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Abstract. We examine the geodesic mapping of an almost Hermitian (almost para-
Hermitian) manifold using the holomorphic curvature tensor and show that, if such manifold
allows the geodesic mapping, then, besides the classical projective curvature tensor, there
are two more invariant tensors.

1. INTRODUCTION

Let (M, g) and (M, g) be two Riemannian manifolds, dim M = dim M = m

with the metrics g and g respectively. If we consider the mapping f : M 7→ M ,

both manifolds can be assigned to the coordinate system, general with respect to the

mapping. This is the coordinate system in which the corresponding points p ∈ M

and f(p) ∈ M have the same coordinates {x1, x2, ..., xm}. Thus we can write (M, g)

instead (M, g).

The diffeomorphism transforming all geodesics into the geodesics is said to be the

geodesic mapping. It is well known that the necessary and the sufficient condition for

the geodesic mapping of (M, g) onto (M, g) is
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Γ
t
ij = Γt

ij + δt
jψi + δt

iψj , (1)

where Γ and Γ are the Levi-Civita connections with respect to the metrics g and g

respectively, and ψi is the gradient vector field. As for the curvature tensors R and

R, they are related as follows

R
t
jhl = Rt

jhl + δt
lψjh − δt

hψjl (2)

where

ψjh = ∇jψh − ψjψh ,

and ∇ is the operator of the covariant derivative with respect to Γ. Also, it is well

known that the projective curvature tensor

W t
ijh = Rt

ijh −
1

m− 1
(δt

hρij − δt
jρih) (3)

where ρij are the components of the Ricci tensor, is invariant with respect to the

geodesic mapping.

If in the relation (1) ψi is identically zero, the geodesic mapping is said to be trivial.

For example, the geodesic mapping of a Kähler manifold onto the Kähler manifold

preserving the complex structure, under some additional conditions, is trivial. For

such manifolds, also, the holomorphically projective mapping is defined.

A vector V at a point of a Kähler manifold and the vector J(V ), where J is

the complex structure, are mutualy orthogonal and, consequently they are linearly

independent. For a para-Kähler manifold, if V is not a null vector, V and J(V ) are

also linearly independent. The plane element determined by V and J(V ) is called a

holomorphic section. A curve of a Kähler (para-Kähler) manifold is a holomorphically

planer curve if and only if the holomorphic sections determined by its tangent vectors

are parallel along the curve itself. The diffeomorphism transforming all holomorphi-

cally planer curves into holomorphically planer curves, is said to be the holomorphi-

cally projective mapping. It is the natural generalization of the geodesic mapping.

Such mappings were investigated by many authors and considered in many mono-

graphs and reviews (see, for example [5] and [9] and the references therein). Here we
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remind only that the necessary and the sufficient condition for the holomorphically

projective mapping of a Kähler (para-Kähler) manifold, preserving the structure J ,

is

Γ
t
ij = Γt

ij + δt
iθj + δt

jθi + ε
(
J t

i θaJ
a
j + J t

jθaJ
a
i

)
,

while the curvature tensors are related as follows

R
t
jhl = Rt

jhl + δt
lθjh − δt

hθjl − ε
(
J t

l θjaJ
a
h − J t

hθjaJ
a
l − 2J t

jθhaJ
a
l

)
, (4)

where

θij = ∇jθi − θiθj + θaθbJ
a
i J b

j ,

θi is a gradient and ε = −1 (ε = +1) for the Kähler (para-Kähler) manifold. The

holomorphically projective curvature tensor

P t
jhl = Rt

jhl −
1

2(n + 1)

[
δt
lρjh − δt

hρjl − ε
(
J t

l ρajJ
a
h − J t

hρjaJ
a
l − 2J t

jρhaJ
a
l

)]
, (5)

where 2n = m = dim M , is invariant with respect to the holomorphically projective

mapping. ( [10], p. 265 for ε = −1, [6] for ε = +1 ).

