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Abstract. We show that generalized plane wave manifolds are complete, strongly geodesi-
cally convex, Osserman, Szabó, and Ivanov–Petrova. We show their holonomy groups are
nilpotent and that all the local Weyl scalar invariants of these manifolds vanish. We con-
struct isometry invariants on certain families of these manifolds which are not of Weyl type.
Given k, we exhibit manifolds of this type which are k-curvature homogeneous but not lo-
cally homogeneous. We also construct a manifold which is weakly 1-curvature homogeneous
but not 1-curvature homogeneous.

1. INTRODUCTION

We begin by introducing some notational conventions. Let M := (M, g) where g

is a pseudo-Riemannian metric of signature (p, q) on smooth manifold M of dimension

m := p + q.
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(Leipzig, Germany). Research of S. Nikčević partially supported by DAAD (Germany), by the
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114

1.1. GEODESICS

We say that M is complete if all geodesics extend for infinite time and that M is

strongly geodesically convex if there exists a unique geodesic between any two points

of M ; if M is complete and strongly geodesically convex, then the exponential map

is a diffeomorphism from TP M to M for any P ∈ M .

1.2. SCALAR WEYL INVARIANTS

Let ∇kR be the kth covariant derivative of the curvature operator defined by the

Levi-Civita connection. Let x := (x1, ..., xm) be local coordinates on M . Expand

∇∂xj1
...∇∂xjl

R(∂xi1
, ∂xi2

)∂xi3
= Ri1i2i3

i4
;j1...jl

∂xi4
(1.a)

where we adopt the Einstein convention and sum over repeated indices. Scalar in-

variants of the metric can be formed by using the metric tensors gij and gij to fully

contract all indices. For example, the scalar curvature τ , the norm of the Ricci tensor

|ρ|2, and the norm of the full curvature tensor |R|2 are given by

τ := gijRkij
k,

|ρ|2 := gi1j1gi2j2Rki1j1
kRli2j2

l, and (1.b)

|R|2 := gi1j1gi2j2gi3j3gi4j4Ri1i2i3
i4Rj1j2j3

j4 .

Such invariants are called Weyl invariants; if all possible such invariants vanish, then

M is said to be VSI (vanishing scalar invariants). We refer to Pravda, Pravdová,

Coley, and Milson [25] for a further discussion.

1.3. NATURAL OPERATORS DEFINED BY THE CURVATURE TENSOR

If ξ is a tangent vector, then the Jacobi operator J(ξ) and the Szabó operator S(ξ)

are the self-adjoint linear maps which are defined by:

J(ξ) : x → R(x, ξ)ξ and S(ξ) : x → ∇ξR(x, ξ)ξ .
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Similarly if {e1, e2} is an oriented orthonormal basis for an oriented spacelike (resp.

timelike) 2-plane π, the skew-symmetric curvature operator R(π) is defined by:

R(π) : x → R(e1, e2)x .

1.4. OSSERMAN, IVANOV–PETROVA, AND SZABÓ MANIFOLDS

We say that M is spacelike Osserman (resp. timelike Osserman) if the eigenvalues

of J are constant on the pseudo-sphere bundles of unit spacelike (resp. timelike) tan-

gent vectors. The notions spacelike Szabó, timelike Szabó, spacelike Ivanov–Petrova,

and timelike Ivanov–Petrova are defined similarly. Suppose that p ≥ 1 and q ≥ 1

so the conditions timelike Osserman and spacelike Osserman are both non-trivial.

One can then use analytic continuation to see these two conditions are equivalent.

Similarly, spacelike Szabó and timelike Szabó are equivalent notions if p ≥ 1 and

q ≥ 1. Finally, spacelike Ivanov–Petrova and timelike Ivanov–Petrova are equivalent

notions if p ≥ 2 and q ≥ 2. Thus we shall simply speak of Osserman, Szabó, or

Ivanov–Petrova manifolds; see [8] for further details.

We shall refer to [6, 8] for a fuller discussion of geometry of the Riemann curvature

tensor and shall content ourselves here with a very brief historical summary. Szabó

[27] showed that a Riemannian manifold is Szabó if and only if it is a local symmetric

space. Gilkey and Stavrov [14] showed that a Lorentzian manifold is Szabó if and

only if it has constant sectional curvature.

Let M be a Riemannian manifold of dimension m 6= 16. Chi [2] and Nikolayevsky

[18, 19, 20] showed that M is Osserman if and only if M either is flat or is locally

isometric to a rank 1-symmetric space. This result settles in the affirmative for m 6= 16

a question originally posed by Osserman [24]. Work of Blažić, Bokan and Gilkey [1]

and of Garćıa–Ŕıo, Kupeli and Vázquez-Abal [5] showed a Lorentzian manifold is

Osserman if and only if it has constant sectional curvature.

Work of of Gilkey [7], of Gilkey, Leahy, Sadofsky [10], and of Nikolayevsky [21]

showed that a Riemannian manifold is Ivanov–Petrova if and only if it either has
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constant sectional curvature or it is locally isometric to a warped product of an

interval I with a metric of constant sectional curvature K where the warping function

f(t) = Kt2+At+B is quadratic and non-vanishing for t ∈ I. This result was extended

to the Lorentzian setting for q ≥ 11 by Zhang [28]; results of Stavrov [26] provide

some insight into the higher signature setting.

1.5. NILPOTENCY

The picture is very different when p ≥ 2 and q ≥ 2 and the classification of

Osserman, Ivanov-Petrov, and Szabó manifolds is far from complete. The eigenvalue

0 plays a distinguished role. We say that M is nilpotent Osserman if 0 is the only

eigenvalue of J or equivalently if J(ξ)m = 0 for any tangent vector ξ; the notions

nilpotent Szabó and nilpotent Ivanov–Petrova are defined similarly.

