t)−(1+δ)dg(t) = g(x)

δ
p

∫ x

a
f(t)dg(t).

and the right-hand side reduces to

[∫ x

a
g(t)−(1+δ)dg(t)

]
p−1

p

[∫ x

a
g(x)δg(t)(p−1)(1+δ)f(t)pdg(t)

] 1
p

=
{[

(−δ)−1g(t)−δ
]x

a

} p−1
p

[∫ x

a
g(x)δg(t)(p−1)(1+δ)f(t)pdg(t)

] 1
p

= (−δ)
1−p

p

[
g(x)−δ − g(a)−δ

] p−1
p

{∫ x

a
g(x)δg(t)(p−1)(1+δ)f(t)pdg(t)

} 1
p

.
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Hence the inequality (1.3) becomes

g(x)
δ
p

(∫ x

a
f(t)dg(t)

)

≤ (−δ)
(1−p)

p

[
g(x)−δ − g(a)−δ

] (p−1)
p

[
g(x)δ

∫ x

a
g(t)(p−1)(1+δ)f(t)pdg(t)

] 1
p

.

For q ≥ p we have

g(x)
δq
p

(∫ x

a
f(t)dg(t)

)q

≤ (−δ)
q(1−p)

p

[
g(x)−δ − g(a)−δ

] q(p−1)
p g(x)

δq
p

[∫ x

a
g(t)(p−1)(1+δ)f(t)pdg(t)

] q
p

.

Integrating both sides with respect to g(x) and then raising both sides to power p
q

yields

[∫ b

a
g(x)

δq
p

[∫ x

a
f(t)dg(t)

]q

dg(x)

] p
q

≤
[
(−δ)

q(1−p)
p

∫ b

a

(
g(x)−δ − g(a)−δ

) q(1−p)
p g(x)

δq
p

×
(∫ x

a
g(t)(p−1)(1+δ)f(t)pdg(t)

) q
p

dg(x)

] p
q

.

(2.4)

Applying (2.3) to the right-hand side we obtain

[∫ b

a

(
g(x)−δ − g(a)−δ

) q(p−1)
p g(x)

δq
p

{∫ x

a
g(t)(p−1)(1+δ)f(t)pdg(t)

} q
p

dg(x)

] p
q

≤
[∫ b

a
g(t)(p−1)(1+δ)f(t)p

{∫ b

t

(
g(x)−δ − g(a)−δ

) q(p−1)
p g(x)

δq
p dg(x)

}] p
q

dg(t)

≤
(
g(b)−δ − g(a)−δ

) q(p−1)
p

∫ b

a
g(t)(p−1)(1+δ)f(t)p

[∫ b

t
g(x)

δq
p dg(x)

] p
q

dg(t),

since δ < 0

=

(
p

p + δq

) p
q (

g(b)−δ − g(a)−δ
) q(p−1)

p

×
∫ b

a
g(x)(p−1)(1+δ)f(x)p

[
g(b)

p+δq
p − g(x)

p+δq
p

] p
q

dg(x),

≤ C(a, b, p, q, δ)p
∫ b

a
g(x)(p−1)(1+δ)f(x)pdg(x).
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i.e. we have shown that

[∫ b

a

(
g(x)−δ − g(a)−δ

) q(p−1)
p g(x)

δq
p

{∫ x

a
g(t)(p−1)(1+δ)f(t)pdg(t)

} q
p

dg(x)

] p
q

≤
(

p

p + δq

) p
q (

g(b)−δ − g(a)−δ
) q(p−1)

p

×
∫ b

a
g(x)(p−1)(1+δ)f(x)p

[
g(b)

p+δq
p − g(x)

p+δq
p

] p
q

dg(x),

in which reduces to

[∫ b

a
g(x)

δq
p

(∫ x

a
f(t)dg(t)

)q

dg(x)

] 1
q

≤ C(a, b, p, q, δ)

[∫ b

a
g(x)(p−1)(1+δ)f(x)pdg(x)

] 1
p

.

This completes the proof of the theorem. 2

Remark. When g(x) = x, inequality (2.1) reduces to the form (1.1) with

|u(x)| = ∫ x
a f(t)dt, |u′(x)| = f(x), w(x) = x

δq
p and v(x) = x(p−1)(1+δ).
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