In this note, we examine the geodesic mapping of an almost Hermitian (almost

para-Hermitian) manifold, using the holomorphic curvature tensor. In the section 3,

we obtain the corresponding invariant tensors. As a consequence, we get that for the

Kähler (para-Kähler) manifolds, the tensor (5) can be obtained either as the invariant

tensor with respect to the holomorphically projective mapping using the curvature

tensor, or as the invariant tensor with respect to the geodesic mapping using the

holomorphic curvature tensor. In the section 4, we give an example. In the section 5,

we consider the holomorphically projective curvature tensors for an almost Hermitian

(almost para-Hermitian) manifold satisfying the Rizza’s Bianchi-type identity.

2. PRELIMINARIES

Let (M, g, J) be an almost Hermitian (almost para-Hermitian) manifold with met-

ric g and the structure J , that is such that

J2 = εId. , g(JX, JY ) = −εg(X,Y ) , ε = ±1 ,
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for all X, Y ∈ Tp(M), where Tp(M) is the tangent vector space of M at p ∈ M .

If ε = −1, J is the complex structure and (M, g, J) is an almost Hermitian

manifold.

If ε = +1, J is the product structure and (M, g, J) is an almost para-Hermitian

manifold.

In both cases, M is an even-dimensional orientable manifold. We put dim M = 2n.

In the case ε = +1, the signature of M is (n, n).

If ∇J = 0, (M, g, J) is a Kähler (para-Kähler) manifold. As a consequence of

∇J = 0, the Riemannian curvature tensor R(X, Y, Z, W ) satisfies the condition

R(X, Y, JZ, JW ) = −εR(X,Y, Z,W ) . (6)

If ∇J 6= 0, (6) does not hold in general. Nevertheless, there exists for any almost

Hermitian (almost para-Hermitian) manifold the algebraic curvature tensor, satisfying

the condition of type (6). It is ( [1], [7] )

(HR)(X, Y, Z, W ) = 1
16

{
3

[
R(X,Y, Z,W )− εR(X, Y, JZ, JW )

−εR(JX, JY, Z, W ) + R(JX, JY, JZ, JW )
]

+ε
[
R(X, Z, JW, JY ) + R(JX, JZ,W, Y )

+R(X, W, JY, JZ) + R(JX, JW, Y, Z)

−R(JX, Z, JW, Y )−R(X, JZ,W, JY )

−R(JX, W, Y, JZ)−R(X, JW, JY, Z)
]}

.

(7)

Namely, it is easy to see that

(HR)(X, Y, Z, W ) = −(HR)(Y, X, Z, W )

= −(HR)(X, Y, W,Z)

= (HR)(Z,W,X, Y ),

(8)

(HR)(X,Y, Z,W ) + (HR)(Y, Z, X, W ) + (HR)(Z, X, Y, W ) = 0 , (9)

and that it also has the following properties

(HR)(X, Y, JZ, JW ) = −ε(HR)(X,Y, Z, W ) , (10)



101

(HR)(X, JX, JX,X) = R(X, JX, JX, X) . (11)

If (6) holds, then

(HR)(X, Y, Z, W ) = R(X,Y, Z,W ) . (12)

The relation (11) shows that the holomorphic sectional curvatures with respect to

R and HR are the same. This is the reason to name (7) the holomorphic curvature

tensor.

Let {ei} be an orthonormal basis of Tp(M). We define the Ricci tensor, associated

to HR in the following way:

ρ(HR)(X, Y ) =
2n∑

i=1

(HR)(ei, X, Y, ei) .

In view of (8),(9) and (10), we have

ρ(HR)(JX, JY ) = −ερ(HR)(X, Y ) , ρ(HR)(X, JY ) = −ρ(HR)(JX, Y ) .

Of course, in the case (12), we have

ρ(HR)(X, Y ) = ρ(X, Y ) =
2n∑

i=1

R(ei, X, Y, ei) .

With respect to some local coordinates, (7) can be expressed as follows

16(HR)ijhl = 3
[
Rijhl − εRijabJ

a
hJ b

l − εRabhlJ
a
i J b

j + RabcdJ
a
i J b

j J
c
hJ

d
l

]

+ε
[
RihabJ

a
l J b

j + RabljJ
a
i J b

h + RilabJ
a
j J b

h + RabjhJ
a
i J b

l

−RahbjJ
a
i J b

l −RialbJ
a
hJ b

j −RaljbJ
a
i J b

h −RiabhJ
a
l J b

j

]
,

such that, transvecting with git, we have

16(HR)t
jhl = 3

[
Rt

jhl − εRt
jabJ

a
hJ b

l + εRa
bhlJ

t
aJ

b
j −Ra

bcdJ
t
aJ

b
j J

c
hJ

d
l

]

+ε
[
Rt

habJ
a
l J b

j −Ra
bljJ

t
aJ

b
h + Rt

labJ
a
j J b

h −Ra
bjhJ

t
aJ

b
l

+Ra
hbjJ

t
aJ

b
l −Rt

albJ
a
hJ b

j + Ra
ljbJ

t
aJ

b
h −Rt

abhJ
a
l J b

j

]
.

