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Abstract. In this paper, using definitions of oriented hyperbolic angles between non–null
vectors, we prove some theorems related to the angles in a triangle in the Lorentzian plane.

1. INTRODUCTION

In the Lorentzian plane L2, there exist two kinds of non–null vectors: the spacelike

and the timelike vectors. The oriented hyperbolic angle between these vectors is not

defined in the same way in all cases. In the first case, the hyperbolic angle between

two timelike vectors is defined in [1, 2] where the authors studied the basic properties

of the hyperbolic angle function. In the next two cases, the hyperbolic angle between

two spacelike vectors, as well as between the spacelike and the timelike vector, is

explicitely defined in [4], where also the measure of an unoriented hyperbolic angle is

given. Some trigonometric relations and hyperbolic sine and cosine laws are obtained

in [5].
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In this paper, using definitions of oriented hyperbolic angles between non–null

vectors, we prove some theorems related to the angles in a triangle in the Lorentzian

plane.

2. PRELIMINARIES

The Lorentzian plane L2 is the vector space R2 provided with the Lorentzian

scalar product given by

g(X,Y ) := x1y1 − x2y2,

where X = (x1, x2) and Y = (y1, y2) are two vectors in L2. Since g is indefinite

metric, an arbitrary vector X in L2 can have one of three causal characters: it can be

spacelike if g(X, X) > 0 or X = 0, timelike if g(X, X) < 0, and null if g(X, X) = 0,

whereby X 6= 0. The norm of a vector is given by ||X|| =
√
|g(X, X)|. Two vectors X

and Y are said to be orthogonal if g(X,Y ) = 0. The time–orientation in L2 is defined

in the following way. Let E = (0, 1) be the unit timelike vector and let X = (x1, x2)

be non–null vector. Then X is future–pointing if g(X, E) < 0, and past–pointing if

g(X,E) > 0. If X and Y are both future–pointing or past–pointing vectors, then they

have the same time–orientation. Recall that the matrix of the hyperbolic rotation in

L2, for some hyperbolic angle u ∈ R, is given by

A(u) =

[
cosh(u) sinh(u)
sinh(u) cosh(u)

]
.

The matrix of the reflection with respect to the straight line x1 = x2 in L2 has the

form

S =

[
0 1
1 0

]
.

It is clear that if X is spacelike (timelike) vector, then S(X) is timelike ( spacelike)

vector. Next we briefly recall definitions of the oriented hyperbolic angles, obtained

in [1, 2, 4]. Let 6 (X,Y ) denotes the oriented hyperbolic angle from X to Y .

Definition 1. Let X and Y be two time-like unit vectors with the same (different)

time-orientations. Then u = 6 (X, Y ), if A(u)X = Y (A(u)X = −Y ).



141

This definition implies respectively the following formulae:

cosh(u) = −g(X,Y ), sinh(u) = −g(X, S(Y )),

cosh(u) = g(X,Y ), sinh(u) = g(X, S(Y )).

Definition 2. Let X = (x1, x2) and Y = (y1, y2) be two spacelike unit vectors with

sgn x1 = sgn y1 (sgn x1 6= sgn y1). Then u = 6 (X, Y ), if A(u)X = Y (A(u)X = −Y ).

From this definition, we obtain similar formulae for cosh(u) and sinh(u).

Definition 3. Let X = (x1, x2) be the spacelike unit vector and and Y = (y1, y2) be

the time-like unit vector, with sgn x1 = sgn y2 (sgn x1 6= sgn y2). Then u = 6 (X, Y ),

if SA(u)X = Y (SA(u)X = −Y ).

From this definition, we respectively obtain the formulae:

cosh(u) = g(X, S(Y )), sinh(u) = g(X, Y ),

cosh(u) = −g(X, S(Y )) sinh(u) = −g(X, Y ).

3. SOME RELATIONS BETWEEN ANGLES IN THE TRIANGLE

Recall that the oriented hyperbolic angle function 6 ( · , · ) has the following prop-

erties:

(1) 6 (X,X) = 6 (X,−X) = 0;

(2) 6 (X,Y ) = −6 (Y, X);

(3) 6 (X,Y ) = 6 (−X,Y ) = 6 (X,−Y ) = 6 (−X,−Y );

(4) 6 (X,Y ) + 6 (Y, Z) = 6 (X, Z).