1.6. HOLONOMY

Let γ be a smooth curve in a pseudo-Riemannian manifold M. Parallel trans-

lation along γ defines a linear isometry Pγ : Tγ(0)M → Tγ(1)M . The set of all such

automorphisms where γ(0) = γ(1) forms a group which is called the holonomy group;

we shall denote this group by HP (M).

1.7. GENERALIZED PLANE WAVE MANIFOLDS

Let x = (x1, ..., xm) be the usual coordinates on Rm. We say M := (Rm, g) is a

generalized plane wave manifold if

∇∂xi
∂xj

=
∑

k>max(i,j) Γij
k(x1, ..., xk−1)∂xk

.
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Let T be the nilpotent upper triangular group of all matrices of the form:

T =




1 ∗ ∗ ... ∗ ∗
0 1 ∗ ... ∗ ∗
0 0 1 ... ∗ ∗
... ... ... ... ... ...
0 0 0 ... 1 ∗
0 0 0 ... 0 1




.

Theorem 1.1 Let M be a generalized plane wave manifold. Then:

1. M is complete and strongly geodesically convex.

2. ∇∂xj1
...∇∂xjν

R(∂xi1
, ∂xi2

)∂xi3

=
∑

k>max(i1,i2,i3,j1,...jν) Ri1i2i3
k
;j1...jν (x1, ..., xk−1)∂xk

.

3. M is nilpotent Osserman, nilpotent Ivanov–Petrova, and nilpotent Szabó.

4. M is Ricci flat and Einstein.

5. M is VSI.

6. If γ is a smooth curve in Rm, then Pγ∂xi
= ∂xi

+
∑

j>i a
j∂xj

.

7. HP (M) ⊂ T .

We shall establish Theorem 1.1 in §2. Since all the scalar Weyl invariants vanish,

one of the central difficulties in this subject is constructing isometry invariants of such

manifolds. In the remaining sections of this paper, we present several other families

of examples with useful geometric properties and exhibit appropriate local invariants

which are not of Weyl type.

2. GEOMETRIC PROPERTIES OF GENERALIZED PLANE WAVE
MANIFOLDS

2.1. GEODESICS

We begin the proof of Theorem 1.1 by examining the geodesic structure. Consider

a curve γ(t) = (x1(t), ..., xm(t)) in Rm; γ is a geodesic if and only

ẍ1(t) = 0, and for k > 1 we have

ẍk(t) +
∑

i,j<k ẋi(t)ẋj(t)Γij
k(x1, ..., xk−1)(t) = 0 .
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We solve this system of equations recursively. Let γ(t; ~x 0, ~x 1) be defined by

x1(t) := x0
1 + x1

1t, and for k > 1

xk(t) := x0
k + x1

kt−
∫ t

0

∫ s

0

∑
i,j<k ẋi(r)ẋj(r)Γij

k(x1, ..., xk−1)(r)drds .

Then γ(0; ~x 0, ~x 1) = ~x 0 while γ̇(0; ~x 0, ~x 1) = ~x 1. Thus every geodesic arises in this

way so all geodesics extend for infinite time. Furthermore, given P, Q ∈ Rn, there is

a unique geodesic γ = γP,Q so that γ(0) = P and γ(1) = Q where

x0
1 = P1, x1

1 = Q1 − P1, and for k > 1 we have

x0
k = Pk, x1

k = Qk − Pk +
∫ 1

0

∫ s

0

∑
i,j<k ẋi(r)ẋj(r)Γij

k(x1, ..., xk−1)(r)drds .

This establishes Assertion (1) of Theorem 1.1.

2.2. CURVATURE

We may expand

Rijk
l = ∂xi

Γjk
l(x1, ..., xl−1)− ∂xj

Γik
l(x1, ..., xl−1)

+Γin
l(x1, ..., xl−1)Γjk

n(x1, ..., xn−1)

−Γjn
l(x1, ..., xl−1)Γik

n(x1, ..., xn−1) .

As we can restrict the quadratic sums to n < l, Rijk
l = Rijk

l(x1, ..., xl−1). Suppose

l ≤ k. Then Γjk
l = Γik

l = 0. Furthermore for either of the quadratic terms to be

non-zero, there must exist an index n with k < n and n < l. This is not possible if

l ≤ k. Thus Rijk
l = 0 if l ≤ k. Suppose l ≤ i. Then

∂xi
Γjk

l(x1, ..., xl−1) = 0 and ∂xj
Γik

l = ∂xj
0 = 0 .

We have Γin
l = 0. For the other quadratic term to be non-zero, there must exist an

index n so i < n and n < l. This is not possible if l ≤ i. This shows Rijk
l = 0 if l ≤ i;

similarly Rijk
l = 0 if l ≤ j.
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This establishes Assertion (2) of Theorem 1.1 if ν = 0, i.e. for the undifferentiated

curvature tensor R. To study ∇R, we expand

Rijk
n
;l = ∂lRijk

n(x1, ..., xn−1) (2.a)

−∑
r Rrjk

n(x1, ..., xn−1)Γli
r(x1, ..., xr−1) (2.b)

−∑
r Rirk

n(x1, ..., xn−1)Γlj
r(x1, ..., xr−1) (2.c)

−∑
r Rijr

n(x1, ..., xn−1)Γlk
r(x1, ..., xr−1) (2.d)

−∑
r Rijk

r(x1, ..., xr−1)Γlr
n(x1, ..., xn−1) . (2.e)

To see Rijk
n
;l = Rijk

n
;l(x1, ..., xn−1), we observe that we have:

1. i < r < n in (2.b);

2. j < r < n in (2.c);

3. k < r < n in (2.d);

4. r < n in (2.e).