(13)
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3. GEODESIC MAPPING

Let

f : (M, g, J) 7→ (M, g, J) (14)

be the geodesic mapping. Thus, we suppose that the mapping preserves the structure.

For the manifold (M, g, J), the tensor (13) is

16(HR)t
jhl = 3

[
R

t
jhl − εR

t
jabJ

a
hJ b

l + εR
a
bhlJ

t
aJ

b
j −R

a
bcdJ

t
aJ

b
j J

c
hJ

d
l

]

+ε
[
R

t
habJ

a
l J b

j −R
a
bljJ

t
aJ

b
h + R

t
labJ

a
j J b

h −R
a
bjhJ

t
aJ

b
l

+R
a
hbjJ

t
aJ

b
l −R

t
albJ

a
hJ b

j + R
a
ljbJ

t
aJ

b
h −R

t
abhJ

a
l J b

j

]
.

(15)

Substituting (2), we get

8(HR)t
jhl = 8(HR)t

jhl + δt
lQjh − δt

hQjl − εJ t
l QajJ

a
h + εJ t

hQjaJ
a
l + 2εJ t

jQhaJ
a
l , (16)

where

Qij = ψij − εψabJ
a
i J b

j ,

Thus

QajJ
a
i = ψajJ

a
i − ψiaJ

a
j ,

and in view of ψij = ψji, we have

Qij = Qji , QajJ
a
i = −QaiJ

a
j .

Contracting (16) with respect to t and l, we obtain

Qjh =
4

n + 1

(
ρ(HR)jh − ρ(HR)jh

)
. (17)

Substituting (17) into (16), we find

(HW
1

)t
jhl = (HW

1
)t
jhl

where

(HW
1

)t
jhl = (HR)t

jhl − 1
2(n+1)

[
δt
lρ(HR)jh − δt

hρ(HR)jl

−ε
(
J t

l ρ(HR)jaJ
a
h − J t

hρ(HR)jaJ
a
l − 2J t

jρ(HR)haJ
a
l

)]
,

(18)
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and the tensor HW
1

is constructed in the same way, but with respect to the tensor

HR.

With respect to the geodesic mapping, W
t
jhl = W t

jhl, i.e.

R
t
jhl −Rt

jhl =
1

2n− 1

(
δt
lEjh − δt

hEjl

)
(19)

where

Ejh = ρjh − ρjh , (20)

Substituting (19) into the expression for

16(HR)t
jhl − 16(HR)t

jhl ,

we get

8(2n− 1)
(
(HR)t

jhl − (HR)t
jhl

)

= δt
l

(
Ejh − εEabJ

a
j J b

h

)
− δt

h

(
Ejl − εEabJ

a
j J b

l

)

−εJ t
l

(
EjaJ

a
h − EhaJ

a
j

)
+ εJ t

h

(
EjaJ

a
l − ElaJ

a
j

)
+ 2εJ t

j

(
EhaJ

a
l − ElaJ

a
h

)
.

This relation, in view of (20), can be rewritten in the form

(H R)t
jhl − 1

8(2n−1)

[
δt
l

(
ρjh − ερabJ

a
j J b

h

)
− δt

h

(
ρjl − ερabJ

a
j J b

l

)

−εJ t
l

(
ρjaJ

a
h − ρhaJ

a
j

)
+ εJ t

h

(
ρjaJ

a
l − ρlaJ

a
j

)
+ 2εJ t

j

(
ρhaJ

a
l − ρlaJ

a
h

)]

= (HR)t
jhl − 1

8(2n−1)

[
δt
l

(
ρjh − ερabJ

a
j J b

h

)
− δt

h

(
ρjl − ερabJ

a
j J b

l

)

−εJ t
l

(
ρjaJ

a
h − ρhaJ

a
j

)
+ εJ t

h

(
ρjaJ

a
l − ρlaJ

a
j

)
+ 2εJ t

j

(
ρhaJ

a
l − ρlaJ

a
h

)]
.

