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Nǐs, Serbia and Montenegro

(e-mail: liki@masfak.ni.ac.yu)

3The Mathematical Institute, Knez Mihailova 35, P.O. Box 367,

11001 Belgrade, Serbia and Montenegro

(e-mail: radmilas@gmail.com)

Abstract. Using the table of four-regular 3- and 2-connected planar graphs computed by
Brendan McKay, the complete list of basic polyhedra with n ≤ 16 crossings is derived. For
all the basic polyhedra, with the exception of four of them, the number of source links which
could be derived from them by adding single digons in their vertices is computed.

1. INTRODUCTION

In the history of knot theory, one of fundamental problems was the derivation of

basic polyhedra: prime knots or links without digons. Considered from the graph

1The author was supported in part by the Serbian Ministry of Science and Environmental Pro-
tection (Project #2005: Geometry, education and visualization with applications).
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theory point of view, basic polyhedra are 4-regular 3- or 2-vertex-connected planar

graphs that are at least 3-edge connected. Namely, every knot or link without digons

can be represented by a 4-regular planar 3- or 2-connected graph. The edge connec-

tivity condition excludes from the definition knots or links that are not prime. AS

knots are 1-component links we use the term ”links” for both knots and links.

The problem for n ≤ 12 was solved by Kirkman [1], where the basic polyhedra with

n ≤ 12 vertices were obtained by introducing new triangular faces in link diagrams,

in order to eliminate all digons. For that, it is necessary that a link diagram contains

at most three digons, and that all digons belong to the same face. In such a face

we inscribe a triangle, with the vertices belonging to the face edges (e.g., in their

midpoints), and each digon must contain a vertex of the triangle.

In the following table all diagrams of links for 3 ≤ n ≤ 9 that satisfy that necessary

condition and the list of basic polyhedra with (n+3) vertices derived from them (Fig.

1, Fig. 2) are given in Dowker notation.

Figure 1.
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Figure 2.

Table 1

n = 3 3 4 6 2 6∗

n = 5 212 6 8|2 10 4 8∗

n = 6 312 4 8 10 12 2 6 9∗

6∗ 6 8|10 12|2 4 9∗

n = 7 21112′ 4 8 10 12 2 14 6 10∗, 10∗∗

.2 6 8|10 12 14 2 4 10∗∗, 10∗∗∗
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n = 8 31112 4 10 12 14 2 16 8 6 11∗

21212′ 4 10 12 14|8 2 16 6 11∗∗

21212′′′ 8 10 14|2 16 4 6 12 11∗

.3 6 8|12 14 16|10 2 4 11∗, 11∗∗

.21 6 8|10 14 12 16 2 4 11∗, 11∗∗

.2.20 6 8 14 12 4 16 2 10 11∗, 11∗∗∗

8∗ 6 8 10 12 14 16 2 4 11∗, 11∗∗

3#212 11∗∗

n = 9 31212 4 12 10 16 14 2 18 6 8 12D
21312′ 4 10 12 14 18 2 16 6 8 12D
2111112 4 10 12 14 2 18 16 8 6 12A, 12B, 12F
2111112′′′ 4 12 10 16 18 2 8 6 14 12B, 12F
21, 21, 21 8 12 16|2 18 4 10 6 14 12G
.4 6 8|12 14 16 18 2 4 10 12E
.31 6 8|10 14 16 18 2 4 12 12J, 12L
.22 6 8|16 14 12 18 2 4 10 12E
.211 6 8|12 14 18|16 2 4 10 12B, 12H, 12I, 12J, 12K
.3.20 8 10 12|14 2 16 18 6 4 12D
.21.2′ 4 8 14 12 2 16 18 10 6 12B, 12F, 12H
2 : 2 : 2 8 12 16|2 14 4 18 6 10 12C
.(2, 2) 10 12|14 18|6 16 8 2 4 12I
8∗2 8 10 12|6 14 16 18 2 4 12B, 12F, 12G, 12H, 12I
8∗20 6 8 10 16 14 18 4 2 12 12F, 12I, 12K
9∗ 6 16 14 12 4 2 18 10 8 12D, 12H, 12L
212#1#3 12E
6∗#3 12J

The list of links derived by Kirkman was complete for n = 8 crossings. For n = 9,

two of the links from which 12-vertex basic polyhedra can be derived have been omitted by

Kirkman, but even that incomplete list is sufficient for the derivation of all basic polyhedra

for n = 12. Namely, the missing polyhedron 12E is the only polyhedron that could be

derived from the projection of the link .22, denoted by Kirkman as 9Bn, so the uncomplete

result of Kirkman (11 from 12 basic polyhedra derived for n = 12) could be just an omission

in the process of derivation. The other more probable reason for this omission is that the

polyhedron 12E is, among the basic polyhedra, the only 2-connected graph, and all the

others are 3-connected, so maybe Kirkman decided to exclude 12E from his list. Except

for that omission, the list obtained by Kirkman coincides with the enumeration made by

A. Caudron [2], where the complete list of the 12-vertex basic polyhedra was obtained by
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composing hyperbolic tangles, so we use that list and notation. All the basic polyhedra for

6 ≤ n ≤ 10 and the basic polyhedron 11∗ has also been derived by Conway [3].