Let us denote the unoriented hyperbolic angle between non-null vectors X and Y

by [X, Y ]. Then the angle [·, ·] is defined by [X,Y ] = | 6 (X, Y )|, where | · | is the

absolute value. In [4], the measure of unoriented hyperbolic angle is given by:

m[X,Y ] = ln
( |g(X,Y )|+ |g(X, S(Y ))|

||X|| ||Y ||
)
;



142

The aim of this paper is to prove the following three theorems.

Theorem 1. Let ~AB, ~AC and ~BC be three spacelike vectors and let 6 α =

6 ( ~AB, ~AC), 6 β = 6 ( ~AB, ~BC) and 6 γ = 6 ( ~AC, ~BC). Then 6 γ = 6 β − 6 α.

Proof. Let D be a point on line AB such that ~CD is timelike vector and

g( ~AB, ~CD) = 0. Then in the triangle ADC there holds 6 ( ~AB, ~AC) = 6 ( ~CD, ~AC)

([5], page 222). Similarly, in the triangle BCD we have 6 ( ~AB, ~BC) = 6 ( ~CD, ~BC).

Since

6 ( ~AC, ~BC) = 6 ( ~AC, ~CD) + 6 ( ~CD, ~BC),

it follows that

6 γ = −6 ( ~CD, ~AC) + 6 ( ~CD, ~BC).

Therefore,

6 γ = 6 β − 6 α.

Theorem 2. There exist no triangle in the Lorentzian plane such that m[α] =

m[β] = m[γ].

Proof. Assume that m[α] = m[β] = m[γ]. Since m is a measure, it follows that

[α] = [β] = [γ], and thus | 6 α| = | 6 β| = | 6 γ|. By theorem 1 we have | 6 γ| = | 6 β− 6 α|.
It follows that | 6 β − 6 α| = | 6 α| = | 6 β|. This implies that 6 α = 0 or 6 β = 0, which

is a contradiction.

Theorem 3. Let A = (a1, a2) and B = (b1, b2) be two spacelike vectors with sgn

a1 = sgn b1 and let C = A + B, 6 α = 6 (C, B), 6 β = 6 (A,C) and 6 γ = 6 (A,B).

Then C = (c1, c2) is spacelike vector and m[α] = m[β] if and only if ||A|| = ||B||.

Proof. Since C = A + B, it follows that c1 = a1 + b1, and consequently sgn c1 =

sgn a1 = sgn b1. If 6 γ = 6 (A,B), by definition 2 we have g(A,B) = ||A||||B|| cosh( 6 γ)

and hence

g(C, C) = g(A,A) + 2g(A, B) + g(B, B) > 0,
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which means that C is spacelike vector. Let us first assume that m[α] = m[β]. Since

m is the measure, it follows that [α] = [β], and therefore | 6 α| = | 6 β|. The last

equation implies cosh( 6 α) = cosh( 6 β). From definition 2 we obtain that

cosh( 6 α) =
g(B,C)

||B||||C|| , cosh( 6 β) =
g(A,C)

||A||||C|| ,

and hence
g(B, C)

||B||||C|| =
g(A,C)

||A||||C|| .

Putting C = A + B, we get

||A||g(B, A + B) = ||B||g(A,A + B),

and thus

||A||(g(A,B) + ||B||2) = ||B||(g(A,B) + ||A||2).

The last equation implies that

(||A|| − ||B||)(g(A,B)− ||A||||B||) = 0,

and since g(A, B) = ||A||||B|| cosh( 6 γ), it follows that ||A|| = ||B||.
Conversely, let us suppose that ||A|| = ||B||. Then the following equation is

satisfied

(||A|| − ||B||)(g(A,B)− ||A||||B||) = 0.

The previous equation implies that

||A||g(B, A + B) = ||B||g(A,A + B).

Putting C = A + B, we obtain

||A||g(B, C) = ||B||g(A,C),

and consequently
g(A,C)

||A||||C|| =
g(B, C)

||B||||C|| .

From this we find cosh( 6 α) = cosh( 6 β), so | 6 α| = | 6 β|. Consequently, since [α] = [β],

it follows that m[α] = m[β].



144

References

[1] G. S. Birman, K. Nomizu, Trigonometry in Lorentzian geometry, Amer. Math.

Mon–thly 91 (9) (1984), 543–549.

[2] G. S. Birman, K. Nomizu, The Gauss–Bonnet theorem for 2–dimensional space-

times, Michigan Math. J. 31 (1984), 77–81.

[3] B. Y. Chen, Total mean curvature and submanifolds of finite type, World Scien-

tific, Singapore (1984).
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