But this means that the tensor

(HW
2

)t
jhl = (HR)t

jhl − 1
8(2n−1)

[
δt
l

(
ρjh − ερabJ

a
j J b

h

)

−δt
h

(
ρjl − ερabJ

a
j J b

l

)
− εJ t

l

(
ρjaJ

a
h − ρhaJ

a
j

)

+εJ t
h

(
ρjaJ

a
l − ρlaJ

a
j

)
+ 2εJ t

j

(
ρhaJ

a
l − ρlaJ

a
h

)]
(21)

is invariant with respect to the geodesic mapping (14). Thus, we can state:

Theorem. If an almost Hermitian (almost para-Hermitian) manifold (M, g,

J) allows the geodesic mapping (14), then there are, besides (3), two more invari-

ant tensors: (18) and (21).
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The tensors (18) and (21) are constructed using the holomorphic curvature tensor

(7). Thus, it is reasonable to name them the first and the second holomorphically

projective curvature tensors, respectively.

For the Kähler (para-Kähler) manifold, HR = R, ρ(HR) = ρ because of which

(18) reduces to (5). So we have

Proposition. For the Kähler (para-Kähler) manifold, the holomorphically pro-

jective curvature tensor (5) can be obtained either as the invariant with respect to the

holomorphically projective mapping, or as the invariant with respect to the geodesic

mapping, but using the holomorphic curvature tensor (7).

Remark. For the Kähler (para-Kähler) manifold, the tensor (5) is also invariant

with respect to the holomorphically projective mapping using the holomorphic cur-

vature tensor. Namely, substituting (4) into (15) and proceeding as before, we get

(5).

For the Kähler (para-Kähler) manifold, we shall write

(HW
1

)t
jhl = P t

jhl = P
1

t

jhl
, (HW

2
)t
jhl = P

2

t

jhl
.

Because of

−ερabJ
a
j J b

h = ρjh , ρjaJ
a
h = −ρhaJ

a
j ,

(21) becomes

P
2

t

jhl
= Rt

jhl − 1
4(2n−1)

[
δt
lρjh − δt

hρjl − ε
(
J t

l ρjaJ
a
h − J t

hρjaJ
a
l − 2J t

jρhaJ
a
l

)]
. (22)

4. EXAMPLE

Let us consider the manifold M endowed with the metric

ds2 = (dx1)2 + (x1)2g̃αβdxαdxβ , (23)

where g̃αβdxαdxβ,
∂g̃αβ

∂x1 = 0, α, β, γ, δ = 2, ..., 2n is the metric of a Sasakian manifold

M̃ . From now on we shall use the tilde (∼ ) to mark the objects of M̃ . The Levi-Civita
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connection of the metric (23) has the components

Γ1
11 = Γ1

α1 = Γα
11 = 0 ,

Γ1
αβ = −x1g̃αβ , Γα

β1 =
1

x1
δα
β , Γα

βγ = Γ̃α
βγ .

Let (ϕ, ξ, η, g̃) be the Sasakian structure on M̃ and let us put

J1
1 = 0 , Jα

1 =
1

x1
ξα , J1

α = −x1ηα , Jα
β = ϕα

β .

Then J i
jJ

j
k = −δi

k and∇J = 0, that is (M, g, J), where g is the metric (23), is a Kähler

manifold. Mikeš ([2], [3], [4]) proved that this Kähler manifold allows the geodesic

mapping onto the conformally Kähler manifold (M, g, J), where g is the metric

ds2 = L[(dx1)2 + (x1)2g̃αβdxαdxβ] (24)

and

L =
1

[A
2
(x1)2 + B]2

, A, B = const .

We shall show that

W t
jhl = W

t
jhl , P

1

t

jhl
= (HW

1
)t
jhl , P

2

t

jhl
= (HW

2
)t
jhl , (25)

where the bar (−) denotes the objects with respect to the metric (24). The objects

with respect to the metric (23) will be without any mark.