If we generalize Kirkman’s method, introducing not only new triangular, but also p-

gonal faces (p > 3) in the link diagrams in order to eliminate digons, we could derive

in that way all the polyhedra with 6 ≤ n ≤ 12 vertices from the links 3, 4, 5, 6,... or

from their direct products (Fig. 3). In this case we may describe the derivation by the

corresponding partitions: 6∗ =3+3, 8∗ =4+4, 9∗ = 6∗+3 =3+3+3, 10∗ =5+5, 10∗∗ =4+3+

3, 10∗∗∗ =4+3+3, 11∗ = 8∗+3 =4+3+3, 11∗ = 8∗+3 =4+3+3, 11∗∗ = 8∗+3 =4+3+3,

11∗∗∗ =3#3+5, 12A=6+6, 12B=3#3+3+3, 12C= 8∗+4 =4+4+4, 12D= 9∗+3 =3+3+

3+3, 12E=6+3+3, 12F=5+3+4, 12G=5+3+4, 12H= 9∗+3 =3+3+3+3, 12I=5+3+4,

12J=3#3+3+ 3, 12K=3#3+3+ 3, 12L= 9∗ + 3 =3+3+ 3 + 3. For the larger values of n,

the completeness of such derivation is an open question.

2. BASIC POLYHEDRA WITH n ≤ 16 CROSSINGS

The basis of our computation was the table of 4-regular 3- and 2-connected planar graphs

with n ≤ 16 vertices, derived by Brendan McKay [4], generated by the program ”plantri.c”

created by Gunnar Brinkmann and Brendan McKay (http://cs.anu.edu.au/ bdm/plantri/).

From that table we excluded 2-edge connected graphs, and as a result we, obtained the

complete list of basic polyhedra with n ≤ 16 crossings given in the form of graphs. Hence,

for 6 ≤ n ≤ 16 they are, respectively, 1, 0, 1, 1, 3, 3, 12, 19, 64, 155, 510 basic polyhedra.

Among them, they are, respectively, 1, 0, 1, 1, 3, 3, 11, 18, 58, 139, 451 3-connected and 0,

0, 0, 0, 0, 0, 1, 1, 6, 16, 59 2-vertex-connected graphs. The first sequence was computed by

M. Dillencourt and included in N. Sloane’s On-Line Encyclopedia of Integer Sequences [5]

as the sequence A007022, and the new sequences that we obtained are now included in the

same Encyclopedia as A078666 and A078672.
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3. NUMBER OF SOURCE LINKS DERIVED FROM BASIC POLYHEDRA WITH

n ≤ 16 CROSSINGS

Links obtained from any basic polyhedron by adding single digons in its vertices we

will call source links. We propose that term because, from every such link, different infinite

families of links can be derived when replacing digons by rational, arborescent, generalized

arborescent links, etc.

For most of basic polyhedra the number of source links that can be derived is possible

to compute by using Pólya Enumeration Theorem (PET) [6].

Figure 3.
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In fact, it is possible to do so for all basic polyhedra without automorphisms (symme-

tries) of order 4 preserving invariant a vertex of the polyhedron. In that case, the number of

source links derived from a basic polyhedron with n vertices by introducing, respectively, 0,

1, ..., n digons is given by the coefficients of the ZG(x, x, 1), where ZG is Pólya polynomial.

From 769 basic polyhedra existing for 6 ≤ n ≤ 16, there are only four of them that we have

not been able to compute the number of source links by using PET. The basic polyhedra

in question are 6∗, 10∗∗∗, and two basic polyhedra with n = 14 vertices (Fig. 4).

The computation of the number of source links with k digons (0 ≤ k ≤ n) derived from

a basic polyhedron with n vertices by using PET will be illustrated by the example of the

basic polyhedron 9∗. Its graph automorphism group G = [2, 3] of order 12 is generated by

3-rotation S = (1, 4, 7)(2, 5, 8)(3, 6, 9) and by two reflections: R = (1)(2, 8)(3, 6)(4, 7)(5)(9)

which contains the rotation axis, and R1 = (1, 9)(2)(3, 4)(5)(6, 7)(8) which is perpendicular

to it. Hence, ZG = 1

12
(t91 + 4t31t

3
2 + 3t1t

4
2 + 2t33 + 2t3t6), the coefficients of ZG(x, 1) =

1 + 2x + 6x2 + 12x3 + 16x4 + 16x5 + 12x6 + 6x7 + 2x8 + x9 represent, respectively, the

number of different symmetry choices of k vertices for 0 ≤ k ≤ 9, and the coefficients of

ZG(x, x, 1) = 1+4x+20x2 +76x3 +202x4 +388x5 +509x6 +448x7 +228x8 +4x9 represent

the number of source links with k digons derived from 9∗ for 0 ≤ k ≤ 9.