To show Rijk
n
;l = 0 if n ≤ max(i, j, k, l), we note that

1. ∂lRijk
n(x1, ..., xn−1) = 0 if n ≤ max(i, j, k, l) in (2.a);

2. n > max(r, j, k) and r > max(i, l) so n > max(i, j, k, l) in (2.b);

3. n > max(i, r, k) and r > max(l, j) so n > max(i, j, k, l) in (2.c);

4. n > max(i, j, r) and r > max(k, l) so n > max(i, j, k, l) in (2.d);

5. n > max(l, r) and r > max(i, j, k) so n > max(i, j, k, l) in (2.e).

This establishes Assertion (2) of Theorem 1.1 if ν = 1 so we are dealing with ∇R.

The argument is the same for higher values of ν and is therefore omitted.

2.3. THE GEOMETRY OF THE CURVATURE TENSOR

By Assertion (2) of Theorem 1.1,

J(ξ)∂xi
⊂ Spank>i{∂xk

}, S(ξ)∂xi
⊂ Spank>i{∂xk

},
R(π)∂xi

⊂ Spank>i{∂xk
} .
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Thus J , R, and S are nilpotent which proves Assertion (3) of Theorem 1.1. Further-

more, because J(ξ) is nilpotent, ρ(ξ, ξ) = Tr(J(ξ)) = 0. This implies ρ = 0 which

completes the proof of Assertion (4) of Theorem 1.1.

2.4. LOCAL SCALAR INVARIANTS

Let Θ be a Weyl monomial which is formed by contracting upper and lower indices

in pairs in the variables {gij, gij, Ri1i2i3
i4

;j1...}. The single upper index in R plays a

distinguished role. We choose a representation for Θ so the number of gij variables

is minimal; for example, we can eliminate the gi3i4 variable in Equation (1.b) by

expressing:

|R|2 = gi1j1gi2j2Ri1i2k
lRj2j1l

k .

Suppose there is a gij variable in this minimal representation, i.e. that

Θ = gijRu1u2u3

i
;...Rv1v2v3

j
;...... .

Suppose further that gu1w1 appears in Θ, i.e. that

Θ = gijg
u1w1Ru1u2u3

i
;...Rv1v2v3

j
;...... .

We could then raise and lower an index to express

Θ = Rw1
u2u3j;...Rv1v2v3

j
;...... = Rju3u2

w1
;...Rv1v2v3

j
;......

which has one less g.. variable. This contradicts the assumed minimality. Thus u1

must be contracted against an upper index; a similar argument shows that u2, u3, v1,

v2, and v3 are contracted against an upper index as well. Consequently

Θ = gijRu1u2u3

i
;...Rv1v2v3

j
;...Rw1w2w3

u1
;...... .

Suppose w1 is not contracted against an upper index. We then have

Θ = gijg
w1x1Ru1u2u3

i
;...Rv1v2v3

j
;...Rw1w2w3

u1
;......

= Ru1u2u3j;...Rv1v2v3

j
;...R

x1
w2w3

u1
;......
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= gu1y1Ru1u2u3j;...Rv1v2v3

j
;...R

x1
w2w3y1;......

= Ry1
u2u3j;...Rv1v2v3

j
;...R

x1
w2w3y1;...

= Rju3u2

y1
;...Rv1v2v3

j
;...R

x1
w2w3y1;...

which has one less gij variable. Thus w1 is contracted against an upper index so

Θ = gijRu1u2u3

i
;...Rv1v2v3

j
;...Rw1w2w3

u1
;...Rx1x2x3

w1
;...... .

We continue in this fashion to build a monomial of infinite length. This is not possible.

Thus we can always find a representation for Θ which contains no gij variables in the

summation.

We suppose the evaluation of Θ is non-zero and argue for a contradiction. To

simplify the notation, group all the lower indices together. By considering the pairing

of upper and lower indices, we see that we can expand Θ in cycles:

Θ = R...ir...
i1R...i1...

i2 ...R...ir−1...
ir ... .

By Theorem 1.1 (2), R...j...
l = 0 if l ≤ j. Thus the sum runs over indices where

ir < i1 < i2 < ... < ir. As this is the empty sum, we see that Θ = 0 as desired.

2.5. HOLONOMY

Let X =
∑

i ai(t)∂xi
be a vector field which is defined along a curve γ = (γ1, ..., γm)

in Rm. Then ∇γ̇X = 0 if and only if

0 =
∑

i ȧi(t)∂xi
+

∑
i,j,k:i,j<k Γij

k(t)ai(t)γ̇j(t)∂xk
.

Consequently, we can solve these equations by taking recursively

ak(t) = ak(0)− ∫ t

0

∑
i,j<k Γij

k(a1(s), ..., ak−1(s))ai(s)γ̇j(s)ds .

If ai(0) = 0 for i < `, we may conclude ai(t) = 0 for all t if i < `. Assertions (6) and

(7) now follow. This completes the proof of Theorem 1.1. 2
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3. MANIFOLDS OF SIGNATURE (2, 2 + k)

3.1. THE MANIFOLDS M0
4+k,F

Let (x, y, z1, ..., zk, ỹ, x̃) be coordinates on R4+k. Let F (y, z1, ..., zk) be an affine

function of (z1, ..., zk), i.e.

F (y, z1, ..., zk) = f0(y) + f1(y)z1 + ... + fk(y)zk .