First we note that the components of the curvature tensor Rt
jhl and the Ricci

tensor ρij of the metric (23) are all zero except

Rδ
αβγ = R̃δ

αβγ − (δδ
γ g̃αβ − δδ

β g̃αγ) ,

ραβ = ρ̃αβ − 2(n− 1)g̃αβ .

As for the metric (24), different from zero are the components

• of the curvature tensor:

R
1
δα1 = P g̃δα , R

δ
1α1 = − P

(x1)2
δδ
α ,

R
τ
δαβ = R̃τ

δαβ + (P − 1)(δτ
β g̃δα − δτ

αg̃δβ) ;
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• of the Ricci tensor:

ρ11 =
2n− 1

(x1)2
P , ραβ = ρ̃αβ − 2(n− 1)g̃αβ + (2n− 1)P g̃αβ ;

• of the holomorphic curvature tensor (13):

(HR)1
δα1 = P

4
(g̃δα + 3ηδηα) ,

(HR)1
δαβ = P

4
x1

[
g̃δγ(ηαϕγ

β − ηβϕγ
α) + 2ηδg̃αγϕ

γ
β

]
,

(HR)τ
1α1 = − P

4(x1)2
(δτ

α + 3ξτηα) ,

(HR)τ
δα1 = P

4x1 (g̃δγϕ
γ
αξτ − ϕτ

αηδ − 2ϕτ
δηα) ,

(HR)τ
1αβ = P

4x1 (ϕ
τ
αηβ − ϕτ

βηα − 2ξτ g̃αγϕ
γ
β) ,

(HR)τ
δαβ = R̃τ

δαβ − (δτ
β g̃δα − δτ

αg̃δβ)+

+P
4

(
δτ
β g̃δα − δτ

αg̃βδ + ϕτ
β g̃δεϕ

ε
α − ϕτ

αg̃δεϕ
ε
β − 2ϕτ

δ g̃αεϕ
ε
β

)
;

• of the Ricci tensor ρ(HR) :

ρ(HR)11 = n+1
2
· P

(x1)2
,

ρ(HR)δα = ρ̃δα − 2(n− 1)g̃δα + n+1
2

P g̃δα ,

where

P =
2A(x1)2

A
2
(x1)2 + B

− A2(x1)4

[
A
2
(x1)2 + B

]2 .

We also note that for the Sasakian manifold M̃ :

rank (ϕα
β) = 2n− 2 , ξαηα = 1 , ϕα

βξβ = 0 , ϕα
βηα = 0 ,

ϕα
δ ϕδ

β = −δα
β + ξαηβ , g̃αβξβ = ηα ,

g̃δγϕ
δ
αϕγ

β = g̃αβ − ηαηβ , g̃αδϕ
δ
β = −g̃βδϕ

δ
α ,

R̃γβαπϕα
σϕπ

λ = R̃γβσλ + g̃γσg̃βλ − g̃γλg̃βσ − g̃γεϕ
ε
σg̃βµϕ

µ
λ + g̃γεϕ

ε
λg̃βµϕ

µ
σ ,

ρ̃αβϕα
σϕβ

ν = ρ̃σν − 2(n− 1)ησην , ρ̃ασϕ
σ
β = −ρ̃βσϕ

σ
α.

Then, after some calculation, we find the following components different from zero

• for the projective curvature tensor (3):

W 1
βα1 = W

1
βα1 = − 1

2n−1
[ρ̃αβ − 2(n− 1)g̃αβ] ,

W δ
αβγ = W

δ
αβγ = R̃δ

αβγ − 1
2n−1

[
δδ
γ(ρ̃αβ + g̃αβ)− δδ

β(ρ̃αγ + g̃αγ)
]

;



107

• for the first holomorphically projective curvature tensor:

P
1

1

δα1
= (HW

1
)1
δα1 = − 1

2(n+1)
[ρ̃δα − 2(n− 1)g̃δα] ,

P
1

1

δαβ
= (HW

1
)1
δαβ = x1

2(n+1)

[
(ηβϕε

α − ηαϕε
β)

(
ρ̃εδ − 2(n− 1)g̃εδ

)

