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Abstract. This paper is concerned with the existence of bounded and L2−solutions to
equations of the form

(∗) ...
x +a(t)f(ẋ)ẍ + b(t)g(x)ẋ + c(t, x) = e(t),

where e(t) is a continuous square integrable function. We obtain sufficient conditions which
guarantee that all solutions of the equation (∗) are bounded are in L2[0,∞).

1. INTRODUCTION

In this paper we are interested in the existence of bounded and L2−solutions on

the non-negative real line [0,∞) to the equation

...
x +a(t)f(ẋ)ẍ + b(t)g(x)ẋ + c(t, x) = e(t), (1.1)
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where f and g are continuous on <, a(t) and b(t) are continuous on [0,∞), with

e(t) square integrable. By an L2−solution, we mean a solution of (1.1) such that
∫∞
0 x(t)2dt < ∞. The equation (1.1) and its second order analogous play an important

role in the phase locked loop model realised by T.V. system. See e.g. [1, 2] for more

expository results.

The problem of existence of solutions which are bounded, and in L2[0,∞) for

higher order nonlinear differential equations has been of great interest to many math-

ematicians for decades. Such a problem has been studied mostly for second order

nonlinear differential equations by many authors (see, e.g., [1, 4-7] and the references

included; for the case of Lp−solutions, see also [5, 6, 8]), but only a few results (see

[2]) are related to the third order nonlinear differential equations. In [1], the authors

discussed the square integrable solutions of Duffing’s and Lienard’s types, where the

physical motivation as well as application were explained in detail. The case of a

more generalized Lienard equation was treated in [5]. A third order analogous of the

problem discussed in [1] can be found in [2]. However, the forcing term in the equation

treated in the last cited paper was not a continuous square integrable function.

Here, we would like to investigate the third order analogous of the problem dis-

cussed in [7] and obtain sufficient conditions on the equation (1.1) that will ensure

the existence of bounded and L2−solutions on the non-negative real line [0,∞). The

results obtained in this work extend and generalize to third order nonlinear differ-

ential equations, the results in [7]. We also obtained sufficient conditions that made

all the solutions of the equation (1.1) as well as as their first and second derivatives

bounded.

2. MAIN RESULTS

The main results of this work are the following:

Theorem 2.1. Consider the differential equation (1.1) where e(t) is continu-
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ous on [0,∞) and
∫∞
0 e(t)2dt < ∞. Let a(.) and b(.) be continuous on [0,∞), with

a(t) > a0 > 0, b(t) > b0 > 0, f(.), and g(.) also continuous on < with f(ẋ) > f0 > 0,

g(x) > g0 > 0 where a0, b0, f0 and g0 are positive constants. In addition, let c(t, x)

be a continuous function on [0,∞) × < with
∫∞
0 c(t, x)dt = ∞ uniformly on t, and

x∂c(t,x)
∂t

≤ 0; then any solution x of (1.1), as well as its derivatives are bounded on

[0,∞).

Theorem 2.2. Let the hypotheses of the Theorem 2.1 hold. In addition, suppose

that c(t, x)x > c0x
2 for some positive constant c0 and a(.), b(.) are decreasing i.e.

ȧ(t) ≤ 0, ḃ(t) ≤ 0, then all the solutions of the equation (1.1) are L2−solutions.

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 2.1.

By the standard existence theorem, there is a solution to the equation (1.1) which

exists on [0, T ) for some T > 0. On multiplying the equation (1.1) by ẋ and integrating

the last part of LHS by parts we have

ẋ(t)ẍ(t)−
∫ t

0
ẍ(s)2ds +

∫ t

0
a(s)f(ẋ(s))ẍ(s)ẋ(s)ds +

∫ t

0
b(s)g(x(s))ẋ(s)2ds

+
∫ x(t)

x(0)
c(s, u)ds−

∫ t

0

∫ x(t)

x(0)

∂c(s, u)

∂s
duds = ẋ(0)ẍ(0) +

∫ t

0
e(s)ẋ(s)ds,

(3.1)

from which we obtain

ẋ(t)ẍ(t)−
∫ t

0
ẍ(s)2ds +

∫ t

0
a(s)f(ẋ(s))ẍ(s)ẋ(s)ds +

∫ t

0
b(s)g(x(s))ẋ(s)2ds

+
∫ x(t)

x(0)
c(s, u)ds−

∫ t

0

∫ x(t)

x(0)

∂c(s, u)

∂s
duds ≤ ẋ(0)ẍ(0) +

∫ t

0
|e(s)ẋ(s)|ds.