Let M0
4+k,F := (R4+k, g0

4+k,F ) where:

g0
4+k,F (∂x, ∂x̃) = g0

4+k,F (∂y, ∂ỹ) = g0
4+k,F (∂zi

, ∂zi
) = 1,

g0
4+k,F (∂x, ∂x) = −2F (y, z1, ..., zk) .

Theorem 3.1 M0
4+k,F is a generalized plane wave manifold of signature (2, 2 + k).

Proof. The non-zero Christoffel symbols of the first kind are given by

g0
4+k,F (∇∂x∂x, ∂y) = f ′0 +

∑
i f

′
izi,

g0
4+k,F (∇∂y∂x, ∂x) = g0

4+k,F (∇∂x∂y, ∂x) = −{f ′0 +
∑

i f
′
izi},

g0
4+k,F (∇∂x∂x, ∂zi

) = fi,

g0
4+k,F (∇∂zi

∂x, ∂x) = g0
4+k,F (∇∂x∂zi

, ∂x) = −fi .

Consequently the non-zero Christoffel symbols of the second kind are given by

∇∂x∂x = {f ′0 +
∑

i f
′
izi}∂ỹ +

∑
i fi∂zi

,

∇∂y∂x = ∇∂x∂y = −{f ′0 +
∑

i f
′
izi}∂x̃,

∇∂zi
∂x = ∇∂x∂zi

= −fi∂x̃ .

This has the required triangular form. 2
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3.2. k-CURVATURE HOMOGENEITY

Let M := (M, g) be a pseudo-Riemannian manifold. If P ∈ M , let gP ∈ ⊗2T ∗
P M

be the restriction of g to the tangent space TP M . We use the metric to lower indices

and regard ∇kR ∈ ⊗4+kT ∗M ; let ∇kRP be the restriction of ∇kR to TP M and let

Uk(M, P ) := (TP M, gP , RP , ...,∇kRP ) .

This is a purely algebraic object. Following Kowalski, Tricerri, and Vanhecke [16, 17],

we say that M is k-curvature homogeneous if given any two points P and Q of M ,

there is a isomorphism ΨP,Q from Uk(M, P ) to Uk(M, Q), i.e. a linear isomorphism

ΨP,Q from TP M to TQM such that

Ψ∗
P,QgQ = gP and Ψ∗

P,Q∇iRQ = ∇iRP for 0 ≤ i ≤ k .

Similarly, M is said to be locally homogeneous if given any two points P and Q,

there are neighborhoods UP and UQ of P and Q, respectively, and an isometry ψP,Q

from UP to UQ such that ψP,QP = Q. Taking ΨP,Q := (ψP,Q)∗ shows that locally

homogeneous manifolds are k-curvature homogeneous for any k.

More generally, we can consider a k-model Uk := (V, h, A0, ..., Ak) where V is

an m-dimensional real vector space, where h is a non-degenerate inner product of

signature (p, q) on V , and where Ai ∈ ⊗4+iV ∗ has the appropriate universal curvature

symmetries. For example, we assume that:

A0(ξ1, ξ2, ξ3, ξ4) = A0(ξ3, ξ4, ξ1, ξ2) = −A0(ξ2, ξ1, ξ3, ξ4) and

A0(ξ1, ξ2, ξ3, ξ4) + A0(ξ2, ξ3, ξ1, ξ4) + A0(ξ3, ξ1, ξ2, ξ4) = 0 .
(3.a)

We say that Uk is a k-model for M if given any point P ∈ M , there is an isomorphism

ΨP from Uk(M, P ) to Uk. Clearly M is k-curvature homogeneous if and only if M
admits a k-model; one may take as the k model Uk := Uk(M, P ) for any P ∈ M .
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3.3. THE MANIFOLDS M1
6,f

We specialize the construction given above by taking F = yz1 + f(y)z2. One sets

M1
6,f := (R6, g1

6,f ) where

g1
6,f (∂x, ∂x̃) = g1

6,f (∂y, ∂ỹ) = g1
6,f (∂z1 , ∂z1) = g1

6,f (∂z2 , ∂z2) = 1, and

g1
6,f (∂x, ∂x) = −2(yz1 + f(y)z2) .

(3.b)

3.4. AN INVARIANT WHICH IS NOT OF WEYL TYPE

Set

α1
6(f, P ) =

|f ′(P )|√
1 + (f ′(P ))2

. (3.c)

Theorem 3.2 Assume that f ′′ > 0. Then

1. M1
6,f is a 0-curvature homogeneous generalized plane wave manifold.

2. If U1(M1
6,f1

, P1) and U1(M1
6,f2

, P2) are isomorphic, then

α1
6(f1, P1) = α1

6(f2, P2).

3. α1
6 is an isometry invariant of this family which is not of Weyl type.

4. M1
6,f is not 1-curvature homogeneous.

Proof. We use Theorem 3.1 to see that M1
6,f is a generalized plane wave manifold.

Furthermore, up to the usual Z2 symmetries, the computations performed in the proof

of Theorem 3.1 show that the non-zero entries in the curvature tensor are:

R(∂x, ∂y, ∂y, ∂x) = f ′′z2, R(∂x, ∂y, ∂z1 , ∂x) = 1, R(∂x, ∂y, ∂z2 , ∂x) = f ′ .