−2ηδϕ
ε
β

(
ρ̃εα − 2(n− 1)g̃εα

)]
,

P
1

τ

δα1
= (HW

1
)τ
δα1 = − 1

2(n+1)x1 ξ
τϕσ

α

(
ρ̃σδ − 2(n− 1)g̃σδ

)
,

P
1

τ

1αβ
= (HW

1
)τ
1αβ = 1

(n+1)x1 ξ
τϕσ

β

(
ρ̃σα − 2(n− 1)g̃σα

)
,

P
1

τ

δαβ
= (HW

1
)τ
δαβ = R̃τ

δαβ − 1
2(n+1)

(
δτ
β ρ̃δα − δτ

αρ̃δβ

)
− 2

n+1

(
δτ
β g̃δα − δτ

αg̃δβ

)

− 1
2(n+1)

[(
ϕτ

βϕσ
α − ϕτ

αϕσ
β

)(
ρ̃σδ − 2(n− 1)g̃σδ

)

−2ϕτ
δϕ

σ
β

(
ρ̃σα − 2(n− 1)g̃σα

)]
;

• for the second holomorphically projective curvature tensor:

P
2

1

δα1
= (HW

2
)1
δα1 = − 1

4(2n−1)
[ρ̃δα − 2(n− 1)g̃δα] ,

P
2

1

δαβ
= (HW

2
)1
δαβ = x1

4(2n−1)

[
(ηβϕσ

α − ηαϕσ
β)

(
ρ̃σδ − 2(n− 1)g̃σδ

)

−2ηδϕ
σ
β

(
ρ̃σα − 2(n− 1)g̃σα

)]
,

P
2

τ

δα1
= (HW

2
)τ
δα1 = − 1

4(2n−1)x1 ξ
τϕσ

α

(
ρ̃σδ − 2(n− 1)g̃σδ

)
,

P
2

τ

1αβ
= (HW

2
)τ
1αβ = 1

2(2n−1)x1 ξ
τϕσ

β

(
ρ̃σα − 2(n− 1)g̃σα

)
,

P
2

τ

δαβ
= (HW

2
)τ
δαβ = R̃τ

δαβ − 3n−1
2(2n−1)

(
δτ
β g̃δα − δτ

αg̃δβ

)
− 1

4(2n−1)

(
δτ
β ρ̃δα − δτ

αρ̃δβ

)

− 1
4(2n−1)

[(
ϕτ

βϕσ
α − ϕτ

αϕσ
β

)(
ρ̃σδ − 2(n− 1)g̃σδ

)

−2ϕτ
δϕ

σ
β

(
ρ̃σα − 2(n− 1)g̃σα

)]
.

5. MANIFOLDS SATISFYING THE BIANCHI-TYPE IDENTITY

If an almost Hermitian (para-Hermitian) manifold does not satisfy the condition

HR = R, the holomorphically projective curvature tensors (18) and (21) do not

reduce to the forms (5) and (22) respectively. But in some cases, the tensors (18)

and (21) can be expressed using the tensors (5) and (22). To show this, we consider

(M, g, J) satisfying the condition
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R(X, Y,JZ, JW ) + R(X, Z, JW, JY ) + R(X,W, JY, JZ)

+R(JX, JY, Z, W ) + R(JX, JZ, W, Y ) + R(JX, JW, Y, Z) = 0 .
(26)

This condition was introduced by G. B. Rizza [8] and was called the Bianchi-type

identity by him.

Putting into (26) JX, JY instead of X, Y respectively, we find

R(JX, JY,JZ, JW ) + εR(JX, Z, JW, Y ) + εR(JX, W, Y, JZ)

+R(X, Y, Z, W ) + εR(X, JZ,W, JY ) + εR(X, JW, JY, Z) = 0 .
(27)

In view of (26) and (27), (7) becomes

(HR)(X, Y, Z,W ) = 1
4

[
R(X, Y, Z, W )− εR(X,Y, JZ, JW )

−εR(JX, JY, Z, W ) + R(JX, JY, JZ, JW )
]
.

(28)

It is easy to check that (28) satisfies the identities (8) and (10), while it satisfies

the Bianchi identity (9) if and only if (26) holds.

For an (M, g, J), besides the Ricci tensor ρ(X,Y ) =
∑2n

i=1 R(ei, X, Y, ei), we con-

sider also the ∗ -Ricci tensor

ρ∗(X, Y ) =
2n∑

i=1

R(ei, X, JY, Jei) =
1

2

2n∑

i=1

R(Jei, ei, X, JY ) .