The number of all source links derived from the basic polyhedra with n ≤ 16 vertices,

except the four mentioned, is computed in the same way.

4. SOURCE LINKS DERIVED FROM BASIC POLYHEDRA WITH n ≤ 16

CROSSINGS

The first of them is the regular octahedron 6∗, with the graph automorphism group

G = [3, 4] of order 48, generated by 4-rotation S = (1)(2, 3, 5, 6)(4), 2-rotation T =

(1, 3)(2, 5)(4, 6) and inversion Z = (1, 4)((2, 5)(3, 6). From 6∗ we derive source links by sub-

stituting its vertices by digons. First we make all the different symmetry choices of k vertices

(0 ≤ k ≤ 6), i.e. all different vertex bicolorings of the octahedron. We could find their num-

ber by using PET. For G = [3, 4], ZG = 1

48
(t61+3t41t2+9t21t

2
2+6t21t4+7t32+6t2t4+8t23+8t6),
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and by the coefficients of ZG(x, 1) = 1+x+2x2 +2x3 +2x4 +x5 +x6 is given, respectively,

the number of different choices of k vertices for 0 ≤ k ≤ 6. For 1 ≤ k ≤ 6, that vertex

bicolorings are: {1}; {1, 2}, {1, 4}; {1, 2, 3}, {1, 2, 4}; {1, 2, 4, 5}, {1, 2, 3, 4}; {1, 2, 3, 4, 5};

{1, 2, 3, 4, 5, 6}, and to them correspond, respectively, source links of the form .a; .a.b, .a : b;

.a.b.c, a : b : c; .a.b.c.d, a.b.c.d; a.b.c.d.e; a.b.c.d.e.f , given in Conway notation. After this is

accomplished, we make one of two possible substitutions (2 or 2 0) in every chosen vertex,

keeping in mind the symmetry of vertex bicolored octahedron. For n ≤ 12, the source links

obtained from 6∗ by the vertex substitutions, are given in Table 2. Among them, for n = 11,

there is a 3-component link 2.20.2.20.2, omitted in [2].

Table 2

n = 7 .2 n = 11 2.2.2.2.2

2.2.2.2.20

n = 8 .2.2 2.2.2.20.2

.2.20 2.2.2.20.20

2.20.2.2.20

.2 : 2 20.2.2.2.20

.2 : 20 2.20.2.20.2

n = 9 .2.2.2 2 : 2 : 2 n = 12 2.2.2.2.2.2

.2.2.20 2 : 2 : 20 2.2.2.2.2.20

.2.20.2 2 : 20 : 20 2.2.2.2.20.20

20 : 20 : 20 2.2.2.20.2.20

2.2.20.2.2.20

n = 10 .2.2.2.2 2.2.2.2 2.2.2.20.20.20

.2.2.2.20 2.2.2.20 2.20.2.20.2.20

.2.2.20.20 2.2.20.2

.2.20.2.20 2.2.20.20

2.20.2.20

20.2.2.20

20.2.20.20
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Because of the large number of the different choices of vertices and positions of digons

placed in them (growing as the number of distinct permutations of the length n of three

elements) further derivation ”by hand” will be an almost impossible task. This holds for

the three remaining basic polyhedra with a larger number of vertices (10, 14 and 14). It is

a reason for the development of a computer algorithm which makes possible not only the

calculation of the number of source links that can be derived from any basic polyhedron,

but also the production of source links in their explicit form.

The theoretical background of that algorithm is the following: every basic link is given

by a system of tangles placed in its vertices, this means, by external connections between

the vertices of tangles and diagonal connections inside tangles. After that, two internal

connections are introduced in every tangle: (4k − 3, 4k) and (4k − 2, 4k − 1) in the case

of tangle 2, and (4k − 3, 4k − 2) and (4k − 1, 4k) in the case of the tangle 20. The list of

mutually non-isomorphic graphs obtained that way is the list of source links derived from

the basic polyhedron considered.

After writing the proposed computer program we hope to be able to complete the

calculation of the number of source links derived from the basic polyhedra for n ≤ 16, and

to obtain the list of source links in their explicit form.

Figure 4.
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