(3.2)

Now if x(t) is unbounded, then for large values of |x|, we have that the LHS of the

inequality (3.2) is positive from our hypothesis. By using the mean value theorem to
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the last part of the RHS in the inequality (3.2), we have that

ẋ(t)ẍ(t)−
∫ t

0
ẍ(s)2ds +

∫ t

0
a(s)f(ẋ(s))ẍ(s)ẋ(s)ds +

∫ t

0
b(s)g(x(s))ẋ(s)2ds

+
∫ x(t)

x(0)
c(s, u)ds−

∫ t

0

∫ x(t)

x(0)

∂c(s, u)

∂s
duds ≤ ẋ(0)ẍ(0) +

∣∣∣ẋ(t̃)
∣∣∣ D,

(3.3)

where

D =
∫ ∞

0
|e(t)|dt; 0 < t̃ < t.

From the inequality (3.3), it is clear that if |x| → ∞, then must |ẋ| and |ẍ| . Otherwise,

the LHS becomes unbounded while the RHS stays bounded which is impossible.

Also as |ẋ(t)| and |ẍ(t)| approach ∞, so must
∣∣∣ẋ(t̃)

∣∣∣ . On any compact subinterval,

choose t where ẋ(t) is a maximum and divide the inequality (3.3) by ẋ(t).

ẍ +
1

ẋ(t)

{
−

∫ t

0
ẍ(s)2ds +

∫ t

0
a(s)f(ẋ(s))ẍ(s)ẋ(s)ds +

∫ t

0
b(s)g(x(s))ẋ(s)2ds

}

+
1

ẋ(t)

{∫ x(t)

x(0)
c(s, u)ds−

∫ t

0

∫ x(t)

x(0)

∂c(s, u)
∂s

duds

}
≤ ẋ(0)ẍ(0)

ẋ(t)
+

∣∣ẋ(t̃)
∣∣ D

ẋ(t)
.

(3.4)

Now if ẋ(t) → ∞, the LHS of the inequality (3.4) becomes unbounded while the

RHS remains bounded, i.e.,

ẍ(t) ≤ ẋ(0)ẍ(0)

ẋ(t)
+

∣∣∣ẋ(t̃)
∣∣∣ D

ẋ(t)
. (3.5)

is a contradiction. Thus |x(t)| , |ẋ(t)| and |ẍ(t)| must stay bounded on [0, T ). By

standard arguement we are permitted to extend the solution on all [0,∞) (see [8]).

As argued in [2] and [3] by imposing more stringent conditions on c(t, x), all the

solutions become L2−solutions. Thus the conclusion to the proof of Theorem 2.1. 2

Next we prove Theorem 2.2.

Proof of Theorem 2.2.

To show that x is in L2[0,∞), we first multiply the equation (1.1) by x and
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integrate from 0 to t to get

xẍ−
∫ t

0
x(s) ¨x(s)ds +

∫ t

0
a(s)f( ˙x(s))x(s) ¨x(s)ds +

∫ t

0
b(s)g(x)x(s) ˙x(s)ds

+
∫ t

0
x(s)c(s, x(s))ds = x(0) ¨x(0) +

∫ ∞

0
e(s)x(s)ds.

(3.6)

From the inequality (3.3), we observe that ẋ and ẍ must be square integrable since

∫ ∞

0
ẍ(s)2ds < ∞

and
∫ ∞

0
b(s)g(s)ẋ(s)2ds >

∫ ∞

0
b0g0ẋ(s)2ds.

By Schwartz inequality, the third term of the LHS of the inequality (3.3) becomes

∫ ∞

0
a(s)f(ẋ(s))ẍ(s)ẋ(s)ds >

∫ ∞

0
a0f0ẍ(s)ẋ(s)ds ≤ a0f0

(∫ ∞

0
ẋ(t)2dt

) 1
2

(∫ ∞

0
ẍ(t)2dt

) 1
2

,

where f0, g0 are the lower bounds of f(x) and g(x) respectively, on the interval [−k, k]

and k is a bound of x on [0,∞). Let

F (ẋ) =
∫ t

0
u̇f(u̇)du and G(x) =

∫ t

0
ug(u)du.

On integrating by parts the third and fourth terms of the equation (3.6), we have

xẍ−
∫ t

0
x(s)ẍ(s)ds + a(t)F (ẋ(t))−

∫ t

0
F (ẋ(s))ȧ(s)ds

+b(t)G(x(t))−
∫ t

0
G(x(s))ḃ(s)ds +

∫ t

0
c(s, x(s)ds ≤ D1,

(3.7)

where D1 = |x(0)ẍ(0)|+ |a(0)F (ẋ(0)|+ |b(0)G(x(0))|+∫ t
0 |e(s)x(s)|ds. Since the RHS

of the inequality (3.7) is bounded and all terms on the LHS of the equation (3.6) are

either bounded or positive, the result thus follows. 2

Remark.
∫ t
0 ẋẍds ≤

(∫ t
0 ẋ2ds

) 1
2

(∫ t
0 ẍ2ds

) 1
2 since each is positive, and by the

hypotheses, all terms on the LHS is either positive or bounded.
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