We set

X := c1{∂x − 1
2
g1
6,f (∂x, ∂x)∂x̃},

X̃ := c−1
1 ∂x̃,

Y := c2{∂y − ε1∂z1 − ε2∂z2 − 1
2
(ε2

1 + ε2
2)∂ỹ},

Ỹ := c−1
2 ∂ỹ,

Z1 := c3{∂z1 + f ′∂z2 + (ε1 + f ′ε2)∂ỹ},
Z2 := c3{∂z2 − f ′∂z1 + (ε2 − f ′ε1)∂ỹ} .
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Since R(∂x, ∂y, ∂z1 , ∂x) = 1 and R(∂x, ∂y, ∂z2 , ∂x) 6= 0, we may choose ε1, ε1, c1, c2,

and c3 so that

R(∂x, ∂y, ∂y, ∂x)− 2ε1R(∂x, ∂y, ∂z1 , ∂x)− 2ε2R(∂x, ∂y, ∂z2 , ∂x) = 0, (3.d)

R(∂x, ∂y, ∂y, ∂x; ∂y)− 3ε2R(∂x, ∂y, ∂y, ∂x; ∂z2) = 0, (3.e)

c2
3(1 + (f ′)2) = 1, (3.f)

c3(1 + (f ′)2)c2
1c2 = 1, (3.g)

c3c
2
1c

2
2f
′′ = 1 . (3.h)

We show that M1
6,f is 0-curvature homogeneous and complete the proof of Assertion

(1) by noting that the possibly non-zero entries in these tensors are given by:

g1
6,f (X, X̃) = g1

6,f (Y, Ỹ ) = 1.

g1
6,f (Z1, Z1) = g1

6,f (Z2, Z2) = 1 [see equation (3.f)],

R(X, Y, Y,X) = 0 [see equation (3.d)],

R(X, Y, Z1, X) = 1 [see equation (3.g)],

R(X, Y, Z2, X) = 0 .

The possibly non-zero components of ∇R are:

∇R(∂x, ∂y, ∂y, ∂x; ∂z2) = ∇R(∂x, ∂y, ∂z2 , ∂x; ∂y) = f ′′ > 0,

∇R(∂x, ∂y, ∂y, ∂x; ∂y) = f ′′′z2 .

The possibly non-zero components of ∇R with respect to this basis are given by:

∇R(X, Y, Y, X; Z1) = ∇R(X,Y, Z1, X; Y ) = f ′ [see equation (3.h)],

∇R(X, Y, Y, X; Y ) = 0 [see equation (3.e)],

∇R(X, Y, Y, X; Z2) = ∇R(X,Y, Z2, X; Y ) = 1 [see equation (3.h)] .

We shall say that a basis B = {1X, 1Y, 1Z1,
1Z2,

1Ỹ , 1X̃} is normalized if the non-

zero entries in R and ∇R are

R(1X, 1Y, 1Z1,
1X) = 1, and

∇R(1X, 1Y, 1Y, 1X; 1Z2) = ∇R(1X, 1Y, 1Z2,
1X; 1Y ) = 1 .
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For example, B = {X,Y, Z1 − f ′Z2, Z2, Ỹ , X̃} is a normalized basis. Let

ker(R) := {η : R(ξ1, ξ2, ξ3, η) = 0 ∀ξi},
ker(∇R) := {η : ∇R(ξ1, ξ2, ξ3, ξ4; η) = 0 and ∇R(ξ1, ξ2, ξ3, η; ξ4) = 0 ∀ξi} .

It is then immediate that

ker(R) = Span{Z2, X̃, Ỹ } and ker(∇R) = Span{Z1 − f ′Z2, X̃, Ỹ } .

Let B := {1X, 1Y, 1Z1,
1Z2,

1Ỹ , 1X̃} be any normalized basis. Since 1Z1 ∈ ker(∇R)

and 1Z2 ∈ ker(R), we may expand:

1Z1 = a1(Z1 − f ′Z2) + a2X̃ + a3Ỹ ,

1Z2 = b1Z2 + b2X̃ + b3Ỹ .

Thus we may compute

|g1
6,f (

1Z1,
1Z2)|

|1Z1| · |1Z2| (P ) =
|f ′|√

1 + (f ′)2
(P ) = α1

6(f, P ) .

This shows α1
6(f, P ) is an invariant of the 1-model and establishes Assertion (2).

If M1
6,f is curvature 1-homogeneous, then necessarily α1

6(f) is constant or, equiv-

alently, (f ′)2 = c(1+(f ′)2) for some constant c. Since (f ′)2 < (1+(f ′)2), c < 1. Thus

we can solve for (f ′)2 to see (f ′)2 = c
1−c

is constant. This contradicts the assumption

f ′′ 6= 0. 2

3.5. WEAK CURVATURE HOMOGENEITY

We can weaken the notion of curvature homogeneity slightly. Let A0 ∈ ⊗4V ∗ be

an algebraic curvature tensor, i.e. A0 has the usual symmetries of the curvature tensor

given in Equation (3.a). We say that M1 is weakly 0-curvature homogeneous if for

every point P ∈ M , there is an isomorphism Φ : TP M → V so that Φ∗A0 = R. There

is no requirement that Φ preserve an inner product. The notion of weakly k-curvature

homogeneous is similar; we consider models (V, A0, ..., Ak) where Ai ∈ ⊗4+i(V ∗) has
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the appropriate curvature symmetries. Since we have lowered all the indices, this

is a different notion from the notion of affine k-curvature homogeneity that will be

discussed presently.

The following is an immediate consequence of the arguments given above:

Corollary 3.3 The manifold M1
6,f is weakly 1-curvature homogeneous but not 1-

curvature homogeneous.