Then, putting X = W = ei into (27) and summing up, we obtain

ρ(Y, Z)− ερ(JY, JZ) = −ε
(
ρ∗(Y, Z) + ρ∗(Z, Y )

)
. (29)

On the other hand, putting into (28) X = W = ei and summing up, we find

ρ(HR)(Y, Z) =
1

4

(
ρ(Y, Z)− ερ∗(Z, Y )− ερ∗(Y, Z)− ερ(JY, JZ)

)
,

which, in view of (29), becomes

ρ(HR)(Y, Z) =
1

2

(
ρ(Y, Z)− ερ(JY, JZ)

)
. (30)

From (30), it follows

ρ(HR)(Y, JZ) =
1

2

(
ρ(Y, JZ)− ρ(JY, Z)

)
. (31)
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The relation (18) can be rewritten in the form

(HW
1

)(X, Y, Z, U) = (HR)(X,Y, Z, U)

− 1
2(n+1)

[
g(X, U)ρ(HR)(Y, Z)− g(X, Z)ρ(HR)(Y, U)

−ε
(
g(X, JU)ρ(HR)(Y, JZ)− g(X, JZ)ρ(HR)(Y, JU)

−2g(X, JY )ρ(HR)(Z, JU)
)]

,

such that, using (28), (30) and (31), we get

(HW
1

)(X, Y, Z, U) = 1
4

[
R(X,Y, Z, U)− εR(X, Y, JZ, JU)

−εR(JX, JY, Z, U) + R(JX, JY, JZ, JU)
]

− 1
4(n+1)

{
g(X,U)

[
ρ(Y, Z)− ερ(JY, JZ)

]

−g(X, Z)
[
ρ(Y, U)− ερ(JY, JU)

]

−εg(X, JU)
[
ρ(Y, JZ)− ρ(JY, Z)

]

+εg(X, JZ)
[
ρ(Y, JU)− ρ(JY, U)

]

+2εg(X, JY )
[
ρ(Z, JU)− ρ(JZ, U)

]}
.

(32)

On the other hand, (5) can be rewritten in the form

P
1

(X, Y, Z, U) = R(X,Y, Z, U)− 1
2(n+1)

(
g(X,U)ρ(Y, Z)− g(X, Z)ρ(Y, U)−

−εg(X, JU)ρ(Y, JZ) + εg(X, JZ)ρ(Y, JU) + 2εg(X, JY )ρ(Z, JU)
)
,

from which we obtain

P
1

(X, Y, Z, U)−εP
1

(X, Y, JZ, JU)− εP
1

(JX, JY, Z, U) + P
1

(JX, JY, JZ, JU)

= R(X,Y, Z, U)− εR(X,Y, JZ, JU)

−εR(JX, JY, Z, U) + R(JX, JY, JZ, JU)

− 1
n+1

[
g(X, U)

(
ρ(Y, Z)− ερ(JY, JZ)

)

−g(X, Z)
(
ρ(Y, U)− ερ(JY, JU)

)

−εg(X, JU)
(
ρ(Y, JZ)− ρ(JY, Z)

)

+εg(X, JZ)
(
ρ(Y, JU)− ρ(JY, U)

)

+2εg(X, JY )
(
ρ(Z, JU)− ρ(JZ, U)

)]
.

(33)
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The relations (32) and (33) show that

(HW
1

)(X, Y, Z, U) = 1
4

(
P
1
(X, Y, Z, U)− εP

1
(X, Y, JZ, JU)

−εP
1

(JX, JY, Z, U) + P
1

(JX, JY, JZ, JU)
)
.

(34)

In a similar way we can see that

(HW
2

)(X, Y, Z, U) = 1
4

(
P
2

(X, Y, Z, U)− εP
2

(X, Y, JZ, JU)

−εP
2

(JX, JY, Z, U) + P
2

(JX, JY, JZ, JU)
)
.

(35)

Thus, we can state

Theorem. If an almost Hermitian (almost para-Hermitian) manifold satisfies the

Rizza’s Bianchi-type identity (26), then (34) and (35) hold.
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