3.6. AFFINE GEOMETRY

Let ∇ be a torsion free connection on TM . Since we do not have a metric, we can

not raise and lower indices. Thus we must regard ∇i as a (i + 2, 1) tensor; instead of

working with the tensor Ri1i2i3i4;j1..., we work with Ri1i2i3
i4

;j1.... We say that (M,∇) is

affine k-curvature homogeneous if given any two points P and Q of M , there is a linear

isomorphism φ : TP M → TQM so that φ∗∇iRQ = ∇iRP for 0 ≤ i ≤ k. Taking ∇
to be the Levi-Civita connection of a pseudo-Riemannian metric then yields that any

k-curvature homogeneous manifold is necessarily affine k-curvature homogeneous by

simply forgetting the requirement that φ be an isometry; there is no metric present in

the affine setting. We refer to Opozda [22, 23] for a further discussion of the subject.

The relevant models are:

Ak(M, P ) := (TP M, RP ,∇RP , ...,∇kRP ), where

∇iRP ∈ ⊗3+iTP M∗ ⊗ TP M .

In fact the invariant α1
6 is an affine invariant. We use note that:

R(X,Y )Z1 = X̃, R(X,Y )X = −Z1,

R(X,Z1)Y = X̃, R(X,Z1)X = −Ỹ ,

∇Z1R(X, Y )Y = f ′X̃, ∇Z2R(X, Y )Y = X̃,

∇Z1R(X, Y )X = −f ′Ỹ , ∇Z2R(X, Y )X = −Ỹ ,

∇Y R(X, Y )Z1 = f ′X̃, ∇Y R(X, Y )Z2 = X̃,

∇Y R(X, Z1)Y = f ′X̃, ∇Y R(X, Z2)Y = X̃,

∇Y R(X, Z1)X = −Ỹ , ∇Y R(X, Z2)X = −Ỹ ,

∇Y R(X, Y )X = −f ′Z1 − Z2 .
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We define the following subspaces:

W1 : = Range(R) = Span{R(ξ1, ξ2)ξ3 : ξi ∈ R6},
W2 : = Range(∇R) = Span{∇ξ1R(ξ2, ξ3)ξ4 : ξi ∈ R6},
W3 : = Span{R(ξ1, R(ξ2, ξ3)ξ4)ξ5 : ξi ∈ R6},
W4 : = ker(R) = {η ∈ R6 : R(ξ1, ξ2)η = 0 ∀ ξi ∈ R6},
W5 : = ker(∇R) = {η ∈ R6 : ∇ξ1R(ξ2, ξ3)η = 0 ∀ ξi ∈ R6} .

Lemma 3.4 We have

1. W1 = Span{X̃, Ỹ , Z1},
2. W2 = Span{X̃, Ỹ , f ′Z1 + Z2},
3. W3 = Span{X̃, Ỹ },
4. W4 = Span{X̃, Ỹ , Z2},
5. W5 = Span{X̃, Ỹ , Z1 − f ′Z2}.
6. If A1(M6

6,f1
, P1) and A1(M6

6,f2
, P2) are isomorphic, then

α1
6(f1, P1) = α1

6(f2, P2).

Proof. Assertions (1) and (2) are immediate. We compute

R(X, R(X, Y )X)X = R(X,−Z1)X = Ỹ ,

R(X, R(X, Y )X)Y = R(X,−Z1)Y = −X̃, so Span{X̃, Ỹ } ⊂ W3 .

We establish Assertion (3) by establishing the reverse inclusion:

R(ξ1, R(ξ2, ξ3)ξ4)ξ5 = R(ξ1, aZ1 + bX̃ + cỸ )ξ5 = R(dX, aZ1)ξ5 ∈ Span{X̃, Ỹ } .

It is clear W4 ⊂ Span{X̃, Ỹ , Z2}. Let η = aX + bY + cZ1 + dZ2 + eX̃ + fỸ ∈ W4 .

As R(X,Y )η = 0, we have −aZ1 + cX̃ = 0 so a = 0 and c = 0. As R(X,Z1)η = 0,

we have −aỸ + bX̃ = 0 so b = 0 as well. Assertion (4) now follows.

It is clear W5 ⊂ Span{X̃, Ỹ , Z1−f ′Z2}. Let η be as above. As ∇Z2R(X, Y )η = 0,

−aỸ + bX̃ = 0 so a = b = 0. Since ∇Y R(X, Y )η = 0, (cf ′ + d) = 0 so d = −cf ′; this

establishes Assertion (5).
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Suppose we have an isomorphism from A1(M6
6,f1

, P1) to A1(M6
6,f2

, P2). We ignore

the X and Y variables. Then we have an isomorphism φ from R6 to itself so that

φ(Wi(f1, P1)) = Wi(f2, P2) for 1 ≤ i ≤ 5. We can work in the spaces Wi/W3 to see

that we must have the relations:

φ(Z1) = a1Z1, φ(f ′1Z1 + Z2) = a2(f
′
2Z1 + Z2),

φ(Z2) = a3Z2, φ(Z1 − f ′Z2) = a4(Z1 − f ′2Z2) .

This yields a1f
′
1Z1 +a3Z2 = a2f

′
2Z1 +a2Z2 and a1Z1−a3f

′
1Z2 = a4Z1−a4f

′
2Z2. Thus

a1 = a4 and a3 = a2 so a1f
′
1 = a2f

′
2 and a2f

′
1 = a1f

′
2. Consequently,

a1a2f
′
1f
′
1 = a2a1f

′
2f
′
2 .

Since the coefficients ai are non-zero, the desired conclusion follows. 2

4. NEUTRAL SIGNATURE GENERALIZED PLANE WAVE MANIFOLDS

4.1. THE MANIFOLDS M2
2p,ψ

Let p ≥ 2. Introduce coordinates (x1, ..., xp, y1, ..., yp) on R2p. Let ψ(x) be a

symmetric 2-tensor field on Rp. We define a neutral signature metric g2
2p,ψ on R2p and

a corresponding pseudo-Riemannian manifold M2
2p,ψ by:

g2
2p,ψ(∂xi

, ∂xj
) = ψij(x), g2

2p,ψ(∂xi
, ∂yj

) = δij, and g2
2p,ψ(∂yi

, ∂yj
) = 0 .

Theorem 4.1 M2
2p,ψ is a generalized plane wave manifold of signature (p, p).

Proof. The non-zero Christoffel symbols of the first kind are given by:

Γx
ijk := g2

2p,ψ(∇∂xi
∂xj

, ∂xk
) = 1

2
{∂xj

ψik + ∂xi
ψjk − ∂xk

ψij} .

From this, it is immediate that:

∇∂xi
∂xj

=
∑

k Γx
ij

k(x)∂yk
.

We set xp+i = yi to see M2
2p,ψ is a generalized plane wave manifold. 2
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4.2. HOLONOMY

The manifolds M2
2p,ψ present a special case. Let o(p) be the Lie algebra of the

orthogonal group; this is the additive group of all skew-symmetric p×p real matrices.

If Ap is such a matrix, let G2p be the set of all matrices of the form

G(Ap) =

(
Ip Ap

0 Ip

)
.

The map Ap → G(Ap) identifies o(p) with a subgroup of the upper triangular matrices.

Lemma 4.2 HP (M2
2p,ψ) ⊂ o(p).

Proof. Let γ be a closed loop in R2p. Let Hγ∂xi
= Xi and Hγ∂yi

= Yi. Since

∇∂yi
= 0, Yi = ∂yi

. Expand Xi =
∑

j(aij∂xj
+ bij∂yj

). Since Hγ is an isometry,

g2
2p,ψ(Xi, Xj) = ψij, g2

2p,ψ(Xi, Yj) = δij, and g2
2p,ψ(Yi, Yj) = 0 .

The relation g2
2p,ψ(Xi, Yj) = δij and the observation that Yi = ∂yi

shows that aij = δij.

Thus

g2
2p,ψ(Xi, Xj) = ψij + bij + bji = ψij .

This shows b ∈ o(p). 2

4.3. JORDAN NORMAL FORM

The eigenvalue structure does not determine the Jordan normal form of a self-

adjoint or of a skew-adjoint endomorphism if the metric is indefinite. We say that M
is spacelike (resp. timelike) Jordan Osserman if the Jordan normal form of the Jacobi

operator J is constant on the pseudo-sphere bundles of spacelike (resp. timelike) unit

vectors. These two notions are not equivalent. The notions spacelike Jordan Ivanov–

Petrova, timelike Jordan Ivanov–Petrova, spacelike Jordan Szabó, and timelike Jordan

Szabó are defined similarly. There are no known examples of spacelike or timelike

Jordan Szabó manifolds which are not locally symmetric; S(·) vanishes identically if

and only if ∇R = 0.
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4.4. THE MANIFOLDS M3
2p,f

Let f(x1, ..., xp) be a smooth function on Rp and let M3
2p,f := (R2p, g3

2p,f ) where

g3
2p,f is defined by ψij := ∂xi

f · ∂xj
f , i.e.

g3
2p,f (∂xi

, ∂yj
) = δij, g3

2p,f (∂yi
, ∂yj

) = 0, and

g3
2p,f (∂xi

, ∂xj
) = ∂xi

(f) · ∂xj
(f) .

Let Hf,ij := ∂xi
∂xj

f be the Hessian. We use Theorem 4.1 and results of Gilkey,

Ivanova, and Zhang [9] to see that:

Theorem 4.3 Assume that Hf is non-degenerate. Then

1. M3
2p,f is a generalized plane wave manifold which is isometric to a hypersurface

in a flat space of signature (p, p + 1).

2. M3
2p,f is spacelike and timelike Jordan Ivanov–Petrova.

3. If p = 2, then M3
2p,f is spacelike and timelike Jordan Osserman.

4. If p ≥ 3 and if Hf is definite, M3
2p,f is spacelike and timelike Jordan Osserman.

5. If p ≥ 3 and if Hf is indefinite, M3
2p,f is neither spacelike nor timelike Jordan

Osserman.

6. The following conditions are equivalent:

(a) f is quadratic.

(b) ∇R = 0.

(c) M3
2p,f is either spacelike or timelike Jordan Szabó.

4.5. AN INVARIANT WHICH IS NOT OF WEYL TYPE

If Hf is definite, set

α3
2p(f, P ) := {H i1j1

f H i2j2
f H i3j3

f H i4j4
f H i5j5

f R(i1i2i3i4; i5)R(j1j2j3j4; j5)}(P ) (4.a)

where H ij
f denotes the inverse matrix and where we sum over repeated indices. One

has the following result of Dunn and Gilkey [3]:
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Theorem 4.4 Let p ≥ 3. Assume that the Hessian Hf is definite. Then:

1. M3
2p,f is 0-curvature homogeneous.

2. If U(M3
2p,f1

, P1) is isomorphic to U(M3
2p,f2

, P2), then

α3
2p(f1, P1) = α3

2p(f2, P2).

3. M3
2p,f is not locally homogeneous for generic f .

4.6. THE MANIFOLDS M4
4,f

Let (x1, x2, y1, y2) be coordinates on R4. We consider another subfamily of the

examples considered in Theorem 4.1. Let f = f(x2). Let

g4
4,f (∂x1 , ∂x1) = −2f(x2), g4

4,f (∂x1 , ∂y1) = g4
4,f (∂x2 , ∂y2) = 1

define M4
4,f . Results of Dunn, Gilkey, and Nikčević [4] show:

Theorem 4.5 Assume that f (2) and f (3) are never vanishing. The manifold M4
4,f

is a generalized plane wave manifold of neutral signature (2, 2) which is 1-curvature

homogeneous but not symmetric. The following assertions are equivalent:

1. f (2) = aeλy for some a, λ ∈ R− {0}.
2. M4

4,f is homogeneous.

3. M4
4,f is 2-curvature homogeneous.

4.7. AN INVARIANT WHICH IS NOT OF WEYL TYPE

If f (3) is never vanishing, we set

α4
4,p(f, P ) :=

f (p+2){f (2)}p−1

{f (3)}−p
(P ) for p = 2, 3, ... . (4.b)

In the real analytic context, these form a complete family of isometry invariants that

are not of Weyl type. Again, we refer to Dunn, Gilkey, and Nikčević [4] for:
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Theorem 4.6 Assume that fi are real analytic functions on R and that f
(2)
i and f

(3)
i

are positive for i = 1, 2. The following assertions are equivalent:

1. There exists an isometry φ : (M4
f1

, P1) → (M4
f2

, P2).

2. We have α4
4,p(f1)(P1) = α4

4,p(f2)(P2) for p ≥ 2.

4.8. THE MANIFOLDS M5
2p+6,f

We consider yet another subfamily of the examples considered in Theorem 4.1. In-

troduce coordinates on R2p+6 of the form (x, y, z0, ..., zp, x̄, ȳ, z̄0, ..., z̄p). LetM5
2p+6,f :=

(R2p+6, g5
2p+6,f ) be the pseudo-Riemannian manifold of signature (p + 3, p + 3) where:

g5
2p+6,f (∂zi

, ∂z̄j
) = δij, g5

2p+6,f (∂x, ∂x̄) = 1, g5
2p+6,f (∂y, ∂ȳ) = 1,

g5
2p+6,f (∂x, ∂x) = −2(f(y) + yz0 + y2z1 + ... + yp+1zp) .

4.9. AN INVARIANT WHICH IS NOT OF WEYL TYPE

If f (p+4) > 0, set

α5
2p+6,k(f, P ) :=

f (k+p+3){f (p+3)}k−1

{f (p+4)}k
(P ) for k ≥ 2 . (4.c)

The following result follows from work of Gilkey and Nikčević [12, 13].

Theorem 4.7 Assume that f (p+3) > 0 and that f (p+4) > 0. Then:

1. M5
2p+6,f is a generalized plane wave manifold of signature (p + 3, p + 3).

2. M5
2p+6,f is p + 2-curvature homogeneous.

3. If k ≥ 2 and if Ak+p+1(M5
2p+6,f1

, P1) and Ak+p+1(M5
2p+6,f2

, P2) are isomorphic,

then α5
2p+6,k(f1, P1) = α5

2p+6,k(f2, P2).

4. α5
2p+6,k is preserved by any affine diffeomorphism and by any isometry.

5. If fi are real analytic, if f
(p+3)
i > 0, if f

(p+4)
i > 0, and if for all k ≥ 2 we

have that α5
2p+6,k(f1, P1) = α5

2p+6,k(f2, P2), then there exists an isometry φ from

M5
2p+6,f1

to M5
2p+6,f2

with f(P1) = P2.
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6. The following assertions are equivalent:

(a) M5
2p+6,f is affine p + 3-curvature homogeneous.

(b) α5
2,p(f) is constant.

(c) f (p+3) = aeλy for a 6= 0 and λ 6= 0.

(d) M5
2p+6,f is homogeneous.

5. GENERALIZED PLANE WAVE MANIFOLDS OF SIGNATURE (2s, s)

5.1. THE MANIFOLDS M6
3s,F

Let s ≥ 2. Introduce coordinates (~u,~t, ~v) on R3s for

~u := (u1, ..., us), ~t := (t1, ..., ts), and ~v := (v1, ..., vs) .

Let F = (f1, ..., fs) be a collection of smooth real valued functions of one variable.

Let M6
3s,F = (R3s, g6

3s,F ) be the pseudo-Riemannian manifold of signature (2s, s):

g6
3s,F (∂ui

, ∂ui
) = −2{f1(u1) + ... + fs(us)− u1t1 − ...− usts},

g6
3s,F (∂ui

, ∂vi
) = g6

3s,F (∂vi
, ∂ui

) = 1, and g6
3s,F (∂ti , ∂ti) = −1 .

5.2. AN INVARIANT WHICH IS NOT OF WEYL TYPE

Define

α6
3s(F, P ) :=

∑
1≤i≤s{f ′′′i (ui) + 4ui}2(P ) . (5.a)

We refer to Gilkey-Nikčević [11] for the proof of the following result:

Theorem 5.1 Let s ≥ 3. Then

1. M6
3s,F is a generalized plane wave manifold of signature (2s, s).

2. M6
3s,F is 0-curvature homogeneous.

3. M6
3s,F is spacelike Jordan Osserman.

4. M6
3s,F is spacelike Jordan Ivanov–Petrova of rank 4.
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5. M6
3s,F is not timelike Jordan Osserman.

6. M6
3s,F is not timelike Jordan Ivanov–Petrova.

7. If U1(M6
3s,F1

, P1) and U1(M6
3s,F2

, P2) are isomorphic, then

α6
3s(F1, P1) = α6

3s(F2, P2).

8. α6
3s is an isometry invariant.

9. The following assertions are equivalent:

(a) f
(3)
i (ui) + 4ui = 0 for 1 ≤ i ≤ s.

(b) M6
3s,F is a symmetric space.

(c) M6
3s,F is 1-curvature homogeneous.
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